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Abstract: We investigate the question whether or not the orbitals of exoplanets follow the symmetry-
governed sequence found by Barut from the dynamical group of the Kepler problem. In particular,
we consider their star distances, periods, and velocities. Previous studies have shown the validity
of this regularity for our solar system, and for some selected exoplanet systems. Here, we study all
the systems which are known with four or more planets. A remarkable result is found: 63 out of
100 systems show a better agreement between the theory and observation than our solar system. We
discuss the relation between the symmetry-inspired transformations and the generalized Titius–Bode
(gTB) rule. It turns out that the gTB rule, which has been considered purely empirical, can be obtained
from the transformations corresponding to the dynamical group of the Kepler problem.

Keywords: astronomy data analysis; celestial mechanics; planetary system evolution; exoplanet systems

1. Introduction

The mystery of the sequence of planets in a planetary system has a long history. Kepler
raised this question [1] before he found the laws of planetary motion [2,3]. His guess
showed a beautiful harmony: the six planetary orbits (known at their time) are connected
by the five regular polyhedra. One can say he proposed a transformation rule which can
produce the distances of the planets from the Sun, if one of them is known. It turned out
that this Divine Harmony did not reflect the real circumstances.

Later on, several empirical formulae were proposed; the best known one is the Titius–
Bode rule [4,5]. Nevertheless, the final and completely satisfying answer is still not known.
Both the physical origin of these rules and the way of their application (applying the
sequence numbers to the planets) have considerable uncertainties.

In 1989, Barut proposed a symmetry-governed approach to the problem [6]. He
applied a dilatation transformation, which is in line with the dynamical group of the Kepler
problem. By the Kepler problem, we mean the motion of a single planet around a heavy
sun. He found that the orbital parameters of the planets in our solar system follow this rule
to a good approximation. In a recent work, one of us investigated if the observed data of
some selected exoplanetary systems follow the symmetry-governed transformations [7]. A
remarkable agreement was found.

In this paper, we study the systems of exoplanets systematically from this viewpoint.
In particular, we investigate all extrasolar systems with four or more planets.

Furthermore, we discuss the relation of the empirical Titius–Bode rule and the di-
latations corresponding to the dynamical group of the Kepler problem. It turns out that
the generalized (two-parameter) Titius–Bode (gTB) rule [8,9] can be obtained from the
transformations introduced by Barut based on the most general symmetry of the Kepler
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problem. Hence, a new light is shed on the physical background of the rule, which has
been considered so far completely empirical.

Some preliminary aspects of this investigations were published in [7], as mentioned
above. There only six exoplanetary systems were considered, whereas here, we carry out a
systematic investigation by studying all the 100 known systems with four or more planets.
The connection between the (generalized) Titius–Bode rule and the transformations of the
dynamical group of the Kepler problem has not been discussed in [7], nor in any other
work to the best of our knowledge. Here we point out this connection, which might be
worth for further attention. Since the symmetries of the Kepler problem are not very widely
known, and were mentioned only briefly in [7], we present it here with some details.

In what follows, in Section 2, we consider some of the models available for the
distribution of the planetary orbits, and pay special attention to Barut’s conjecture. In
Section 3, we review the symmetries of the Kepler problem, which give the theoretical
background for the transformations, and show some connection to the Titius–Bode rule.
In Section 4, our calculations for the exoplanet systems are presented. Finally, Section 5
concludes our investigation.

The transformation rules between the planetary orbits allow, of course, predictions of
missing planets [10]. The careful investigation of this problem, however, is a considerable
task, and deserves a separate work; therefore, we leave it for further studies.

2. Distribution of Planetary Orbits
2.1. The Titius–Bode Rule

The best known rule to give the distribution of planetary orbits in our solar system
is the Titius–Bode (TB) formula [4,5]. According to this rule, the semi-major axis of the
planetary orbits is as follows:

Rn = d + R0 × bn, (1)

with d = 0.4 au, R0 = 0.3 au, b = 2, where au stands for astronomical unit (1 au is the length
of the semi-major axis of Earth’s orbit). The sequence of numbers (n) for the planets (Me:
Mercury, V: Venus, E: Earth, Ma: Mars, A: Asteroids, J: Jupiter, S: Saturn, U: Uranus, N:
Neptune, P: Pluto) is as follows −∞: Me, 0: V, 1: E, 2: Ma, 3: A, 4: J, 5: S, 6: U, 7: P (which
does not account for the orbit of Neptune). As can be seen, the numbers are not regular,
and a theoretical background of this empirical formula is not really known. This original
TB rule is a three-parameter formula.

Later on, a two-parameter generalized TB formula was invented [8,9]:

Rn = R0 × Cn. (2)

This equation was used in the analysis of exoplanets, as well as simulated systems,
see [11] and references therein.

In [12], the TB rule was related to the rotational and scale invariances, and it was
shown that one can obtain this kind of rules from a disk model, e.g., see [13].

Further empirical formulae were also proposed in [14–16], and the significance of this
kind of rules was investigated statistically by [17].

2.2. Barut’s Conjecture

Barut [6] related the sequence of planets in our solar system to the hidden symmetries
of the Kepler problem. He discovered that the logarithms of the orbital velocities, periods,
and distances of the planets are linear functions of the natural sequence number as follows:
1: Me, 2: V, 3: E, 4: Ma, 5: A, 6: J, 7: S, 8: U, 9: N, 10: P; a graphical demonstration is given
in Figure 1.
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Figure 1. The logarithm of the orbital parameters—velocities (v), periods (T), and semi-major axes
(R)—of planets in the solar system. The sequence of numbers is the following: 1: Mercury, 2: Venus,
3: Earth, 4: Mars, 5: Asteroids, 6: Jupiter, 7: Saturn, 8: Uranus, 9: Neptune, 10: Pluto. Since the
Asteroid Belt subsumes a tremendous number of asteroids and its nature differs from that of a planet,
we did not take it into account during the calculation; rather, we left an empty position, and then
we demonstrate it by a segment covering a region from 2.06 au to 3.27 au. This figure resembles the
original work performed by Barut [6].

It was also realized that the orbital connection emerges from a simple time-and-space
dilatation:

t→ e3λnt, x → e2λnx, (3)

giving the following equations:

ln vn = ln v0 − λn,

ln Rn = ln R0 + 2λn, (4)

ln Tn = ln T0 + 3λn,

where λ is a constant characteristic to the solar system (or any other system of interest),
and it allows us to predict any planetary orbitals, should one of them be known beforehand.

The surprising new element of Barut’s work is that the O(4,2) dynamical group of the
Kepler problem [6] suggests the time–space transformation (3). Hence, Barut’s proposal
gives the regularity anticipated by Kepler [1]: the planetary orbitals can be determined
from the first one in a simple manner, and the relationship has a theoretical connection to
the hidden symmetry of the Kepler problem.

The time and space dilatation of Equation (3) provides us with the generalized TB rule:

Rn = R0(e2λ)n, Tn = T0(e3λ)n, (5)

which contains Kepler’s third law of planetary motion. Thus, the (generalized) Titius–Bode
rule, which was considered beforehand as an empirical rule without real theoretical back-
ground, seems to have a close connection with the dynamical algebra of the Kepler problem.

In the next section, we review the hidden symmetries of the Kepler problem, be-
cause their role can shed a new light on the regularity of planetary orbits.

3. Symmetries of the Kepler Problem
3.1. Geometrical Symmetry

The obvious symmetry of the Kepler problem is that of the rotation in three-dimensional
space: O(3). The gravitational force depends only on the distance between the Sun and
the considered planet; it does not depend on the direction (the transformations of the
O(3) group leave invariant the x2

1 + x2
2 + x2

3 quadratic form). Therefore, the problem has
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rotational invariance. As a consequence, the angular momentum is conserved, and its
vector, as follows: −→

L = −→r ×−→p (6)

is a constant of the motion. The three components of the angular momentum close under
the Poisson bracket:

{Li, Lj} = εijkLk, (7)

that is, they form a Lie-algebra (here, the Levi-Civita symbol εijk = 1 for (1,2,3), (2,3,1),
(3,1,2); εijk = −1 for (1,3,2), (2,1,3), (3,2,1); εijk = 0 for i = j, or j = k, or k = i). The elements
of the algebra generate the Lie-group O(3).

The energy of the system is as follows:

H = T + V =
p2

2m
− c

r
, (8)

where c = γMm, M and m are the masses of the Sun and the planet, respectively, while γ is
the gravitational constant (the actual value of H will be denoted later on by E). The Poisson
bracket of the energy (H) with all the components of the angular momentum (Li) is zero:

{Li, H} = 0, i = 1, 2, 3. (9)

This symmetry is called geometrical symmetry, because it transforms the geometri-
cal variables—space coordinates—into each other (and does not mix them with others,
e.g., with the momenta). Not only does it leave the total Hamiltonian (H) unchanged,
but its kinetic (T) and potential (V) parts are also invariant:

{Li, T} = 0, {Li, V} = 0, i = 1, 2, 3. (10)

3.2. Dynamical Symmetry

In addition to the obvious symmetry of the three-dimensional rotations, the Kepler
problem has a hidden symmetry (in what follows, we consider the bound state problem,
i.e., the energy is negative and the orbit is an ellipse). Not only the angular momentum,
but another vector, called the Laplace, or Runge–Lenz vector, is also a constant of motion:

−→ε =
−→r
r

+

−→
L ×−→p

cm
. (11)

This vector is in the plane of the orbit, and it is perpendicular to the angular momen-
tum. Since it is conserved, the following equations:

{εi, H} = 0, i = 1, 2, 3 (12)

are also fulfilled. The two-times-three components of the angular momentum and the
Runge-Lenz vector close under the Poisson bracket. It is more convenient to express their
relations with the following vectors:

−→
A = c

(
m

2|E|

) 1
2−→ε (13)

{Li, Aj} = εijk Ak, (14)

{Ai, Aj} = εijkLk. (15)

Thus, they form a Lie-algebra, and the elements of this algebra generate the O(4) group.
The transformations of the O(4) leave invariant the x2

1 + x2
2 + x2

3 + x2
4 quadratic form [18].

The hidden symmetry of the Kepler problem is, therefore, the invariance with respect to
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the rotations in a four-dimensional space, which contains, of course, the three-dimensional
rotations as a subgroup: O(4) ⊃ O(3). In contrast with the O(3) transformations, nonethe-
less, not all the O(4) counterparts preserve the kinetic and the potential energy separately,
but the total energy is always conserved. The O(4) symmetry is characteristic for the central
1/r potential, and for this reason, it is termed as dynamical symmetry.

However, what is the four-dimensional space in which the transformations of O(4)
act? Interestingly enough, this question was not answered until the late 1960s.

The essential role of the O(4) symmetry in the Kepler problem was realized in the
1930s. Inspired by the degeneracy of the energy levels of the Hydrogen atom, Fock found a
transformation [19] between its wave functions and the four-dimensional hyperspherical
harmonics Ynlm. He used a stereographic projection between the three-dimensional space
and the four-dimensional sphere, and while it was not really considered as “uncovering”
the hidden symmetry (rather producing it), it elucidated the degeneracy. Then, Bargmann
gave a Lie-algebraic treatment of O(4) without projections [20].

The coordinate space of the O(4) transformations was constructed by Györgyi, who gave
a detailed four-dimensional description of the problem [21,22]. Another four-dimensional
treatment is presented by [23] in the language of the more recent (geometrized) Hamilto-
nian mechanics.

Here, we recall the basic concepts of the description of Györgyi because it is less well-
known, though it was the first four-dimensional treatment to deliver very interesting results.

Let us define p0 and r0 by the following equation:

E = −
p2

0
2m

= − c
2r0

. (16)

With:
−→e =

cm
p2

0

−→ε (17)

one can introduce the following four-dimensional space and momentum vectors:

−→π =
2p2

0
p2

0 + p2
−→p , π4 =

p2
0 − p2

p2
0 + p2

p0; (18)

−→ρ = −→r −−→e , ρ4 = −[r2
0 − (−→r −−→e )2]

1
2 . (19)

The six constants of motion can be arranged in a second rank four-dimensional an-
tisymmetric tensor Fα,β. It is obtained from the space and momentum vectors as follows:

Fα,β = ραπβ − ρβπα. (20)

The energy is:

H = − c2m
Fα,βFα,β

(21)

For the indices with double appearance, a summation is understood from 1 to 4. The
orthogonal transformations of the four-dimensional space leave the energy invariant, and if
πα, ρα are the vectors of a Kepler orbit, then the transformed π′α, ρ′α vectors correspond to
a possible Kepler orbit of the same energy.

It is useful to also introduce the invariant time parameter, as follows:

dτ =
p2

0 + p2

2p2 dt. (22)

Then, the equation of motions have the following simple and symmetric form:

dρα

dτ
=

1
m

πα, (23)
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dπα

dτ
= −

p2
0

mr0

ρα

r0
. (24)

These equations depict an inertial motion along the main circles of a sphere in the
four-dimensional space. In other words, the Keplerian orbits in this hyperspace are perfect,
i.e., they are circles. In addition, the problem is relegated to a kinematic one, wherein
the gravitational force occurring in the three-dimensional framework vanishes and the
inertial motion is constrained to a hypersphere. This feature resembles somewhat that of
the general relativity.

We note here that none of the six constants of motion (Xj) described above have explicit
time dependence:

∂Xj

∂t
= {Xj, E} = 0. (25)

3.3. Dynamical Algebras

The symmetry groups transform the states of the same energy into each other. We
may look for a larger group which connects all the states, not only the ones with a specific
energy. This group is called a dynamical group, and its algebra is dynamical algebra.

The concept of the dynamical algebra was raised in quantum mechanical problems [24],
and for a while, it was applied only there. It is an algebra “that can yield the energy
spectrum and the degeneracies of the levels, and that contains a set of operators that
determine the transition probabilities between states” [18]. A well-known example is the
U(6) dynamical algebra of the collective motion in atomic nuclei [25]. The nuclei can rotate
and vibrate, and their complete rotational–vibrational spectrum, including the energy
levels, their degeneracy, and the electromagnetic transitions between them, can be obtained
within a single irreducible representation of the U(6) algebra.

For some time, it was not clear how the concept of the dynamical algebra could be
interpreted in classical mechanical systems. In the quantum mechanical application of the
group theory, the representations play a crucial role, but in classical mechanics only the
defining representation occurs.

Nowadays, an interpretation of the dynamical algebra in classical mechanics is avail-
able. In fact, a parallel definition can be applied in classical and quantum mechanics.
We summarize the basic concepts following the work in [26], and we refer to that paper
concerning previous studies, too.

The symmetry algebra is spanned by the constants of motion of the problem, as men-
tioned in the previous subsection. This definition is applicable both in classical and in
quantum physics. Those constants of motion have no explicit time dependence. There
are, nevertheless, constants of motion with explicit time dependence as well. In classi-
cal mechanics, the total time derivative (of f ) is given by the partial derivative and the
Poisson bracket:

d f
dt

=
∂ f
∂t

+ {E, f }. (26)

Hence, a physical quantity can be constant even if it has an explicit time dependence
(i.e., nonzero partial time derivative).

The constants of motion, including the ones with explicit time dependence, span the
dynamical algebra. This set contains, of course, the elements of the symmetry algebra, too,
and thus, the symmetry algebra is a subalgebra of the dynamical algebra.

The parallel interpretation of the dynamical and symmetry algebras in the classical and
quantum treatment is based on the following correspondence. First, the Poisson bracket of
the dynamical variables A and B corresponds to the commutator of the Â and B̂ operators:

{A, B} → −i[Â, B̂] (27)
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where h̄ = 1 is assumed. Second, the equation of motion of a physical operator in the
Heisenberg picture is formally identical with that of the corresponding function in classi-
cal mechanics.

3.4. O(4,2) and the Kepler Problem

The transformations of the four-plus-two dimensional O(4,2) orthogonal group leave
invariant the x2

1 + x2
2 + x2

3 + x2
4 − x2

5 − x2
6 quadratic form. Its first physical application

was a global (or external) space–time transformation belonging the conformal group—
a specific nonlinear realization of the dynamical group O(4,2). In particular, the four
Maxwell equations are invariant with respect to the conformal transformations of this
group. The construction of the algebra that spans the conformal group is as follows.
First, it subsumes the six elements of the O(3,1) Lorentz algebra and the four generators of
transformation belonging to the Poincare group (also known as the inhomogeneous Lorentz
group IO(3,1)). Next, to ensure the existence of inverted group elements, the addition of
five new generators is necessary. One of them is a scalar, which is the following dilatation:

x′µ = ζxµ, (28)

whereas the other four constitute a 4-vector.
The group O(4,2) also serves as the dynamical group of a rest frame system whose

dynamics depends on some internal degrees of freedom. This resembles the problem of
finding the dynamical algebra for studying the Hydrogen atom in quantum mechanics.
The Hamiltonian Ĥ, the angular momentum L̂2, and the projection on the z-axis L̂z form
a complete set of observables; three quantum numbers |nlm〉 are used to label different
states. The algebra that we are looking for must contain the O(4) symmetry algebra as a
subalgebra, and also consist of raising and lowering operators that change n and l [18] from
one to others. Furthermore, the elements of the O(4,1) algebra is required to incorporate
states with different energy; and the O(4,2) generators are needed to include continuum
states and transition operators.

In [27], the authors presented the unification of the external and internal O(4,2) groups
with a description of a two-body system in a six-dimensional space. The equations of
motion remain unchanged under rotations in the six-dimensional space, i.e., they are
conformally invariant in the four-dimensional Minkowski space. The total algebra is
obtained via the direct sum of the conformal algebra in the space of external position
coordinates and the dynamical algebra in the space of the internal position coordinates.
This astonishing and intriguing interconnection between the two roles of the O(4,2) plays a
key role behind the space–time transformation (3), though the authors did not consider it a
“completely conclusive and final answer” [27].

The considerations reviewed briefly in this section give the theoretical background of
Barut’s proposal [6] mentioned beforehand. In the following section, we test this proposal
with respect to new data.

4. Exoplanetary Systems
4.1. Data Collection and Analysis

In [7], only a few quintuple-planet or bigger systems were taken into consideration.
Here, our exploration covers as many cases as possible by looking at all exoplanetary
systems having four or more planets.

In order to execute linear regression based on Barut’s transformation, orbital periods
(T), semi-major axes (R), and the average orbital velocities (v) of exoplanets needed gath-
ering first. These quantities are not independent, of course. The orbital period and the
semi-major axis are related by Kepler’s third law of planetary motion. Most exoplanets
have been discovered using indirect methods, each of which determines the orbital param-
eters and uncertainties of the planets with different sensitivities. Among the parameters,
the period (and then the semi-major axis) can be considered with the least uncertainty.
On the other hand, the velocity is not directly detectable; rather, it is obtained from the
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observed quantities, as discussed below. Nevertheless, we consider all these three character-
istics of the orbital motion (as it was suggested by Barut) in order to make the comparison
between the observation and theory as complete, as possible. The procedure we followed
is summarized here.

1. We collected astronomical data from four sources: NASA Exoplanet Archive [28],
Open Exoplanet Catalogue [29], The Extrasolar Planets Encyclopaedia [30], and Exo-
planets Data Explorer [31,32]. We note that system HIP 41378 was a special case—in
fact, in [29] only HIP 41378 g was available, but in [30] HIP 41378 b,c,d,e,f were given,
wherefore the complete dataset was taken from a paper [33].

2. Data were then converted to SI units. The orbital periods, T, were expressed in seconds
(1 day = 86,400 s). Likewise, the lengths of semi-major axes, R, were converted from
the astronomical unit to meter (1 au = 149,597,870,691 m). We note that in each system,
planets are indexed by b, c, d, e, etc. according to the order of discoveries, and thus,
they were reorganized in the ascending order of the semi-major axes. Since the average
velocities were not available, we determined them by the following relationship [34]:

v =
2πR

T

(
1− 1

4
ε2 − 3

64
ε4 − 5

256
ε6 − 175

16, 384
ε8
)

, (29)

where ε is the eccentricity of the elliptical orbit—which is the modulus of the eccen-
tricity vector introduced in Equation (11). Below, we briefly present two aspects on
the collection of eccentricities that are worth noting.

3. Unfortunately, some systems did not have a complete dataset, i.e., orbital period,
or semi-major axis, or eccentricity was not available. For example, all six planets of
TOI-1136 in [28,30] had data of orbital periods and eccentricities, but no semi-major
axes, and as a result, not enough data to calculate the average speeds. Nonetheless,
these cases were also considered if the number of planets with complete published
data was not less than four. In these cases, the flawed planet was simply excluded and
left an empty space. Yet, when plotting all the data, we observed merely moderate
deviation from the fitting line of the rest (see Appendix A).

4. Combining four databases led to redundancy and overlap of information—indeed,
some exoplanetary systems appeared in more than one source with different details
(even the number of planets), such as HD 10180, GJ 667 C, Kepler-444. In such cases,
we chose the complete dataset. When the same number of exoplanets were listed
in all data sources without any missing information, we preferred NASA Exoplanet
Archive [28] (as it is the most well-known data compilation).

Following this process, we found 100 exoplanetary systems altogether: 64 quadruple-
planet, 21 quintuple-planet, 9 sextuple-planet, 4 septuple-planet, 1 octuple-planet, and
1 nonuple-planet.

As aforementioned, we would like to reserve a small discussion on the collection
of orbital eccentricities. First, there are some planets whose eccentricity is provided am-
biguously in the data source. To be specific, it is given less than a number in lieu of a
particular value; in this case, our calculation simply takes the limit given in the database.
This does not affect the final conclusion significantly: as an example, it can be shown from
Equation (29) that in the second-order approximation, if the eccentricity is said to be less
than 0.3, the velocity changes merely 4.6% when the real value differs from 0.3 by 100%
(i.e., we have a circular orbit), implying that the fitting will not be so different. Second, we
investigate several systems in which all planets move on circular orbits (ε = 0). This is
completely justified on the grounds that: (i) high multiplicity is often associated with low
eccentricity (or nearly circular orbit) [35] and (ii) changes in the eccentric value results in
inconsiderable change in the value of velocity, and consequently, the fitting, as we have
just showed.
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4.2. Fitting Barut’s Equations

We apply here the common least square method simultaneously on Equation (4) to
find the four unknowns, namely λ, v0, R0, and T0. Here, “simultaneously” means that
those three equations are fitted at the same time—having a joint λ, not one by one. In
particular, for a system with n planets, the following function is minimized:

F =
n

∑
i=1

[
(ln vo

i − ln v f
i )

2 + (ln Ro
i − ln R f

i )
2 + (ln To

i − ln T f
i )

2
]
, (30)

where o and f refer to observational data and fitted values, respectively. Thereby, we also
characterize the goodness of the fitting by introducing the standard error:

σ =

√
F

3n
. (31)

One may question what if we fitted those linear equations independently—the answer
is that the results are essentially not different. As we have shown previously, R, v, and T
are correlated, implying that fitting any one of them separately leads to basically the same
λ. For example, the difference between λ obtained from the fitting of T only and λ values
of the simultaneous fitting (displayed in Table A1) appears in the fourth or fifth significant
digit in the majority (75%) of the cases.

Figure 2 shows some examples of the fitting procedure, and the complete results are
presented in Table A1 and Appendix A.

Figure 2. Some exoplanetary systems studied by Barut’s transformation (4). The values of the
parameters λ, v0, R0, T0, and the standard error σ can be found in Table A1.

It is worth mentioning that the solar system is a special case, see Figure 1, owing to two
reasons. First, the Asteroid Belt—due to its huge number of asteroids—was excluded from
the fitting process, yet we plot its range of semi-major axes together with the other planets
in the system and it does not show any notable disagreement. Second, despite being a
dwarf planet and not possessing the usual orbital characteristics of the other planets, Pluto
was taken into the regression to honor Barut’s original work. Having said that, we also
try to see the effect when removing Pluto—indeed, if it were not considered, the standard
error would drop roughly by 10.3% from 0.1344 to 0.1206.

Statistics of the values of the parameter λ, the standard error σ, and the constants
v0, R0, T0 are shown by histograms (see Figures 3a,b and 4a–c). We note that in these
statistics, we also took the solar system into account.
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(a) (b)
Figure 3. Statistics of the characteristic parameter λ and the standard error of the linear fitting. Details
are given in Table A1. (a) λ; (b) σ calculated by Equation (31).

(a) (b) (c)

Figure 4. Statistics of the parameters v0, R0, T0 obtained from the linear fitting. Details are given in
Table A1. (a) v0(105 m/s). (b) R0(1011 m). (c) T0(108 s).

It can be seen that λ is lower than 1.0 and the range between 0.1 and 0.3 dominates,
accounting for roughly 73% of the whole sample, which is a very surprising trait because
there seems to be no constraint on the values of λ in the time–space transformation (see
Equations (3) and (4)). Furthermore, a closer look at Figure 3a,b also reveals that their
distributions seemingly follow an expected trend up to some points; thereafter, however,
some unusual local peaks show up. To be specific, there are nine systems having λ > 0.6
and eleven ones having σ > 0.4, where the local peaks start to develop; it turns out
that there are six systems possessing both these features, namely GJ 221, HD 1461, HD
160691, mu Ara, Upsilon Andromedae, WASP-47. Looking at their corresponding plots in
Appendix A, one sees that these systems display the most “irregular” look, too. It implies
that large λ may be associated with large σ. Inserting a planet into the system would
lower σ (better fitting), but also λ. Therefore, perhaps these systems are those containing
undetected planets. Were this the case, the unexpected peaks would probably disappear
in the distributions and their tail would behave more like that of an ordinary distribution.
A deeper discussion of this topic is beyond the scope of the present paper. Moreover,
in contrast with most of the cases, which have been detected by the transition method,
the systems forming the tail of the two distributions were detected by other methods, which
may also be responsible for their different appearance.

In the case of R0 and T0 (Figure 4b,c), one can witness that there is one system which
differs significantly from the others—in fact, it is HR 8799 having four planets at the time
of data collection, and thus, we anticipate that it may have more planet(s) and when those
uncovered are found, its parameters will come closer or even fall into the popular ranges.
Indeed, there have been numerous interests poured into this exoplanet system to seek a
possible candidate for the fifth planet, e.g., Goździewski and Migaszewski predicted a
planet at 7.5 au or 9.7 au from its host star [36]. In a recent work, Thompson et al. [37]
performed a deep orbital search and suggested a potential innermost planet with a semi-
major axis of 4.3250 au for the coplanar case and 4.5103 au for the noncoplanar case. Fitting
this system again shows that the coplanar candidate brings this system closer to the rest—to
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be specific, the new R0 = 5.8157× 1011 m and T0 = 2.3404× 108 s are about 58% and 67%
smaller than the current values with only four planets.

Now, it is rational to conclude that the observed data and the symmetry-inspired rule
agree with each other, since the standard error is always less than 1.0 as shown in Figure 3b
(which is insignificant compared to the orders of magnitude of the data). Hence, this
systematic investigation over 100 systems suggests that the orbital regularity in planetary
systems (both solar and extrasolar) stem from the time–space dilation emerging from the
dynamical group O(4,2) of the Kepler problem.

5. Summary and Conclusions

In this work, we have investigated to what extent the exoplanet systems can be
described by the symmetry-inspired rules of Equation (4), as suggested by Barut [6]. The
question goes back to the early works by Kepler, searching for a transformation, which
takes us from the orbit of one planet to those of the other ones. The applicability of Barut’s
conjecture was addressed beforehand only for our solar system by [6], and for a few selected
systems of exoplanets by [7]. Here, we studied it systematically, including all the systems
known with four or more planets, therefore, we investigated 100 planetary systems; in
particular, the star-distances, the periods, and the average velocities were considered.

The important new feature of Barut’s conjecture is that it is related to the (most general)
symmetry of the Kepler problem. In particular, it applies dilatation, which is in line with the
dynamical group of the problem. This situation is very different from those of the empirical
Titius–Bode type rules. The transformations—Equations (3)–(5)—which take the planetary
orbits into each other provide us with the generalized (two-parameter) Titius–Bode rule,
Equation (2). Therefore, it sheds a new light on the theoretical background of this successful
empirical rule. A further novel characteristics of the present approach is that it applies the
concept of the dynamical group in celestial mechanics. Dynamical groups and algebras
were introduced in quantum mechanics, and their overwhelming use falls to that territory.

In general, the symmetry-governed transformations describe the observed data of the
exo-planetary systems to a good approximation. In total, 63 systems out of the 100 show a
better agreement between the data and the theoretically calculated values than our solar
system. When the observed patterns differ from geometric progression predicted by Barut’s
rule, one might think that the reasons are extraordinary circumstances, e.g., due to missing
planet(s). An unusually large standard error may be a sign of it.

The present study may contribute to the understanding of the physical background of
the Titius–Bode rule, but it also raises several questions. One of the most exciting ones is:
how the symmetry-related simple sequence of the one-body problem originates from the
complex many-body (gas or fluid) dynamics of the planetary evolution.
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TB rule the Titius–Bode rule
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Appendix A. Results of the Fitting and Graphical Illustration of Barut’s Rule

Table A1. Results of the fitting process to exoplanetary systems. ln v0, ln R0 and ln T0 are the intercepts
in Equation (4), while λ is the slope characteristic for each system; the standard error evaluated by
Equation (31) denotes the quality of the linear regression. System names in parentheses are alternative
names of the systems. “Nump.” means the number of planets inside the corresponding system.

System Name Nump. v0 (m/s) R0 (m) T0 (s) λ σ

DMPP-1 (HD 38677) 4 1.949× 105 4.215× 109 1.357× 105 1.923× 10−1 1.280× 10−1

GJ 221 (BD-06 1339) 4 3.105× 105 9.137× 108 1.837× 104 6.482× 10−1 4.417× 10−1

GJ 273 4 1.445× 105 1.603× 109 6.499× 104 6.072× 10−1 3.931× 10−1

GJ 3293 4 8.446× 104 7.743× 109 5.732× 105 2.373× 10−1 7.176× 10−2

GJ 676 A (Gliese 676 A) 4 3.168× 105 8.023× 108 1.565× 104 9.394× 10−1 1.635× 10−1

GJ 876 4 1.470× 105 1.946× 109 8.262× 104 4.394× 10−1 4.015× 10−1

HD 141399 4 7.742× 104 2.080× 1010 1.678× 106 4.494× 10−1 1.701× 10−1

HD 1461 4 3.177× 105 1.320× 109 2.590× 104 7.932× 10−1 4.105× 10−1

HD 160691 4 1.495× 105 5.742× 109 2.406× 105 6.216× 10−1 4.352× 10−1

HD 164922 4 1.564× 105 5.001× 109 2.006× 105 4.770× 10−1 3.594× 10−1

HD 20781 4 7.409× 104 1.740× 1010 1.467× 106 1.437× 10−1 1.717× 10−1

HD 20794 4 9.004× 104 1.177× 1010 8.175× 105 2.369× 10−1 5.902× 10−2

HD 215152 4 1.313× 105 5.713× 109 2.686× 105 1.604× 10−1 1.115× 10−1

HD 3167 4 2.983× 105 1.166× 109 2.358× 104 5.105× 10−1 1.866× 10−1

HR 8799 4 1.212× 104 1.369× 1012 7.094× 108 2.534× 10−1 4.416× 10−2

K2-285 4 1.918× 105 5.759× 109 1.885× 105 1.709× 10−1 1.869× 10−1

K2-32 4 1.511× 105 4.815× 109 2.000× 105 2.264× 10−1 6.745× 10−2

K2-72 4 9.400× 104 4.099× 109 2.732× 105 1.689× 10−1 5.017× 10−2

Kepler-106 4 1.390× 105 6.558× 109 2.966× 105 2.151× 10−1 3.916× 10−2

Kepler-107 4 1.835× 105 4.635× 109 1.586× 105 1.695× 10−1 3.354× 10−2

Kepler-132 4 1.865× 105 3.845× 109 1.294× 105 3.218× 10−1 3.192× 10−1

Kepler-1388 4 1.228× 105 5.343× 109 2.735× 105 2.094× 10−1 4.573× 10−2

Kepler-1542 4 1.567× 105 5.062× 109 2.030× 105 8.132× 10−2 2.723× 10−2

Kepler-167 4 2.738× 105 1.375× 109 3.154× 104 5.858× 10−1 6.336× 10−1

Kepler-172 4 1.984× 105 3.417× 109 1.082× 105 2.758× 10−1 1.780× 10−2

Kepler-176 4 1.445× 105 5.423× 109 2.359× 105 2.469× 10−1 3.488× 10−2

Kepler-197 4 1.341× 105 6.637× 109 3.080× 105 1.652× 10−1 3.266× 10−2

Kepler-208 4 1.581× 105 6.232× 109 2.477× 105 1.479× 10−1 3.640× 10−2

Kepler-215 4 1.256× 105 7.506× 109 3.755× 105 2.232× 10−1 6.506× 10−2

Kepler-220 4 1.564× 105 3.974× 109 1.597× 105 2.777× 10−1 9.605× 10−2

Kepler-221 4 1.749× 105 3.742× 109 1.343× 105 2.073× 10−1 2.380× 10−2

Kepler-223 4 1.247× 105 8.969× 109 4.509× 105 1.118× 10−1 1.893× 10−2

Kepler-224 4 1.591× 105 3.868× 109 1.528× 105 1.999× 10−1 2.858× 10−2

Kepler-235 4 1.618× 105 3.058× 109 1.188× 105 2.940× 10−1 1.633× 10−2

Kepler-24 4 1.518× 105 5.799× 109 2.404× 105 1.636× 10−1 4.655× 10−2

Kepler-245 4 1.767× 105 3.553× 109 1.264× 105 2.705× 10−1 2.291× 10−2

Kepler-251 4 1.634× 105 4.379× 109 1.682× 105 3.237× 10−1 9.962× 10−2

Kepler-256 4 2.217× 105 2.781× 109 7.875× 104 2.069× 10−1 3.291× 10−2

Kepler-26 4 1.468× 105 3.661× 109 1.567× 105 2.696× 10−1 1.335× 10−1

Kepler-265 4 1.383× 105 6.519× 109 2.963× 105 2.604× 10−1 9.174× 10−2

Kepler-282 4 1.157× 105 8.180× 109 4.442× 105 1.762× 10−1 3.990× 10−2

Kepler-286 4 2.359× 105 1.999× 109 5.332× 104 2.971× 10−1 1.938× 10−1

Kepler-299 4 1.962× 105 3.356× 109 1.074× 105 2.830× 10−1 2.327× 10−2
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Table A1. Cont.

System Name Nump. v0 (m/s) R0 (m) T0 (s) λ σ

Kepler-304 4 2.010× 105 2.422× 109 7.574× 104 2.021× 10−1 4.848× 10−2

Kepler-305 4 1.634× 105 4.120× 109 1.584× 105 1.792× 10−1 4.500× 10−2

Kepler-306 4 1.586× 105 4.066× 109 1.611× 105 2.559× 10−1 9.583× 10−2

Kepler-324 4 1.618× 105 4.107× 109 1.597× 105 2.510× 10−1 1.005× 10−1

Kepler-338 4 1.282× 105 9.122× 109 4.473× 105 1.754× 10−1 4.113× 10−2

Kepler-341 4 1.654× 105 5.133× 109 1.950× 105 2.513× 10−1 1.301× 10−1

Kepler-342 4 2.262× 105 3.176× 109 8.826× 104 3.358× 10−1 3.489× 10−1

Kepler-37 4 9.437× 104 1.120× 1010 7.449× 105 1.552× 10−1 5.788× 10−2

Kepler-402 4 1.533× 105 6.257× 109 2.565× 105 1.154× 10−1 3.488× 10−2

Kepler-411 4 1.943× 105 2.950× 109 9.503× 104 3.430× 10−1 1.168× 10−1

Kepler-49 4 1.505× 105 3.319× 109 1.386× 105 2.115× 10−1 1.055× 10−1

Kepler-758 4 1.457× 105 6.024× 109 2.599× 105 1.590× 10−1 2.345× 10−2

Kepler-79 4 1.128× 105 1.217× 1010 6.774× 105 2.007× 10−1 4.907× 10−2

Kepler-85 4 1.138× 105 9.122× 109 5.038× 105 1.235× 10−1 1.384× 10−2

KOI-94 (Kepler-89) 4 1.923× 105 4.431× 109 1.425× 105 2.923× 10−1 4.368× 10−2

L 98-59 4 1.309× 105 2.172× 109 1.041× 105 1.977× 10−1 3.227× 10−2

mu Ara 4 1.579× 105 5.713× 109 2.264× 105 6.322× 10−1 4.251× 10−1

TOI-1246 4 1.699× 105 3.966× 109 1.467× 105 2.560× 10−1 1.245× 10−1

Upsilon Andromedae 4 2.206× 105 3.532× 109 9.991× 104 7.283× 10−1 5.336× 10−1

V1298 Tau 4 1.357× 105 7.255× 109 3.219× 105 2.215× 10−1 9.622× 10−2

WASP-47 4 5.291× 105 4.837× 108 5.708× 103 6.879× 10−1 5.710× 10−1

55 Cnc 5 4.217× 105 6.742× 108 1.005× 104 6.915× 10−1 3.393× 10−1

Gliese 163 (GJ 163) 5 1.062× 105 4.562× 109 2.700× 105 3.702× 10−1 1.549× 10−1

HD 108236 5 1.511× 105 4.902× 109 2.038× 105 1.752× 10−1 8.339× 10−2

HD 23472 5 1.337× 105 4.967× 109 2.333× 105 1.611× 10−1 5.310× 10−2

Kepler-102 5 1.338× 105 5.952× 109 2.793× 105 1.373× 10−1 4.740× 10−2

Kepler-122 5 1.404× 105 7.112× 109 3.184× 105 1.888× 10−1 6.772× 10−2

Kepler-150 5 1.763× 105 4.074× 109 1.451× 105 2.372× 10−1 4.817× 10−2

Kepler-154 5 1.564× 105 4.982× 109 2.002× 105 2.247× 10−1 8.226× 10−2

Kepler-169 5 1.841× 105 3.189× 109 1.089× 105 2.457× 10−1 2.835× 10−1

Kepler-186 5 1.487× 105 2.871× 109 1.212× 105 2.715× 10−1 2.331× 10−1

Kepler-238 5 2.124× 105 3.346× 109 9.891× 104 2.565× 10−1 8.839× 10−2

Kepler-292 5 1.804× 105 3.496× 109 1.218× 105 1.782× 10−1 3.967× 10−2

Kepler-296 5 1.143× 105 5.316× 109 2.841× 105 1.970× 10−1 1.317× 10−2

Kepler-32 5 2.421× 105 1.440× 109 3.738× 104 2.672× 10−1 1.778× 10−1

Kepler-33 5 1.425× 105 8.446× 109 3.725× 105 1.614× 10−1 1.145× 10−1

Kepler-444 5 1.355× 105 5.290× 109 2.423× 105 8.416× 10−2 1.438× 10−2

Kepler-55 5 1.855× 105 2.637× 109 8.932× 104 2.567× 10−1 8.517× 10−2

Kepler-62 5 1.576× 105 3.657× 109 1.452× 105 3.325× 10−1 2.326× 10−1

Kepler-82 5 1.994× 105 3.076× 109 9.686× 104 3.026× 10−1 1.992× 10−1

Kepler-84 5 1.594× 105 5.364× 109 2.117× 105 1.954× 10−1 5.348× 10−2

TOI-561 5 2.710× 105 1.427× 109 3.306× 104 3.724× 10−1 5.045× 10−1

Gliese 581 6 1.490× 105 1.834× 109 7.703× 104 3.165× 10−1 2.216× 10−1

HD 191939 6 1.519× 105 4.489× 109 1.826× 105 3.709× 10−1 4.311× 10−1

HD 34445 6 8.312× 104 2.040× 1010 1.536× 106 2.998× 10−1 1.809× 10−1

HD 40307 6 1.480× 105 4.498× 109 1.887× 105 2.354× 10−1 1.409× 10−1

HIP 41378 6 1.137× 105 1.195× 1010 6.600× 105 2.535× 10−1 1.973× 10−1

K2-138 6 1.966× 105 3.205× 109 1.023× 105 1.777× 10−1 1.574× 10−1

Kepler-11 6 1.187× 105 9.041× 109 4.783× 105 1.561× 10−1 1.147× 10−1

Kepler-20 6 1.697× 105 4.374× 109 1.615× 105 2.004× 10−1 5.286× 10−2

Kepler-80 6 2.077× 105 2.250× 109 6.805× 104 1.788× 10−1 1.455× 10−1

Gliese 667 C (GJ 667 C) 7 8.712× 104 5.863× 109 4.225× 105 1.772× 10−1 1.260× 10−1

HD 219134 7 2.141× 105 2.042× 109 5.940× 104 3.857× 10−1 3.788× 10−1

tau Ceti 7 1.077× 105 8.897× 109 5.161× 105 1.983× 10−1 1.936× 10−1

TRAPPIST-1 7 9.297× 104 1.380× 109 9.325× 104 1.386× 10−1 4.525× 10−2

KOI-351 8 1.404× 105 7.673× 109 3.435× 105 1.924× 10−1 1.636× 10−1



Symmetry 2023, 15, 2114 14 of 18

Table A1. Cont.

System Name Nump. v0 (m/s) R0 (m) T0 (s) λ σ

HD 10180 9 2.504× 105 2.225× 109 5.566× 104 2.813× 10−1 2.719× 10−1

Sun 10 6.364× 104 3.255× 1010 3.204× 106 2.681× 10−1 1.344× 10−1

Figure A1. Logarithmic plots of three orbital parameters: velocity, semi-major axis, and period.
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Figure A2. Logarithmic plots of three orbital parameters: velocity, semi-major axis, and period.



Symmetry 2023, 15, 2114 16 of 18

Figure A3. Logarithmic plots of three orbital parameters: velocity, semi-major axis, and period.
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Figure A4. Logarithmic plots of three orbital parameters: velocity, semi-major axis, and period.
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