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Abstract: The theory of Gaussian functions is reformulated using an umbral point of view. The
symbolic method we adopt here allows an interpretation of the Gaussian in terms of a Lorentzian
image function. The formalism also suggests the introduction of a new point of view of trigonom-
etry, opening a new interpretation of the associated special functions. The Erfi(x), is, for example,
interpreted as the “sine” of the Gaussian trigonometry. The possibilities offered by the Umbral
restyling proposed here are noticeable and offered by the formalism itself. We mention the link
between higher-order Gaussian trigonometric functions, Hermite polynomials, and the possibility of
introducing new forms of distributions with longer tails than the ordinary Gaussians. The possibility
of framing the theoretical content of the present article within a redefinition of the hypergeometric
function is eventually discussed.

Keywords: umbral methods 05A40, 44A99, and 47B99; operator theories 44A99, 47B99, and 47A62;
special functions 33C52, 33C65, 33C99, 33B10, and 33B15; Bessel function 33C10; hypergeometric
function 33C20; Fresnel integral 46T12; trigonometric function 33B10; error function 33B20; Gaussian
function 28C20; integral calculus 97I50

1. Introduction

Umbral methods (UM) [1,2] realize a common environment in which the properties
of different functions can be studied using a specific image realization [3,4]. The Bessel
functions have indeed been studied using the Gaussian as the associated image function [2].
The trigonometric functions [2,5,6], too, have been framed within a context having the
Gaussian as a pivot reference function. Within this context, a natural transition between
circular and Bessel function has been obtained, and the spherical Bessel functions have
been shown to be the common thread between the two families of functions.

The usefulness of the umbral methods, as intended in this article, has been further
corroborated by recent articles on a symbolic treatment of Hermite polynomials [7], where
the authors have proven interesting properties of three-variable Hermite polynomials.
The main break-through contained in [7] can be summarized by saying that this family
of polynomials can be viewed as a suitable form of the Newton binomial. Moreover, a
further application of the method discussed in [8] has opened new possibilities for the
study of non-standard Hermite polynomial-generating functions [9]. The interest for the
methods we have outlined is growing even more due to its relevant association with
the monomiality principle [10–12], which opens new and fascinating speculations on the
possibility of obtaining a cross-bridge with old symbolic methods, important precursors of
the modern umbral and algebraic theories [2,13].

The paradigm we have followed is that of providing a kind of “downgrade” of the
level of the complexity of the function itself by reducing a higher-order transcendental
function to a lower order. The simplification occurs through the introduction of a set of
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operators with specific algebraic properties, whose role has been clarified and made more
rigorous within the well-established properties of the Borel transform [14,15].

The distinctive feature of the umbral theory used in this article and illustrated in [2]
is the use of what has been defined as the image function. This namely involves the
introduction of a function of elementary nature, allowing the “downgrade” of a higher tran-
scendental to an elementary transcendental, which simplifies the study of the properties of
more complicated forms. The adoption of this strategy has been applied to Bessel functions,
whose image is a Gaussian. This point of view has opened significant opportunities for
simplification in the study of the relevant properties.

The procedure we have just summarized has revealed interesting aspects of special
functions, unveiling elements of superposition hardly achieveble by other means. In this
paper, we use the same point of view by exploring the consequences of the “downgrading"
of the Gaussian function to the status of a rational function.

The starting point of our study is the reduction of the Gaussian to a Lorentz function,
and we will see how this opens a view on other families of functions, leading to generalized
forms of Gaussian trigonometric-like functions. The paper is organized as outlined below.

In Section 2, we clarify how a Lorentzian can be chosen as the relevant umbral image
and explore further associated umbral forms, which naturally leads to the sine and cosine
Gaussian functions.

In Section 3, we extend the formalism to the study of higher-order trigonometric-like
functions and introduce further generalizations.

Finally, Section 4 contains comments, including applications and possible links of the
previous conclusions with Lèvy distributions.

2. Gaussian Functions, Lorentzian Functions, and Associated Trigonometric Functions

We make use of umbral operators to construct images of special and ordinary functions.
The underlying formalism revealed quite powerful-to-deal-with computational details
(difficult to accomplish with ordinary means) and disclosed intimate relationships between
different forms of special functions.

In this section, we show the consequences deriving from the umbral restyling of the
Gaussian function in terms of the Lorentzian function.

Proposition 1. We write the Gaussian function as

e−x2
=

1
1 + ĉ x2 ϕ0, (1)

where the umbral operator ĉ is such that

ĉ α ϕ0 =
1

Γ(α + 1)
, (2)

with Γ(.) being the Euler gamma function and α representing any real or complex number.

Proof. According to the umbral point of view (see [2] for a rigorous treatment of the umbral
methods),

e−x2
=

∞

∑
r=0

(−1)rx2r

r!
=

∞

∑
r=0

(−1)rx2r

Γ(r + 1)
=

∞

∑
r=0

(−ĉ)rx2r ϕ0 =
1

1 + ĉ x2 ϕ0. (3)
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Corollary 1. A consequence of Equation (1) is that the primitive of the Gaussian function, too, can
be formally expressed in terms of an elementary function, namely (we use the notation tan−1(x) to
indicate arctan(x)) ∫

e−x2
dx = ĉ−

1
2 tg−1

(
ĉ

1
2 x
)

ϕ0. (4)

Proposition 2. It is possible to cast Equation (1) in the form

e−x2
:= Cg(x) =

1
2

(
1

1− i ĉ
1
2 x

+
1

1 + i ĉ
1
2 x

)
ϕ0 (5)

and define the associated function as

Sg(x) :=
1
2 i

[
1

1− i ĉ
1
2 x
− 1

1 + i ĉ
1
2 x

]
ϕ0 =

2√
π

∞

∑
r=0

(−1)r(r + 1)! (2x)2 r+1

[2 (r + 1)]!
. (6)

The above functions (5) and (6) will be referred as the cosine and sine Gaussian functions, respectively.

Proof. By the use of standard algebraic manipulations, Equation (1) becomes

e−x2
=

1
1 + ĉ x2 ϕ0 =

1
2

(
1

1− i ĉ
1
2 x

+
1

1 + i ĉ
1
2 x

)
ϕ0 := Cg(x),

and the associated function Sg(x) is

Sg(x) : =
1
2 i

[
1

1− i ĉ
1
2 x
− 1

1 + i ĉ
1
2 x

]
ϕ0 =

∞

∑
r=0

(−1)r ĉr+ 1
2 x2r+1 ϕ0

=
∞

∑
r=0

(−1)rx2 r+1

Γ
(
r + 3

2
) =

1√
π

∞

∑
r=0

(−1)rr! (2x)2 r+1

(2r + 1)!
= e−x2

Erfi(x).
(7)

It is worth noting that the Gaussian sine does not represent something new in the
scenario of special functions and that it can be indeed interpreted in terms of the Dawson
integral F(x), namely [16]

Sg(x) =
2√
π

F(x),

F(x) = e−x2
∫ x

0
ey2

dy =

√
π

2
e−x2

Erfi(x) =
∞

∑
n=0

(−1)n2nx2n+1

(2n + 1)!!
.

(8)

In passing, we noted that the “Gaussian trigonometric identity” is

Sg(x)2 + Cg(x)2 = e−2x2
(

1 + Erfi(x)2
)

. (9)

The geometrical nature of trigonometric functions is expressed through their represen-
tative circles, given e.g., by the plot of cosine vs. sine functions. The same holds for the
Gaussian trigonometry we have outlined. In Figure 1, we show Cg(x) vs. Sg(x) resulting in
an egg-like form, characterizing the “circle” of the Gaussian trigonometry, and in Figure 2,
we also report the behavior of Cg(x) and Sg(x) vs. x. The plotted functions are odd and
even functions, but they are not periodic since they vanish at x → ±∞.
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Figure 1. Gaussian trigonometric “circumference”: egg-shaped curve. Cg(x) vs. Sg(x).
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Figure 2. Cg(x) and Sg(x) vs. x.

The existence of other differences between the circular functions and the possibility of
introducing higher-order sine/cosine Gaussians, as well as the relevant link to the Hermite
polynomials, will be discussed in the forthcoming section.

3. Higher-Order Gaussian Trigonometric Functions

After the introductory remarks of the previous section, we introduce higher-order
forms of Gaussian trigonometric functions. To accomplish this task, we take advantage of
well-known Laplace transform identities [4].

Proposition 3. The use of the Laplace transform (LT) technique allows us to write

Cg(x) =
∫ ∞

0
e−s cos

(√
ĉ x s

)
ds ϕ0 , Sg(x) =

∫ ∞

0
e−s sin

(√
ĉ x s

)
dsϕ0. (10)
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Proof. The first equation simply follows by the Laplace transform k
k2+a2 =

∫ ∞
0 e−kt cos(at)dt

Cg(x) =
1

1 + (
√

ĉ x)2
ϕ0 =

∫ ∞

0
e−s cos

(√
ĉ x s

)
ds ϕ0.

The derivation of the second part of Equation (10) follows analogous lines.

Corollary 2. The successive derivatives of the Gaussian trigonometric functions can be written in
umbral form as

C(m)
g (x) =

√
ĉm
∫ ∞

0
e−ssm cos

(√
ĉ x s + m

π

2

)
ds ϕ0 ,

S(m)
g (x) =

√
ĉm
∫ ∞

0
e−ssm sin

(√
ĉ x s + m

π

2

)
ds ϕ0 .

(11)

Corollary 3. The Hermite polynomials are associated with the successive derivatives of the Gaussian
Hn(x)e−x2

= (−1)n∂n
xe−x2

. Therefore, we obtain the identity

Hm(x) e−x2
= (−1)m

√
ĉm
∫ ∞

0
e−ssm cos

(√
ĉ x s + m

π

2

)
ds ϕ0 , (12)

which can be exploited for an alternative definition of this family of polynomials.

Let us now return to the definition of the Gaussian sine, which, by using Equation (7),
can also be specified as

Sg(x) =
ĉ

1
2 x

1 + ĉx2 ϕ0 , (13)

and provide the integral in the following example.

Example 1. ∀x ∈ R
∫ x

0
Sg(ξ) dξ = − 1

4
√

π

∞

∑
r=1

(−1)r(2x)2r(r− 1)!
r (2r− 1)!

. (14)

indeed

∫ x

0
Sg(ξ) dξ =

ĉ−
1
2

2
ln(1 + ĉ x2) ϕ0 =

ĉ−
1
2

2
(−1)

∞

∑
r=1

(−1)r(ĉx2)r

r
ϕ0

= −1
2

∞

∑
r=1

(−1)rx2r

r Γ
(

r + 1
2

) = − 1
4
√

π

∞

∑
r=1

(−1)r(2x)2r(r− 1)!
r (2r− 1)!

.
(15)

Remark 1. The Gaussian trigonometric functions can be accordingly derived from the real and
imaginary parts of the function

Eg(x) =
1 + i ĉ

1
2 x

1 + ĉx2 ϕ0 . (16)

Observation 1. It is worth stressing that the two Gaussian trigonometric functions are linked by
the Kramers–Kronig identity [17]

Sg(x) = − 1
π
P
∫ ∞

−∞

Cg(ξ)

ξ − x
dξ, (17)
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where P is the Cauchy principal value (we recall that the Cauchy principal value is “P
∫ ∞
−∞

Cg(ξ)
ξ−x

dξ = lim
ε→0+

(∫ x−ε
−∞

Cg(ξ)
ξ−x dξ +

∫ ∞
x+ε

Cg(ξ)
ξ−x dξ

)
”.).

Proposition 4. The successive derivative of the complex function Sg(x) can be obtained from those
of Eg(x)

S(m)
g (x) =

2m+1
√

π

∞

∑
r=dm−1

2 e

(−1)r(r + 1)! (2 r + 1)! (2x)2 r+1−m

[2 (r + 1)] !(2 r + 1−m) !
. (18)

Proof. By exploiting Equation (16) and the identity based on the Laplace transform of the
Lorentz function, we obtain

E(n)
g (x) = ∂n

x

∫ ∞

0
(1 + iĉ

1
2 x)e−se−sĉx2

dsϕ0 = Re
[

E(n)
g (x)

]
+ iIm

[
E(n)

g (x)
]
. (19)

We study the individual parts using the two-variable Hermite polynomials [14,18]

Hn(x, y) = n!
b n

2 c

∑
r=0

xn−2 ryr

(n− 2 r)! r!
(20)

and their properties

∂n
x ea x2

= Hn(2 a x, a)ea x2
, (21)

∞

∑
k=0

tk

k!
Hk(x, y) = ex t+y t2

(22)

Thus, we obtain

Re
[

E(n)
g (x)

]
= C(n)

g (x) =
∫ ∞

0
e−s∂n

xe−s ĉ x2
dsϕ0

=
∫ ∞

0
e−sHn(−2 s ĉ x, −s ĉ) e−s ĉ x2

dsϕ0

(23)

and

Im
[

E(n)
g (x)

]
= S(n)

g (x) = ĉ
1
2

∫ ∞

0
e−s∂n

x

(
x e−s ĉ x2

)
dsϕ0

= ĉ
1
2

n

∑
r=0

(
n
r

)(
∂n−r

x x
) ∫ ∞

0
e−sHr(−2 s ĉ x, −s ĉ) e−s ĉ x2

dsϕ0

=
2n+1
√

π

∞

∑
r=d n−1

2 e

(−1)r(r + 1)! (2 r + 1)! (2x)2 r+1−n

[2 (r + 1)] !(2 r + 1− n)) !
.

(24)

Remark 2. This is an interesting result because Eg(x), as commented on in the final section, is
equivalent to the plasma dispersion function

The behavior of the successive derivatives of the Gaussian sine function is reported in
Figure 3.
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Figure 3. Normalized S(n)
g (x) for different values of n.

The successive derivatives of Sg(x) are products of Gaussian and of Hermite poly-
nomials. The relevant behavior is therefore not dissimilar from the Harmonic oscillator
functions. For a comparison, see [19] for the relevant numerical and graphical outline.

4. New Forms of Gaussian-like Distributions

We extend here the methods we just outlined in the previous sections, introducing
new Gaussian-like functions and studying their relevant properties. The use of the methods
we have just touched upon displays a wide range of flexibility, as we are going to show in
the examples below.

Example 2. We define the function by means of the series

e
(
−x2| n

)
:=

∞

∑
r=0

(−1)rΓ
( r

n + 1
)

x2 r

r!
, ∀x ∈ R, ∀n ∈ N : n > 1 (25)

and ask whether its integral

Ie(n) :=
∫ ∞

−∞
e(−x2| n) dx (26)

can be calculated in analytical form. This can be checked straightforwardly by the use of the umbral
technique discussed so far (conventional methods based on the Laplace transform technique can be
used too but they are more involute).We first write Function (25) in a Gaussian-like form through
the p̂ umbral operator and the following umbral image (it is easily proved trough Equation (27) that

e− p̂ x2
γ0 = ∑∞

r=0
(−1)r x2r p̂r

r! γ0 = sum∞
r=0

(−1)r x2r

r! Γ
( r

n + 1
)
= e
(
−x2| n

)
.)

e
(
−x2| n

)
= e− p̂ x2

γ0, p̂αγ0 = Γ
( α

n
+ 1
)

. (27)

Then, we are allowed to evaluate the integral (26) as

Ie(n) =
∫ ∞

−∞
e− p̂ x2

dx γ0 =

√
π

p̂
γ0 = Γ

(
1− 1

2 n

)√
π. (28)

We note that by taking n = 1 in the previous equations, namely for e
(
−x2| 1

)
= 1

1+x2 , Equation (28)
yields, as it must be, Ie(1) = π.

The result reported in Equation (28) has been, as usual, checked numerically. The term-wise
integration, which we have used as a benchmark, becomes difficult. The corresponding series
converges very slowly for small values of n, and the integration becomes unstable. We have,
therefore, tested Equation (28) by the use of the Ramanujan master theorem [20,21] and by other
means discussed below.
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Example 3. The same procedure yields the following further example:

Iea,b(n) =
∫ ∞

−∞
e(−ax2 + bx | n)dx =

∫ ∞

−∞
e− p̂(ax2−bx)dx γ0

=

√
π

ap̂
e p̂ b2

4a γ0 =

√
π

a

∞

∑
r=0

(
b2

4a

)r

r!
p̂r− 1

2 γ0 =

√
π

a
e− 1

2

(
b2

4a
| n
)

,

eν(x | n) =
∞

∑
r=0

xr

r!
Γ
(

r + ν

n
+ 1
)

.

(29)

It is finally interesting to note that the use of the generating function

∞

∑
s=0

ts

s!
Hs(x, y | n) = e(xt + yt2 | n),

Hm(x, y | n) = m!
bm

2 c

∑
r=0

xm−2ryr

(m− 2r)!r!
Γ
(

m− r
n

+ 1
) (30)

allows the introduction of a further family of two-variable Hermite-like polynomials, whose properties
will be explored elsewhere.

Example 4. It is evident that Function (25), which with increasing n becomes closer and closer to
a Gaussian, can be exploited to model distributions with a tail longer than an ordinary Gaussian
function. By setting

F(x; σ|n) :=
1

√
2 π Γ

(
1− 1

2 n

)
σ

e
(
− x2

2 σ2 |n
)

, (31)

we can evaluate the moments associated with its distribution using the generating function
method (22). To this aim, we note that, ∀d ∈ N, ∀σ ∈ R : σ 6= 0,

〈F(x; σ|n)〉(m, d) := M(m, d) =
∫ ∞

−∞
(x + d)mF(x, σ|n) dx , ∀m ∈ Z, (32)

can be calculated by noting that

∞

∑
m=0

tm

m!
M(m, d) =

∫ ∞

−∞

∞

∑
m=0

tm(x + d)m

m!
F(x, σ|n) dx

=
et d

√
2 π Γ

(
1− 1

2 n

)
σ

∫ ∞

−∞
et xe−

p̂ x2

2 σ2 dx γ0.
(33)

The Gaussian integral on the r.h.s. of Equation (33) yields

∞

∑
m=0

tm

m!
M(m, d) =

etd e
t2σ2
2 p̂

Γ
(

1− 1
2 n

) p̂−
1
2 γ0 (34)

and the use of the Hermite-generating function (21) finally provides the result

M(m, d) =
p̂−

1
2

Γ
(

1− 1
2 n

)Hm

(
d,

σ2

2
p̂−1

)
γ0

=
m!

Γ
(

1− 1
2 n

) bm
2 c

∑
r=0

dm−2 rσ2 r

2rr! (m− 2 r)!
Γ
(

1− 1
2n
− r

n

)
.

(35)
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The higher-order moments for d = 0 can accordingly be evaluated as

〈F(x; σ|n)〉m := Mm =
1

Γ
(

1− 1
2n

) m!
Γ
(m

2 + 1
)(σ2

2

)m
2

Γ
(

1− 1
2n
− m

2n

)
. (36)

The quasi-Gaussian distributions have only a finite number of non-diverging higher-order
moments, compatible with the condition m+1

2 n < 1. These distributions can be exploited to interpolate
between Gaussian and Cauchy–Lorentz distributions.

Example 5. It is worth noting that the use of the integral representation of the Gamma function
allows us to cast Equation (25) in the form

e
(
−x2| n

)
=

∞

∑
r=0

(−1)rx2 r

r!

∫ ∞

0
e−ss

r
n ds =

∫ ∞

0
e−se−x2sα

ds, α =
1
n

. (37)

By exploiting Property (21), the successive derivatives of e
(
−x2| n

)
can then be written as

e(m)
(
−x2| n

)
=
∫ ∞

0
e−sHm(−2 x sα, −sα) e−x2sα

ds, α =
1
n

(38)

and can be exploited to establish families of functions providing a smooth transition, with increasing
n , to the ordinary Hermite Gauss functions.

The integral transform (37) is an alternative to the umbral notation developed so far and shows
noticeable features of interest, which will be touched upon below and will be discussed more carefully
in a forthcoming investigation.

It is also worth noting that the use of the integral representation in Equation (37) yields
almost straightforwardly the evaluation of its infinite integral, as shown below.

Example 6. We can accordingly write

I(α) :=
∫ ∞

−∞

∫ ∞

0
e−s−x2sα

ds dx. (39)

Interchanging the integrals and using the ordinary Gaussian and the properties of the Gamma
function [4], when Re(α) < 2, we obtain

I(α) =
∫ ∞

0
e−s

∫ ∞

−∞
e−x2sα

dx ds =
∫ ∞

0
e−s
√

π

sα
ds

=
√

π
∫ ∞

0
e−ss−

α
2 ds =

√
π Γ

(
1− α

2

) (40)

The same procedure can be exploited for the derivation of higher-order moments.

5. Applications and Final Comments

It is evident that the discussion of the properties of Gaussian trigonometric functions
can be extended to the case of the distribution in Equation (25). We will not discuss these
problems any more, leaving the subject for a forthcoming investigation. We will devote
this concluding section to the relevance of the previous discussion to the link with known
families of special functions.

We have already mentioned that the Gaussian sine is linked to the Dawson function
through Equation (8), keeping the advantage from the relevant expression in terms of the
confluent hypergeometric series 1F1(.; .; .) [22]

Sg(x) =
2√
π

e−x2
∫ x

0
ey2

dy =
2√
π

x e−x2
1F1

(
1
2

;
3
2

; x2
)

. (41)
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This identity offers a further direction along which we can extend the umbral point
of view.

Example 7. Indeed, we can consider the following umbral interpretation of the confluent hyper-
geometric function 1F1(a; c; x) through the Pochhammer symbol (y)r = y(y + 1) · · · (y + r− 1):

1F1(a; c; x) =
∞

∑
n=0

(a)n xn

(c)n n!
=

∞

∑
n=0

κ̂n xn

n!
φ0 = eκ̂xφ0,

κ̂nφ0 := κ̂n
a,c φ0 =

(a)n

(c)n
.

(42)

For umbral and Pochhammer properties, we note that

κ̂nκ̂mφ0 = κ̂n+mφ0 =
(a)n+m

(c)n+m
=

(a)n

(c)n

(a + n)m

(c + n)m
. (43)

Using above relation, we can easily calculate higher orders of the derivatives of the hypergeometric
function 1F1(a; c; x)

∂s
x 1F1(a; c; x) = κ̂seκ̂xφ0 = κ̂s

∞

∑
n=0

κ̂n xn

n!
φ0 =

∞

∑
n=0

(a)s

(c)s

(a + s)n

(c + s)n

xn

n!

=
(a)s

(c)s
1F1(a + s; c + s; x).

(44)

According to Equation (42), if we obtain a = 1
2 and c = 3

2 , Equation (41) becomes

Sg(x) =
2√
π

x e−(1−κ̂)x2
φ0. (45)

This is a fairly straightforward form, which can be usefully applied to perform specific calcula-
tions involving this family of functions.

Regarding integrals involving the the Gaussian sine, we provide some examples, as
shown below.

Example 8. From Equation (45) we obtain that, if | α |< 1,

(1)
∫ ∞

0
Sg(x, α)dx =

2√
π

∫ ∞

0
x e−(1−ακ̂)x2

dx φ0 =
1√
π

1
1− ακ̂

φ0

=
1√
π

∞

∑
r=0

αrκ̂rφ0 =
1√
π

∞

∑
r=0

(
1
2

)
r( 3

2
)

r

αr =
1√
π

2F1

(
1
2

, 1;
3
2

; α

)
.

(46)

(2)
∫ ∞

−∞

Sg(x)
x

dx =
2√
π

∫ ∞

−∞
e−(1−κ̂)x2

dx φ0 =
2√

1− κ̂
φ0

=2
∞

∑
r=0

(
r− 1

2
r

)
κ̂rφ0 = 2

∞

∑
r=0

(
r− 1

2
r

)( 1
2

)
r( 3

2
)

r

= 2 · 2F1

(
1
2

,
1
2

;
3
2

; 1
)
=π.

(47)
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Example 9. The Fresnel integrals can be written in terms of the hypergeometric functions 1F2(a; b, c; x)
as [22]

C(x) =
∫ x

0
cos
(π

2
η2
)

dη = x 1F2

(
1
4

;
1
2

,
5
4

;−
(π

4
x2
)2
)

,

S(x) =
∫ x

0
sin
(π

2
η2
)

dη =
π

2
x3

3 1F2

(
3
4

;
3
2

,
7
4

;−
(π

4
x2
)2
)

,

1F2(a; b, c; x) =
∞

∑
n=0

(a)n

(b)n(c)n

xn

n!
.

(48)

According to the previous umbral discussion, the relevant images are Gaussian functions, and
therefore, we find

C(x) = x e−(
π
4 x2)

2
χ̂c φ0,c, χ̂n

c := 1
4
χ̂( 1

2 , 5
4 )

φ0,c =

(
1
4

)
n(

1
2

)
n

( 5
4
)

n

S(x) = π
x3

3
e−(

π
4 x2)

2
χ̂s φ0,s, χ̂n

s := 3
4
χ̂( 3

2 , 7
4 )

φ0,s =

( 3
4
)

n( 3
2
)

n

( 7
4
)

n

(49)

Example 10. It is evident that the previous results can be exploited to simplify computations
involving this family of functions. For example, if we are interested in computing improper integrals
involving the Fresnel functions, e.g.,∫ ∞

0

S(ξ)
ξ3 dξ =

π

3

∫ ∞

0
e−(

π
4 ξ2)

2
χ̂c dξ φ0,s, (50)

we can easily achieve our result by recalling that∫ ∞

0
e−ax4

dx =
1
4

Γ
(

1
4

)
a−

1
4 , Re(a) > 0 (51)

and, by replacing the parameter ”a” with
(

π
4 ξ2)2

χ̂c, we eventually obtain

π

3

∫ ∞

0
e−(

π
4 ξ2)

2
χ̂c dξ φ0,c =

√
π

6
Γ
(

1
4

)
χ̂−

1
4 φ0,s

=

√
π

6
Γ
(

1
4

) ( 3
4
)
− 1

4( 3
2
)
− 1

4

( 7
4
)
− 1

4

.
(52)

The applicative framework of the results we have just obtained is indeed interesting.
We would like to mention the Fried–Conte dispersion function Z(x), often used in plasma
physics [23], which, within the present context, is just written in terms of the complex
function defined in Equation (16)

Z(x) = i
√

πEg(x). (53)

Before closing the paper, we would like to add a comment regarding the umbral defi-
nition of the so-called Lévy stable distributions [24–26] describing non-standard statistical
effects in different phenomenological environments. Regarding the umbral form of this
family of functions, we proceed as outlined below.

Example 11. The Lévy stable distribution gα(x), in the present notation, can be defined as [2]

gα(x) = − 1
π x

e
−
(

f̂
x

)α

ε0, ∀α ∈ R : 0 < α < 1, f̂ βε0 = Γ(β + 1) sin(π β) (54)
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and its explicit expression in terms of infinite series can be written as

gα(x) = − 1
π

∞

∑
r=0

(−1)rx−α r−1

r!
Γ(α r + 1) sin(π α r). (55)

Although it is of limited usefulness for accurate numerical computations, as underscored
in [25], we have used this form because of its straightforward umbral version. By applying the same
procedure leading to Equation (37), we find the following integral representation:

gα(x) = − 1
π

Im
(∫ ∞

0
e−s x−(−1)αsα

ds
)

. (56)

These distributions have the remarkable property that all the moments 〈xµ〉 =
∫ ∞

0 xµgα(x) dx
are not defined for µ > α. By a direct application of our method, it is indeed easy to check that

〈xµ〉 = − 1
π

∫ ∞

0
xµ−1e

−
(

f̂
x

)α

dx ε0 = − 1
π α

Γ
(
−µ

α

)
f̂ µε0

= − 1
π α

Γ
(
−µ

α

)
Γ(µ + 1) sin(πµ)

=
Γ(µ) sin(πµ)

sin
(
π

µ
α

)
Γ
( µ

α

) , 0 < µ < α < 1.

(57)

Example 12. Another important property [25],∫ ∞

0
e−p xgα(x) dx = e−pα

, p > 0, 0 < α < 1, (58)

namely, the fact that the Laplace transform of the Lèvy stable distribution is the stretched exponen-
tial [27], is easily derived from Equation (56), as shown below.∫ ∞

0
e−p xgα(x) dx = − Im

π

∫ ∞

0
e−p x

[∫ ∞

0
e−s x−(−1)αsα

ds
]

dx

=
Im
π

∫ ∞

0

e−(−1)αsα

s + p
ds = e−pα

, p > 0.
(59)

Furthermore, the Laplace transform of the following modified form of gα(x)

gα, ν(x) = − Im
π

∫ ∞

0
sνe−s x−(−1)αsα

ds (60)

yields the Weibull distribution [28,29]∫ ∞

0
e−p xgα,α−1(x) dx = pα−1e−pα

. (61)

This article has outlined the study of the consequences that can be drawn from the
umbral reformulation of the Gaussian functions in terms of an elementary rational function.
The formalism has shown significant flexibilities, and we have been able to include in the
present analysis different topics not of secondary interest. The introduction of the Gaussian
“trigonometry” opens an interesting link with the theory of Harmonic oscillator functions
and of the possibility of a generalization to multidimensional cases. Furthermore, the
introduction of the complex function (16) offers interesting speculation on its relationship
with the Kramers–Kronig relationship and its possible use in plasma physics [23] for the
study of the plasma dispersion functions.
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