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Abstract: We define the incomplete generalized bivariate Fibonacci p-polynomials and the incomplete
generalized bivariate Lucas p-polynomials. We study their recursive relations and derive an interest-
ing relationship through their generating functions. Subsequently, we prove an incomplete version
of the well-known Fibonacci–Lucas relation and make some extensions to the relation involving
incomplete generalized bivariate Fibonacci and Lucas p-polynomials. An argument about going from
the regular to the incomplete Fibonacci–Lucas relation is discussed. We provide a relation involving
the incomplete Leonardo and the incomplete Lucas–Leonardo p-numbers as an illustration.

Keywords: Fibonacci–Lucas relation; bivariate Fibonacci p-polynomials; incomplete generalized
bivariate Fibonacci p-polynomials

1. Introduction

In [1], Filipponi investigated and obtained many properties of the incomplete Fibonacci
numbers and the incomplete Lucas numbers. For a real number x, bxc denotes the least
integer greater than or equal to x. For any positive integer n, the incomplete Fibonacci
numbers Fn(s) are defined as

Fn(s) =
s

∑
j=0

(
n− 1− j

j

)
, (1)

where s is an integer with 0 ≤ s ≤ b n−1
2 c. Similarly, the incomplete Lucas numbers Ln(s)

are defined by

Ln(s) =
s

∑
j=0

n
n− j

(
n− j

j

)
, (2)

where 0 ≤ s ≤ b n
2 c . Note that Fn(b n−1

2 c) is equal to the original Fibonacci number Fn,
and Ln(b n

2 c) = Ln is the Lucas number, and this is a part of the reason that the name
“incomplete” is used. Additionally, for our convenience, let L0(0) = 2. Some special cases
of (1) and (2) are

Fn(0) = Ln(0) = 1, for all n ≥ 1,

and

Fn(1) = n− 1, for all n ≥ 3; Ln(1) = n + 1, for all n ≥ 2.

Sury [2] proved the well-known Fibonacci–Lucas relation:

2n+1Fn+1 = 20L0 + 21L1 + · · ·+ 2nLn =
n

∑
i=0

2iLi (n ≥ 0). (3)

Chung [3] proved a more general relation for the sequence of W-polynomials and w-
polynomials. Chung, Yao, and Zhou [4] extended Sury’s formula (3) in both a regular and
an alternating form to Fibonacci k-step and Lucas k-step polynomials.
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Equivalently, we rewrite (3) as

2n+1Fn+1(b
n
2
c) =

n

∑
i=0

2iLi(b
i
2
c),

since Fn(b n−1
2 c) = Fn and Ln(b n

2 c) = Ln. Now we can extend the Fibonacci–Lucas relation
to the incomplete version:

2n+1Fn+1(s) = 22s+1F2s+1(s) +
n

∑
i=2s+1

2iLi(s), (4)

for all positive integer n and 0 ≤ s ≤ b n
2 c. To see (4), it is suffice to show that, for all s with

0 ≤ s ≤ b n
2 c,

2n+1Fn+1(s) =
2s

∑
i=0

2iLi(b
i
2
c) +

n

∑
i=2s+1

2iLi(s). (5)

By the well-known Fibonacci–Lucas relation (3), we have

2s

∑
i=0

2iLi(b
i
2
c) = 22s+1F2s+1(s).

Identity (5) can be proved by induction on n, or it can be proved directly as follows. See
also (3.13) in [1].

Lemma 1. For any positive integer n, we have

Ln(s) + Fn(s) = 2Fn+1(s),

where 0 ≤ s ≤ b n−1
2 c.

Proof. By the definitions of (1) and (2), for s with 0 ≤ s ≤ b n−1
2 c, we have

Ln(s) + Fn(s) =
s

∑
j=0

[(
n− 1− j

j

)
+

n
n− j

(
n− j

j

)]
= 2

s

∑
j=0

(
n− j

j

)
= 2Fn+1(s).

Now, from the previous lemma, we know that the right-hand side of (5) is equal to

22s+1F2s+1(s) +
n

∑
i=2s+1

2i(2Fi+1(s)− Fi(s)),

where 0 ≤ s ≤ b n−1
2 c. Note that F2s+1(s) = F2s+1 and L2s(s) = L2s. Hence, we have

22s+1F2s+1(s) +
n

∑
i=2s+1

2i+1Fi+1(s)−
n

∑
i=2s+1

2iFi(s)

= 22s+1F2s+1 + 2n+1Fn+1(s)− 22s+1F2s+1

= 2n+1Fn+1(s).

If n is even and s = b n
2 c, (5) holds obviously. Thus (5) or the incomplete Fibonacci–Lucas

relation (4) follows.
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In 2012, Tasci, Cetin Firengiz, and Tuglu [5] investigated the incomplete bivariate
Fibonacci and Lucas p-polynomials:

F(s)
n;p(x, y) =

s

∑
j=0

(
n− jp− 1

j

)
xn−j(p+1)−1yj,

where 0 ≤ s ≤ b n−1
p+1c, and

L(s)
n;p(x, y) =

s

∑
j=0

n
n− jp

(
n− jp

j

)
xn−j(p+1)yj,

where 0 ≤ s ≤ b n
p+1c. When s = b n−1

p+1c, F(s)
n;p(x, y) reduces to the bivariate Fibonacci

p-polynomials Fn;p(x, y). That is,

Fn;p(x, y) =
b n−1

p+1 c

∑
j=0

(
n− jp− 1

j

)
xn−j(p+1)−1yj.

In [5], some basic properties and generating functions of the incomplete bivariate
Fibonacci and Lucas p-polynomials are given. In this note, we define the incomplete
generalized bivariate Fibonacci and Lucas p-polynomials as below. For any two integers
p ≥ 1, n ≥ 0 and any two polynomials h(x, y), `(x, y) with real coefficients, define

F(s)
n;p(h(x, y), `(x, y)) =

s

∑
j=0

(
n− jp− 1

j

)
hn−j(p+1)−1(x, y)`j(x, y),

where 0 ≤ s ≤ b n−1
p+1c, and

L(s)
n;p(h(x, y), `(x, y)) =

s

∑
j=0

n
n− jp

(
n− jp

j

)
hn−j(p+1)(x, y)`j(x, y),

where 0 ≤ s ≤ b n
p+1c. Given s ≥ 0 and p ≥ 1, we let F(s)

n;p(h(x, y), `(x, y)) = 0 if

n < s(p + 1) + 1 and L(s)
n;p(h(x, y), `(x, y)) = 0 if n < s(p + 1). From now on, we write

F(s)
n;p(h, `) for F(s)

n;p(h(x, y), `(x, y)) and similar to L(s)
n;p(h, `) if there is no misunderstanding.

We are at the stage of stating the following main theorem.

Theorem 1. For any integers p ≥ 1 and n ≥ 0, any real nonzero number r, and any polynomi-
als h(x, y), `(x, y) ∈ R[x, y], we have a relation involving the incomplete generalized bivariate
Fibonacci and Lucas p-polynomials,

rn+1 ph(x, y)F(s)
n+1;p(h, `) = rs(p+1)+1 ph(x, y)F(s)

s(p+1)+1;p(h, `) +
n

∑
i=s(p+1)+1

riL(s)
i;p (h, `)

+ (rph(x, y)− p− 1)
n

∑
i=s(p+1)+1

riF(s)
i+1;p(h, `),

where s is any integer with 0 ≤ s ≤ b n
p+1c.
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We replace r in Theorem 1 with −1/r (since r 6= 0) to obtain an alternating relation
involving the incomplete generalized bivariate Fibonacci and Lucas p-polynomials:

(−1)nh(x, y)F(s)
n+1;p(h, `) = (−1)s(p+1)rn−s(p+1)h(x, y)F(s)

s(p+1)+1;p(h, `)

+
n

∑
i=s(p+1)+1

(−1)irn−i
[

L(s)
i+1;p(h, `) + rh(x, y)F(s)

i;p (h, `)

− (p + 1)`(x, y)F(s−1)
i−p+1;p(h, `)

]
.

In the case of h(x, y) = x and `(x, y) = y in Theorem 1, we have a relation
and an alternating relation involving the incomplete bivariate Fibonacci and Lucas
p-polynomials, respectively.

Corollary 1. For any integers p ≥ 1 and n ≥ 0 and any real nonzero number r, we have

rn+1 pxF(s)
n+1;p(x, y) = rs(p+1)+1 pxF(s)

s(p+1)+1;p(x, y) +
n

∑
i=s(p+1)+1

riL(s)
i;p (x, y)

+ (rpx− p− 1)
n

∑
i=s(p+1)+1

riF(s)
i+1;p(x, y),

and

(−1)nxF(s)
n+1;p(x, y) = (−1)s(p+1)rn−s(p+1)xF(s)

s(p+1)+1;p(x, y)

+
n

∑
i=s(p+1)+1

(−1)irn−i
[

L(s)
i+1;p(x, y) + rxF(s)

i;p (x, y)− (p + 1)yF(s−1)
i−p+1;p(x, y)

]
,

where s is any integer with 0 ≤ s ≤ b n
p+1c.

In the case of h(x, y) being just a polynomial of x, say h(x), and `(x, y) = 1 = p in
Theorem 1, we obtain a relation involving the incomplete h(x)-Fibonacci F(s)

n (h(x)) and
the incomplete h(x)-Lucas polynomials L(s)

n (h(x)) [6].

Corollary 2. For any integer n ≥ 0, any real nonzero number r, and a polynomial h(x) with a real
coefficient, we have

rn+1h(x)F(s)
n+1(h(x)) = r2s+1h(x)F(s)

2s+1(h(x)) +
n

∑
i=2s+1

riL(s)
i (h(x))

+ (rh(x)− 2)
n

∑
i=2s+1

riF(s)
i+1(h(x)),

where s is any integer with 0 ≤ s ≤ b n
2 c.

In the case of h(x, y) = `(x, y) = 1 and p = 1 in Theorem 1, we have the following
generalized incomplete Fibonacci–Lucas relation.

Corollary 3. For any integer n ≥ 0 and any real nonzero number r, we have

rn+1Fn+1(s) =r2s+1F2s+1 +
n

∑
i=2s+1

riLi(s) + (r− 2)
n

∑
i=2s+1

riFi+1(s),

where s is any integer with 0 ≤ s ≤ b n
2 c.
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Of course, from Corollary 3, we recover the incomplete Fibonacci–Lucas relation (4)
when r = 2.

This note is organized as follows. In Section 2, we establish an inter-relationship
between the incomplete generalized bivariate Fibonacci p-polynomials and the incomplete
generalized bivariate Lucas p-polynomials and investigate some properties of these poly-
nomials. Afterwards, we derive both of the two generating functions, and from these, we
can obtain an interesting relationship between the two generating functions (Proposition 6).
We then give proof of our main theorem (Theorem 1). In Section 3, we discuss the regular
generalized bivariate Fibonacci and Lucas p-polynomials and obtain a potential connection
between the regular (complete) and incomplete Fibonacci–Lucas relation. We also discuss,
as an example, a relation involving the Leonardo p-numbers and the Lucas–Leonardo p-
numbers. We show a procedure for how to obtain such a relation in an incomplete version
from a regular (complete) form. A summary and conclusion will be given in Section 4.

2. Some Properties and Proofs

In this section, let p be a positive integer and n ≥ 0 be an integer. We note that, from the
definitions of the incomplete generalized bivariate Fibonacci and Lucas p-polynomials,

F(0)
n;p (h, `) = hn−1(x, y), F(1)

n;p (h, `) = hn−1(x, y) + (n− p− 1)hn−p−2(x, y)`(x, y),

and
L(0)

n;p(h, `) = hn(x, y), L(1)
n;p(h, `) = hn(x, y) + nhn−p−1(x, y)`(x, y).

Proposition 1. The incomplete generalized bivariate Fibonacci p-polynomials satisfy a
nonhomogeneous recurrence relation:

F(s)
n;p(h, `) = h(x, y)F(s)

n−1;p(h, `) + `(x, y)F(s)
n−p−1;p(h, `)

−
(

n− (s + 1)p− 2
s

)
hn−(s+1)(p+1)−1(x, y)`s+1(x, y),

(6)

for all n ≥ p + 2 and 0 ≤ s ≤ b n−p−2
p+1 c.

Proof. For n ≥ p + 2 and 0 ≤ s ≤ b n−p−2
p+1 c, we have

F(s)
n;p(h, `)− h(x, y)F(s)

n−1;p(h, `)

=
s

∑
j=0

[(
n− jp− 1

j

)
−
(

n− jp− 2
j

)]
hn−j(p+1)−1(x, y)`j(x, y)

=
s

∑
j=1

(
n− jp− 2

j− 1

)
hn−j(p+1)−1(x, y)`j(x, y)

=
s−1

∑
j=0

(
n− (j + 1)p− 2

j

)
hn−(j+1)(p+1)−1(x, y)`j+1(x, y)

= `(x, y)F(s)
n−p−1;p(h, `)−

(
n− (s + 1)p− 2

s

)
hn−(s+1)(p+1)−1(x, y)`s+1(x, y).

It is easy to see that the recurrence relation (6) can be written in a homogeneous form:

F(s+1)
n;p (h, `) = h(x, y)F(s+1)

n−1;p(h, `) + `(x, y)F(s)
n−p−1;p(h, `), for 0 ≤ s ≤ bn− p− 2

p + 1
c.
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Proposition 2. For all integer t ≥ 0, and 0 ≤ s ≤ b n−t−p−1
p+1 c, we have

t

∑
j=0

(
t
j

)
hj(x, y)`t−j(x, y)F(s+j)

n+p(j−1);p(h, `) = F(s+t)
n+(p+1)t−p;p(h, `).

Proof. For the case t = 0, the identity holds trivially. Assume that the desired identity
holds for some t > 0. Now, for 0 ≤ s ≤ b n−t−p−1

p+1 c,

t+1

∑
j=0

(
t + 1

j

)
hj(x, y)`t+1−j(x, y)F(s+j)

n+p(j−1);p(h, `)

=
t+1

∑
j=0

[(
t
j

)
+

(
t

j− 1

)]
hj(x, y)`t+1−j(x, y)F(s+j)

n+p(j−1);p(h, `)

=
t

∑
j=0

(
t
j

)
hj(x, y)`t+1−j(x, y)F(s+j)

n+p(j−1);p(h, `)

+
t+1

∑
j=1

(
t

j− 1

)
hj(x, y)`t+1−j(x, y)F(s+j)

n+p(j−1);p(h, `)

= `(x, y)
t

∑
j=0

(
t
j

)
hj(x, y)`t−j(x, y)F(s+j)

n+p(j−1);p(h, `)

+ h(x, y)
t

∑
j=0

(
t
j

)
hj(x, y)`t−j(x, y)F(s+1+j)

n+pj;p (h, `)

= `(x, y)F(s+t)
n+(p+1)t−p;p(h, `) + h(x, y)F(s+t+1)

n+(p+1)t;p(h, `)

= F(s+t+1)
n+(p+1)(t+1)−p;p(h, `).

Thus, by induction on t, the desired identity follows for all t ≥ 0.

Similarly, we obtain the recurrence relation for the incomplete generalized bivariate
Lucas p-polynomials,

L(s+1)
n;p (h, `) = h(x, y)L(s+1)

n−1;p(h, `) + `(x, y)L(s)
n−p−1;p(h, `),

where n ≥ p + 1 and 0 ≤ s ≤ b n−p−1
p+1 c. Equivalently, a nonhomogeneous recursion is

given by

L(s)
n;p(h, `) = h(x, y)L(s)

n−1;p(h, `) + `(x, y)L(s)
n−p−1;p(h, `)

− n− p− 1
n− (s + 1)p− 1

(
n− (s + 1)p− 1

s

)
hn−(s+1)(p+1)(x, y)`s+1(x, y).

By a similar argument to the proof of Proposition 2, we obtain the following result.

Proposition 3. For all integer t ≥ 0, and 0 ≤ s ≤ b n−t−p
p+1 c, we have

t

∑
j=0

(
t
j

)
hj(x, y)`t−j(x, y)L(s+j)

n+p(j−1);p(h, `) = L(s+t)
n+(p+1)t−p;p(h, `).

There is an identity between the incomplete generalized bivariate Fibonacci
p-polynomials and the incomplete generalized bivariate Lucas p-polynomials.
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Lemma 2. For any integer s with 0 ≤ s ≤ b n−p−1
p+1 c, we have

L(s+1)
n;p (h, `) = F(s+1)

n+1;p(h, `) + p`(x, y)F(s)
n−p;p(h, `). (7)

Proof. It can be deduced directly from the definition.

L(s+1)
n;p (h, `)− F(s+1)

n+1;p(h, `) =
s+1

∑
j=0

[
n

n− jp

(
n− jp

j

)
−
(

n− jp
j

)]
hn−j(p+1)(x, y)`j(x, y)

=
s+1

∑
j=1

jp
n− jp

(
n− jp

j

)
hn−j(p+1)(x, y)`j(x, y)

=
s+1

∑
j=1

p
(

n− jp− 1
j− 1

)
hn−j(p+1)(x, y)`j(x, y)

= p`(x, y)F(s)
n−p;p(h, `).

We define the generating function of the incomplete generalized bivariate Fibonacci
p-polynomial F(s)

n;p(h, `) by

R(s)
p (h, `; z) =

∞

∑
n=0

F(s)
n;p(h, `)zn.

Since F(s)
n;p(h, `) = 0 for n < s(p + 1) + 1, we see that

R(s)
p (h, `; z) = zs(p+1)+1

∞

∑
j=0

F(s)
s(p+1)+1+j;p(h, `)zj.

Let G(s)
p (h, `; z) = ∑∞

j=0 F(s)
s(p+1)+1+j;p(h, `)zj and then R(s)

p (h, `; z) = zs(p+1)+1G(s)
p

(h, `; z).

Proposition 4. The generating function R(s)
p (h, `; z) of the incomplete generalized bivariate Fi-

bonacci p-polynomials is given by

R(s)
p (h, `; z) =zs(p+1)+1

[
F(s)
(s+1)(p+1);p(h, `)zp +

p−1

∑
j=0

(1− h(x, y)z)F(s)
s(p+1)+1+j;p(h, `)zj

− zp+1`s+1(x, y)
(1− h(x, y)z)s+1

]
(1− h(x, y)z− `(x, y)zp+1)−1.

Proof. We write

G(s)
p (h, `; z)− F(s)

s(p+1)+1;p(h, `)− F(s)
s(p+1)+2;p(h, `)z− · · · − F(s)

s(p+1)+p+1;p(h, `)zp

=
∞

∑
j=p+1

F(s)
s(p+1)+1+j;p(h, `)zj.

In light of (6), the above right-hand side is equal to

∞

∑
j=p+1

[
h(x, y)F(s)

s(p+1)+j;p(h, `) + `(x, y)F(s)
s(p+1)+j−p;p(h, `)

−
(

s + j− p− 1
s

)
hj−p−1(x, y)`s+1(x, y)

]
zj,
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or

h(x, y)z

[
G(s)

p (h, `; z)−
p−1

∑
j=0

F(s)
s(p+1)+1+j;p(h, `)zj

]
+ `(x, y)zp+1G(s)

p (h, `; z)

− zp+1`s+1(x, y)
(1− h(x, y)z)s+1 .

This implies that(
1− h(x, y)z− `(x, y)zp+1

)
G(s)

p (h, `; z) = F(s)
(s+1)(p+1);p(h, `)zp

+
p−1

∑
j=0

(1− h(x, y)z)F(s)
s(p+1)+1+j;p(h, `)zj − zp+1`s+1(x, y)

(1− h(x, y)z)s+1 .

Since R(s)
p (h, `; z) = zs(p+1)+1G(s)

p (h, `; z), the proof is done.

Let the generating function of the incomplete Fibonacci numbers Fn(s) be

Rs(z) =
∞

∑
n=0

Fn(s)zn.

According to Proposition 4, the special case p = 1 and h(x, y) = `(x, y) = 1 gives

Rs(z) =
[F2s+1(s) + (F2s+2(s)− F2s+1(s))z]z2s+1

1− z− z2 − z2s+3

(1− z− z2)(1− z)s+1 .

Because F2s+1(s) is the Fibonacci number F2s+1 and also F2s+2(s) = F2s+2, we obtain the
following corollary.

Corollary 4. Let Rs(z) be the generating function of the incomplete Fibonacci numbers Fn(s).
We have

Rs(z) =
(F2s+1 + F2sz)z2s+1

1− z− z2 − z2s+3

(1− z− z2)(1− z)s+1 .

We now define the generating function of the incomplete generalized bivariate Lucas
p-polynomials L(s)

n;p(h, `) by T(s)
p (h, `; z) = ∑∞

n=0 L(s)
n;p(h, `)zn. By (7), we have

T(s)
p (h, `; z) =

∞

∑
n=0

[
F(s)

n+1;p(h, `) + p`(x, y)F(s−1)
n−p;p(h, `)

]
zn

=
1
z

R(s)
p (h, `; z) + p`(x, y)zpR(s−1)

p (h, `; z).

From this, we further have the following result.

Proposition 5. The generating function T(s)
p (h, `; z) of the incomplete generalized bivariate Lucas

p-polynomials is given by

T(s)
p (h, `; z) = zs(p+1)

[
L(s)

s(p+1)+p;p(h, `)zp +
p−1

∑
j=0

(1− h(x, y)z)L(s)
s(p+1)+j;p(h, `)zj

− (1 + p− ph(x, y)z)zp+1`s+1(x, y)
(1− h(x, y)z)s+1

]
(1− h(x, y)z− `(x, y)zp+1)−1.
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Corollary 5. Let Ts(z) be the generating function of the incomplete Lucas numbers Ln(s). We have

Ts(z) =
∞

∑
n=0

Ln(s)zn =
(L2s + L2s−1z)z2s

1− z− z2 − (2− z)z2s+2

(1− z− z2)(1− z)s+1 .

From the previous two propositions, we cancel all inhomogeneous terms of the two
representations of the generating function and consider

zT(s)
p (h, `; z)− (1 + p− ph(x, y)z)R(s)

p (h, `; z).

After careful calculation, we obtain the following result.

Proposition 6. Notations as above, for all s ≥ 1, we have

zT(s)
p (h, `; z) = (1 + p− ph(x, y)z)R(s)

p (h, `; z)− ph(x, y)F(s−1)
s(p+1);p(h, `)zs(p+1)+1. (8)

We remark here. We use only relation (6) (see Proposition 1) when proving Proposition 6,
and do not use relation (7) in Lemma 2. To see (7) for another proof, we compare the
coefficient zn+1 on both sides of Equation (8) to obtain

L(s)
n;p(h, `) = (1 + p)F(s)

n+1;p(h, `)− ph(x, y)F(s)
n;p(h, `), (9)

where 0 ≤ s ≤ b n−1
p+1c. Replacing s in (9) with s + 1 and using the recurrence relation of

F(s+1)
n;p (h, `), we obtain relation (7):

L(s+1)
n;p (h, `) = F(s+1)

n+1;p(h, `) + p`(x, y)F(s)
n−p;p(h, `).

In the very special case p = 1 and h(x, y) = `(x, y) = 1 of (8), we obtain

zTs(z) = (2− z)Rs(z)− z2s+1F2s.

Comparing the coefficients of zn+1 on both sides of the above equation, we obtain

Ln(s) = 2Fn+1(s)− Fn(s),

which is indeed Lemma 1.
We are now in a position to prove our main theorem.

Proof of Theorem 1. Our proof relies on Equation (9) and the similar argument for prov-
ing (4). Consider the telescoping sum

m2

∑
i=m1

[
ri+1F(s)

i+1;p(h, `)− riF(s)
i;p (h, `)

]
= rm2+1F(s)

m2+1;p(h, `)− rm1 F(s)
m1;p(h, `),

where 0 ≤ m1 < m2 ≤ n. Hence, for 0 ≤ s ≤ b n−1
p+1c, we have

rn+1 ph(x, y)F(s)
n+1;p(h, `)− rs(p+1)+1 ph(x, y)F(s)

s(p+1)+1;p(h, `)

=
n

∑
i=s(p+1)+1

ri+1 ph(x, y)F(s)
i+1;p(h, `)−

n

∑
i=s(p+1)+1

ri ph(x, y)F(s)
i;p (h, `).
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In light of (9), the right-hand side is equal to

n

∑
i=s(p+1)+1

ri+1 ph(x, y)F(s)
i+1;p(h, `)−

n

∑
i=s(p+1)+1

ri
[
(1 + p)F(s)

i+1;p(h, `)− L(s)
i;p (h, `)

]
=

n

∑
i=s(p+1)+1

riL(s)
i;p (h, `) + (rph(x, y)− p− 1)

n

∑
i=s(p+1)+1

riF(s)
i+1;p(h, `).

If n is a multiplier of p + 1 and s = b n
p+1c, the desired relation holds obviously. This proves

Theorem 1.

3. From Complete to Incomplete

Actually, one may start with the regular Fibonacci–Lucas relation. Given two polyno-
mials h(x, y), `(x, y) ∈ R[x, y], and an integer p ≥ 1. Let the generalized bivariate Fibonacci
and Lucas p-polynomials be defined by recursive relations:

Fn;p(h, `) = h(x, y)Fn−1;p(h, `) + `(x, y)Fn−p−1;p(h, `) (n ≥ p + 1), (10)

with initial conditions

F0;p(h, `) = 0, Fm;p(h, `) = hm−1(x, y), for m = 1, 2, . . . , p,

and

Ln;p(h, `) = h(x, y)Ln−1;p(h, `) + `(x, y)Ln−p−1;p(h, `) (n ≥ p + 1), (11)

with initial conditions

L0;p(h, `) = p + 1, Lm;p(h, `) = hm(x, y), for m = 1, 2, . . . , p.

It is not difficult to derive the explicit formulas of these polynomials.

Proposition 7. The explicit formula of generalized bivariate Fibonacci p-polynomials Fn;p(h, `) is

Fn;p(h, `) =
b n−1

p+1 c

∑
j=0

(
n− jp− 1

j

)
hn−j(p+1)−1(x, y)`j(x, y);

and the explicit formula of generalized bivariate Lucas p-polynomials Ln;p(h, `) is given by

Ln;p(h, `) =
b n

p+1 c

∑
j=0

n
n− jp

(
n− jp

j

)
hn−j(p+1)(x, y)`j(x, y).

Notice that Fn;p(h, `) = F
(b n−1

p+1 c)
n;p (h, `) and Ln;p(h, `) = L

(b n
p+1 c)

n;p (h, `). One may obtain
the relation between these polynomials easily.

Lemma 3. Notations as above, we have

Ln;p(h, `) = Fn+1;p(h, `) + p`(x, y)Fn−p;p(h, `). (12)

Using relation (12), we can obtain a relation involving generalized bivariate Fibonacci
p-polynomials Fn;p(h, `) and generalized bivariate Lucas p-polynomials Ln;p(h, `).
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Theorem 2. For any integer n ≥ 0 and any real nonzero number r, we have

rn+1 ph(x, y)Fn+1;p(h, `) =
n

∑
i=0

riLi;p(h, `) + (rph(x, y)− p− 1)
n

∑
i=0

riFi+1;p(h, `). (13)

Proof. By (12) and the recurrence relation of generalized bivariate Fibonacci p-polynomials,
the right-hand side of (13) is equal to

n

∑
i=0

ri ph(x, y)
[
rFi+1;p(h, `)− Fi;p(h, `)

]
= ph(x, y)

[
n

∑
i=0

ri+1Fi+1;p(h, `)−
n

∑
i=0

riFi;p(h, `)

]
= rn+1 ph(x, y)Fn+1;p(h, `).

Indeed, Theorem 2 is a generalization of the well-known Fibonacci–Lucas relation
(Sury’s formula, see (3)). Theorem 2 also infers that two sums

s(p+1)

∑
i=0

riL
(b i

p+1 c)
i;p (h, `) + (rph(x, y)− p− 1)

s(p+1)

∑
i=0

riF
(b i

p+1 c)
i+1;p (h, `)

must be equal to
ph(x, y)rs(p+1)+1F(s)

s(p+1)+1;p(h, `),

for s is any integer with 0 ≤ s ≤ b n
p+1c. From this and using Equation (9) to make a

telescopic sum, one can deduce the incomplete version of a generalized Fibonacci–Lucas
relation, and obtain a relation involving the incomplete generalized bivariate Fibonacci and
Lucas p-polynomial as Theorem 1.

Here is another example. For any integer p ≥ 1, let the Leonardo p-numbers Ln;p be
defined by the following nonhomogeneous recurrence relation:

Ln;p = Ln−1;p + Ln−p−1;p + p, (14)

for n ≥ p + 1 with initial conditions L0;p = L1;p = · · · = Lp;p = 1. Tan and Leung [7]
introduced the Leonardo p-sequence {Ln;p}n≥0 as a generalization of classical Leonardo
numbers. The Leonardo 1-numbers, simply denoted by Ln, are the classical Leonardo
numbers that represent the number of vertices in the n-th Leonardo tree. That is, Ln
satisfies the relation:

Ln = Ln−1 + Ln−2 + 1,

for all integer n ≥ 2 with initials L0 = L1 = 1. The first few terms of the classical Leonardo
numbers are (OEIS:A001595, https://oeis.org/A001595 (accessed on 1 August 2023))

1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177, 287, 465, 753, 1219, 1973, 3193, 5167, 8361, 13, 529.

One can show easily that all classical Leonardo numbers are odd. Tan and Leung [7]
investigated some basic properties of Leonardo p-numbers and derived some relations
between the Leonardo p-numbers and the Fibonacci p-numbers (by letting h(x, y) =
`(x, y) = 1 in (10)), such as

Ln;p = (p + 1)Fn+1;p − p, (15)

and in particular Ln = 2Fn+1 − 1.

https://oeis.org/A001595
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Now we define the companion of classical Leonardo numbers, Kn, the n-th Lucas–
Leonardo number, which satisfies the relation

Kn = Kn−1 + Kn−2 + 1,

for all n ≥ 2 with initial values K0 = 3,K1 = 1. Notice that Kn + 1 = (Kn−1 + 1) +
(Kn−2 + 1), which implies that Kn = 2Ln − 1. The sequence {Kn}n≥0 begins with

3, 1, 5, 7, 13, 21, 35, 57, 93, 151, 245, 397, 643, 1041, 1685, . . .

(OEIS:A022319, https://oeis.org/A022319 (accessed on 1 August 2023)). Additionally, we
may define the Lucas–Leonardo p-numbers Kn;p by the recurrence relation

Kn;p = Kn−1;p + Kn−p−1;p + p

for all n ≥ p + 1 with initial values K0;p = p2 + p + 1,K1;p = K2;p = · · · = Kp;p = 1.
For p = 1, we obtain the Lucas–Leonardo sequence. The nonhomogeneous recurrence
relation of Lucas–Leonardo p-numbers can be converted to the following homogeneous
recurrence relation, for n ≥ 2p + 1:

Kn;p = Kn−1;p + Kn−p;p − Kn−2p−1;p.

In addition, we have the following proposition.

Proposition 8. For n ≥ 0, we have

Kn;p = (p + 1)Ln;p − p, (16)

where Ln;p is the n-th Lucas p-numbers (by letting h(x, y) = `(x, y) = 1 in (11)).

Proof. For n = 0, we obtain K0;p = p2 + p + 1 and (p + 1)L0;p − p = (p + 1)2 − p =

p2 + p + 1. Thus, the relation holds when n = 0. For n = 1, 2, . . . , p, it is easy to see that the
desired relation holds. Now, we finish the proof by using induction on n. Suppose that the
relation holds for some n that is greater than p. For Kn+1;p, we have

Kn+1;p = Kn;p + Kn−p;p + p

= (p + 1)Ln;p − p + (p + 1)Ln−p;p − p + p

= (p + 1)
(

Ln;p + Ln−p;p
)
− p

= (p + 1)Ln+1;p − p.

Hence, the desired relation holds for n ≥ 0 by induction.

By substituting h(x, y) = `(x, y) = 1 into (12), we obtain Ln;p = Fn+1;p + pFn−p;p.
Then, we obtain the following result.

Proposition 9. For n ≥ 0, we have

Kn;p = (p + 1)Ln;p − pLn−1;p.

In particular, for p = 1, we obtain Kn = 2Ln − Ln−1.

https://oeis.org/A022319


Symmetry 2023, 15, 2113 13 of 17

Proof. By using (15) and (14), we obtain

Kn;p = (p + 1)Ln;p − p

= (p + 1)
(

Fn+1;p + pFn−p;p
)
− p

= Ln;p + p(p + 1)Fn−p;p

= Ln;p + p
(
Ln−p−1;p + p

)
= Ln;p + p

(
Ln;p − Ln−1;p

)
= (p + 1)Ln;p − pLn−1;p.

Theorem 3. For any integers p ≥ 1 and n ≥ 0 and any real nonzero number r, we have a relation
involving the Leonardo p-numbers and the Lucas–Leonardo p-numbers,

rn+1 pLn;p =
n

∑
i=0

riKi;p + (rp− p− 1)
n

∑
i=0

riLi;p − p2, (17)

and an alternating relation involving the Leonardo p-numbers and the Lucas–Leonardo p-numbers,

(−1)n pLn;p =
n

∑
i=0

(−1)i−1rn−i+1Ki;p + (r + p + rp)
n

∑
i=0

(−1)irn−iLi;p + p2rn+1.

Proof. We use the result in Proposition 9 to compute the summation:

n

∑
i=0

riKi;p + (rp− p− 1)riLi;p = p2 + rp +
n

∑
i=1

riKi;p + (rp− p− 1)riLi;p

= p2 + rp + p
n

∑
i=1

[
ri+1Li;p − riLi−1;p

]
= p2 + rp + p

(
rn+1Ln;p − rL0;p

)
= p2 + rn+1 pLn;p.

Then the second assertion follows from the first assertion by substituting r with −1/r.

We note that relation (17) implies

p |
(
Kn;p − Ln;p

)
,

for any integers n ≥ 0 and p ≥ 1. This follows also from Proposition 9.

Corollary 6. For any integer n ≥ 0 and any real nonzero number r, we have

rn+1Ln =
n

∑
i=0

riKi + (r− 2)
n

∑
i=0

riLi − 1.

In particular, we have

2n+1Ln =
n

∑
i=0

2iKi − 1.
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Recently, Tan and Leung [7] investigated incomplete Leonardo p-numbers and gave
some properties of these numbers. Indeed, in their paper [7], they defined the incomplete
Leonardo p-numbers as

Ln;p(s) = (p + 1)
s

∑
j=0

(
n− jp

j

)
− p,

where s is an integer with 0 ≤ s ≤ b n
p+1c. From this definition and (15), it is clear to see

that Ln;p(0) = 1,Ln;p(1) = (p + 1)(n− p) + 1, and Ln;p(b n
p+1c) = Ln;p. The incomplete

Leonardo p-numbers Ln;p(s) satisfy the recurrence relation

Ln;p(s + 1) = Ln−1;p(s + 1) + Ln−p−1;p(s) + p,

for 0 ≤ s ≤ n−p−2
p+1 . One can find proof in [7].

Similarly, we consider relation (16) and may define the incomplete Lucas–Leonardo
p-numbers as below. For integers n ≥ 0 and p ≥ 1 and an integer s with 0 ≤ s ≤ b n

p+1c,
we define

Kn;p(s) = (p + 1)
s

∑
j=0

n
n− jp

(
n− jp

j

)
− p.

Some special cases of the above definition are

1. Kn;p(0) = 1,
2. Kn;p(1) = (p + 1)(n + 1)− p,
3. Kn;p(b n

p+1c) = (p + 1)Ln;p − p = Kn;p.

Furthermore, we have the following proposition.

Proposition 10. The recurrence relation of the incomplete Lucas–Leonardo p-numbers Kn;p(s) is

Kn;p(s + 1) = Kn−1;p(s + 1) + Kn−p−1;p(s) + p, (18)

for 0 ≤ s ≤ b n−p−1
p+1 c.

Proof. By definition, for 0 ≤ s ≤ b n−p−1
p+1 c, we have

Kn−1;p(s + 1) + Kn−p−1;p(s) + p

= (p + 1)
s+1

∑
j=0

n− 1
n− jp− 1

(
n− jp− 1

j

)

+ (p + 1)
s

∑
j=0

n− p− 1
n− (j + 1)p− 1

(
n− (j + 1)p− 1

j

)
− p

= (p + 1) + (p + 1)
s+1

∑
j=1

n− 1
n− jp− 1

(
n− jp− 1

j

)
+

n− p− 1
n− jp− 1

(
n− jp− 1

j− 1

)
− p

= (p + 1)
s+1

∑
j=1

n
n− jp

(
n− jp

j

)
+ 1

= (p + 1)
s+1

∑
j=0

n
n− jp

(
n− jp

j

)
− p

= Kn;p(s + 1).
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It is easy to see that relation (18) can be transformed into the nonhomogeneous
recurrence relation:

Kn;p(s) = Kn−1;p(s) + Kn−p−1;p(s) + p− (p + 1)
n− p− 1

n− (s + 1)p− 1

(
n− (s + 1)p− 1

s

)
,

for 0 ≤ s ≤ b n−p−1
p+1 c.

The following result gives a link between the incomplete Leonardo p-numbers and
the incomplete Lucas–Leonardo p-numbers.

Lemma 4. Notations as above, we have

Kn;p(s) = (p + 1)Ln;p(s)− pLn−1;p(s), (19)

for 0 ≤ s ≤ b n−1
p+1c.

Proof.

Kn;p(s) + pLn−1;p(s)

= (p + 1)
s

∑
j=0

[
n

n− jp

(
n− jp

j

)
+ p

(
n− jp− 1

j

)]
− p− p2

= (p + 1)
s

∑
j=0

(p + 1)
(

n− jp
j

)
− p(p + 1)

= (p + 1)Ln;p(s).

Our next goal is to transform our Theorem 3 into an incomplete version. For this pur-
pose, note that Ln;p(b n

p+1c) = Ln;p and Kn;p(b n
p+1c) = Kn;p, and then we write relation (17)

in an equivalent form:

rn+1 pLn;p(b
n

p + 1
c) =

n

∑
i=0

riKi;p(b
i

p + 1
c) + (rp− p− 1)

n

∑
i=0

riLi;p(b
i

p + 1
c)− p2.

Theorem 4. For any integers p ≥ 1 and n ≥ 0 and any real nonzero number r, we have a relation
involving the incomplete Leonardo p-numbers and the incomplete Lucas–Leonardo p-numbers,

rn+1 pLn;p(s) = rs(p+1)+1 pLs(p+1);p(s) +
n

∑
i=s(p+1)+1

riKi;p(s)

+ (rp− p− 1)
n

∑
i=s(p+1)+1

riLi;p(s)− p2,
(20)

or any integer s with 0 ≤ s ≤ b n
p+1c.

Proof. By Theorem 3, we have the sum

s(p+1)

∑
i=0

riKi;p(b
i

p + 1
c) + (rp− p− 1)

s(p+1)

∑
i=0

riLi;p(b
i

p + 1
c)
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must be equal to rs(p+1)+1 pLs(p+1);p(s) + p2. Hence, in order to prove the assertion, it is
suffice to show

rn+1 pLn;p(s) + p2 =
s(p+1)

∑
i=0

[
riKi;p + (rp− p− 1)riLi;p

]
+

n

∑
i=s(p+1)+1

[
riKi;p(s) + (rp− p− 1)riLi;p(s)

]
,

for all integer s with 0 ≤ s ≤ b n
p+1c. The first summation of the right-hand side deals with

a complete form, and the second deals with an incomplete form. For 0 ≤ s ≤ b n−1
p+1c, we

use (19) of Lemma 4 to compute

n

∑
i=s(p+1)+1

[
riKi;p(s) + (rp− p− 1)riLi;p(s)

]
= p

n

∑
i=s(p+1)+1

[
ri+1Li;p(s)− riLi−1;p(s)

]
= rn+1 pLn;p(s)− rs(p+1)+1 pLs(p+1);p(s)

= rn+1 pLn;p(s)−
s(p+1)

∑
i=0

[
riKi;p + (rp− p− 1)riLi;p

]
+ p2.

Hence, the proof finishes if 0 ≤ s ≤ b n−1
p+1c. For n is a multiplier of p + 1 and s = b n

p+1c,
relation (20) holds obviously.

We can replace r with−1/r in (20) to obtain the following alternating relation involving
the incomplete Leonardo p-numbers and the incomplete Lucas–Leonardo p-numbers:

(−1)n pLn;p(s) =(−1)s(p+1)rn−s(p+1)pLs(p+1);p(s) +
n

∑
i=s(p+1)

(−1)i+1rn+1−iKi;p(s)

+ (rp− p− 1)
n

∑
i=s(p+1)

(−1)i+1rn+1−iLi;p(s) + rn+1 p2.

4. Conclusions

The goal of this note is to establish some generalized relations of the well-known
Fibonacci–Lucas relation. The regular (complete) Fibonacci–Lucas-type relation can be
obtained by the crucial inter-relationship (such as Lemmas 1–4) between these numbers
(polynomials). Such a relation can be also obtained based on their generating functions. We
present the whole procedure for how to deduce an incomplete Fibonacci–Lucas-type rela-
tion from the known complete one. We provide a Fibonacci–Lucas-type relation involving
the incomplete generalized bivariate Fibonacci p-polynomials and the incomplete gener-
alized bivariate Lucas p-polynomials and a relation involving the incomplete Leonardo
p-numbers and the incomplete Lucas–Leonardo p-numbers.
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