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Abstract: At this stage, the application of Private Set Intersection (PSI) protocols is essential for
smart homes. Oblivious Key-Value Stores (OKVS) can be used to design efficient PSI protocols.
Constructing OKVS with a cuckoo hashing graph is a common approach. It increases the number of
hash functions while reducing the possibility of collisions into rings. However, the existing OKVS
construction scheme requires a high time overhead, and such an OKVS applied to PSI protocols
would also have a high communication overhead. In this paper, we propose a method called 3-Hash
Garbled Cuckoo Graph (3H-GCG) for constructing cuckoo hash graphs. Specifically, this method
handles hash collisions between different keys more efficiently than existing methods, and it can
also be used to construct an OKVS structure with less storage space. Based on the 3H-GCG, we
design a PSI protocol using the Vector Oblivious Linear Evaluation (VOLE) and OKVS paradigm,
which achieves semi-honest security and malicious security. Extensive experiments demonstrate the
effectiveness of our method. When the set size is 218–220, our PSI protocol is less computationally
intensive than other existing protocols. The experiments also show an increase in the ratio of raw
to constructed data of about 7.5%. With the semi-honest security setting, our protocol achieves the
fastest runtime with the set size of 218. With malicious security settings, our protocol has about 10%
improvement in communication compared with other existing protocols.

Keywords: private set intersection; oblivious key-value stores; cuckoo hashing graph

1. Introduction

With the advent of the Big Data era, user data are generated, collected and consumed
in different locations [1]. More potential value can be obtained by integrating and analyzing
data scattered in various places. However, the integration of data may bring about leakage
of private information and compromise the privacy of users [2]. The application of Private
Set Intersection (PSI) protocols has effectively improved this situation [3–9]. Specifically,
the adoption of Oblivious Key-Value Stores (OKVS) has gained significant attraction in
constructing PSI protocols. This paper aims to tackle the existing challenges related to the
high computational complexity and storage demands of OKVS construction. We introduce
a novel construction method for OKVS, utilizing a cuckoo hash map. This approach
effectively addresses the computational and communication complexities linked to its
integration into PSI protocol applications. The method has the potential to enhance privacy
and efficiency, particularly in scenarios like federated learning [10]. This method addresses
the high computational complexity and high communication overhead of its construction
process in PSI protocol applications. Moreover, we are committed to reducing the protocol’s
computational and communication complexity.

Participants obtain the intersection of sets owned by each other by executing the
PSI protocol. And they do not disclose the non-intersection elements they own. Generic
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PSI protocol implementations are based on symmetric encryption, public key encryption,
Oblivious Transfer (OT), and full homomorphic encryption. In particular, symmetric
functions have a wide range of applications in PSI-sum and threshold PSI [11,12]. The
PSI protocol includes two main components: the data packaging algorithm and the data
transmission algorithm. Algorithms for data transmission include: OT [13], Orrú, Orsini
and Scholl (OOS) [14], VOLE [15,16], etc. In the PSI protocol designed in this paper, we have
used the VOLE method to implement data transmission. Specifically, VOLE hides the data
obtained from encoding through an equational relationship. Data packaging algorithms
can be collectively referred to as OKVS [17,18], and our work focuses on improving an
OKVS that is less dependent on auxiliary locations.

Existing OKVSs can be categorized into three types based on their structure, i.e., poly-
nomial encoding (PE)-based OKVSs, random matrix-based OKVSs, and cuckoo hashing-
based OKVSs. PE is the most basic OKVS structure, which works by interpolating a poly-
nomial through n unstructured points, or computing a polynomial over n points [13,19,20].
However, PE has a high computational overhead for both encoding and decoding and is
not efficient in solving encoding and decoding problems with large amounts of data.

The second category, which our work belongs to, is based on the cuckoo hash graph.
This class of methods first originated with the work of Pinkas et al. [17], who first proposed
Probe-and-XOR of Strings (PaXoS). PaXoS is able to encode a mapping from keys to values
to hide the keys. Then, the mapping structure is dispersed into a cuckoo hash map, which
outperforms PE in terms of computational overhead. Subsequently, researchers have
designed different algorithms based on PaXoS [15,16]. However, PaXoS is only a special
binary-type data structure, and this data structure is not universal [17].

To address this problem, Pinkas et al. [18] reconstructed a generic OKVS structure
3H-GCT, using PaXoS as a starting point. Unlike PaXoS, which uses two hash functions
to construct the cuckoo hash graph, 3H-GCT increases the number of hash functions for
constructing the cuckoo hash graph to three, which greatly improves the efficiency of
constructing the cuckoo hash graph. However, the storage requirements of the data struc-
tures constructed by 3H-GCT are large, and the computational overhead of the Gaussian
elimination method applied to them is also large. When applied to design PSI protocols,
3H-GCT causes a rise in traffic volume, resulting in a large communication overhead.

Aiming at these problems, we investigate the process of encoding cuckoo hash graph
for 3H-GCT. In response to the high computational overhead of the Gaussian elimination
method, we propose a locally randomized valuation method. To address the problem of
high storage requirements, we limit the number of positions to which keys can be mapped
to secondary positions, thereby reducing the storage space required. Specifically, we reduce
the computational overhead by replacing the Gaussian elimination method with a method
that first randomizes the node values, and then determines the null node values from
the fixed node values.To address the problem of high storage overhead, we set a location
limit during the mapping process of storing data into the cuckoo hashmap. And not
every element in our method is stored using auxiliary storage locations. This reduces the
dependence on auxiliary locations when constructing the cuckoo hash map to some extent,
which ultimately reduces the storage space. To sum up, major contributions of this paper
are as follows:

• We propose a new OKVS method, 3H-GCG, whose decoding algorithm consists of
two arithmetic formulas, which is less dependent on auxiliary locations, and can be
easily adapted to the PSI protocol.

• We leverage the newly proposed 3H-GCG to design a two-party PSI protocol. Our
approach incorporates the OKVS and VOLE paradigm [15,16], providing resilience
against malicious adversaries. We offer security proofs for our two-party PSI protocol
under semi-honest security settings and malicious security settings, respectively.

• We implemented the proposed 3H-GCG and two-party PSI protocols and compared
them with existing PSI protocols. When the set size is 218–220, our PSI protocol is less
computationally intensive than other existing protocols. The experiments show that
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for our OKVS, 3H-GCG, the ratio of raw data to constructed data is improved by about
7.5% compared to other existing OKVSs. Under the semi-honest security setting, our
PSI protocol achieves the fastest runtime with a set size of 218. Under the malicious
security setting, our PSI protocol has about 10% improvement in communication
compared to existing protocols.

The remainder of this paper is organized as follows: in Section 2, we present the
symbolic representation of this paper, the security model followed in this paper, and
the preparatory knowledge and the related work of the PSI study. In Section 3, we introduce
our own OKVS, 3H-GCG, and perform a parametric analysis. In Section 4, we propose the
OPRF protocol based on 3H-GCG and further construct the PSI protocol, which can defend
against malicious adversaries. In Section 5, we give the correctness analysis and security
proof of the protocol. In Section 6, we present the details of our PSI implementation and the
performance comparison with existing PSI protocols. In Section 7, we conclude the work of
this paper.

2. Preliminaries and Backgrand

This section provides background information. In Section 2.1, we describe the symbolic
representations used in this paper. Section 2.2 covers key definitions and properties of
OKVS. In Section 2.3, we outline the principles of OKVS implementation using cuckoo
hashing. Section 2.4 introduces standard model definitions for semi-honest and malicious
security. Lastly, Section 2.5 discusses related work in PSI research.

2.1. Notation

We use X to denote the set of sender and Y to denote the set of receiver. [x, y] denotes
the set {x, x + 1, . . . , y}. [a] denotes the set [1, a]. p denotes the row vector (p1, p2, . . . , pn).
< ·, · > denotes the inner product operation on vectors; i.e., < a, b > denotes the inner
product of a and b. The assignment is noted as :=, and we use = to denote the statement
that the values are equal.

2.2. OKVS Structure Definition and Property

Definition 1. A key-value store (KVS) is characterized by a set of keys (K), a set of values (V),
and a set of hash functions (H). It comprises two algorithms:

• EncodeH : The input is a set of key-value pairs (ki, vi) and the output is an object S. In rare
cases, an error indicator ⊥ may be outputted instead.

• DecodeH : The input is an object S and a key k, and the output is a value v. A KVS is
considered correct if for all subsets A of K×V with distinct keys, the following holds: if (k, v)
is in A and S← EncodeH(A) 6=⊥, then DecodeH(S, k) = v.

The decision of whether EncodeH outputs ⊥ is determined by the functions H and the keys
ki, and is not influenced by the values vi. If the data are encoded as a polynomial, EncodeH always
succeeds. It is possible to invoke DecodeH(S, k) on any key k. The goal is to make it impossible
to determine whether k was used to generate S or not. This is further explained in the following
definition [18].

Definition 2. A KVS is considered as an oblivious KVS (OKVS) if for all distinct sets of keys
{k0

1, k0
2, . . . , k0

n} and {k1
1, k1

2, . . . , k1
n}, if EncodeH does not output ⊥ for either set of keys, then

the output of EncodeH{k0
1, k0

2, . . . , k0
n} is computationally indistinguishable from that of EncodeH

{k1
1, k1

2, . . . , k1
n}.

In other words, if an OKVS encodes random values, it is infeasible to distinguish between an
OKVS encoding of the keys of K0 from an OKVS encoding of the keys of K1 for any two sets of keys
K0 and K1. In fact, if the values encoded in the OKVS are random, then the two distributions are
perfectly indistinguishable.

Security of OKVS: An OKVS is composed of an encode and a decode algorithm. Encode
takes as input a set of key-value pairs (ki, vi) and returns a data structure S. Decode takes as
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input a data structure like S and a key value k, and outputs a result. Decode can be called
on any key, but if it is called on one of the keys used to generate Ski

, then the result is the
corresponding vi. The most fundamental property of an OKVS is that when vi is random, S
hides ki, reducing the probability that the value of the original data k will be leaked and
increasing its security.

2.3. OKVS Construction Based on Cuckoo Hash Graph

This section outlines the construction of the cuckoo hash map proposed in Section 3.2
of document [17]. The implementation details of the original encoding and decoding are
described below:

EncodeH((x1, y1), . . . , (xn, yn)): Given n items (xi, yi) where xi ∈ {0, 1}∗ and yi ∈
{0, 1}l , let M be an n × m matrix where the ith row is v(xi). A data structure (matrix)
D = (d1, . . . , dm)T ∈ {0, 1}m×l can be solved for such that M× D = (y1, . . . , yn)T . In other
words, the following linear system of equations (over the field of order 2l) is satisfied:

v(x1)
v(x2)

...
v(xn)

×


d1
d2
...

dm

 =


y1
y2
...

yn

 (1)

When the v(xi)s are linearly independent, a solution to this system of equations
must exist.

DecodeH(D, x): Given a data structure D ∈ ({0, 1}l)m and a key x ∈ {0, 1}∗, the corre-
sponding value can be retrieved as follows:

y =< v(xi, D) >= ⊕
j:v(x)j=1

dj (2)

In other words, solving for a key x in D is equivalent to computing an x-or of a specific
position in D. The choice of position is determined by v(x) and depends only on x, not on
the data structure D.

For the construction of the data structure D, the paper [17] focuses on the analysis of
instantiation with cuckoo hash graphs. The vertices of a cuckoo hash graph are denoted
1, ..., m, corresponding to the positions of the elements in the data structure D. The edges of
the cuckoo hash graph are undirected edges, corresponding to the xi values to be inserted.
The correspondence between the xi values and the edges in the cuckoo hash graph is
xi → {h1(xi), h2(xi)}. It follows that the cuckoo hash graph may contain self-loops and
undirected loops.

2.4. Security Model

In the security proof of the proposed method, we follow the standard security defi-
nitions for secure two-party computation. The whole idea of the proof follows the ideal-
realistic paradigm. The ideal state means that the participants of the PSI protocol operation
truthfully provide the data that should be provided. Strictly following the requirements of
the protocol leads to a true intersection result. Specifically, the security certificate is divided
into semi-honest security proof and malicious security proof, and the specific requirements
are as follows:
Semi-honest security model: For the protocol Π, if there exist probabilistic polynomial-
time adversaries S1 and S2 such that for all inputs X and Y, the following equation is
satisfied:

(viewΠ
1 (X, Y), outΠ(X, Y))

c≈ (S1(1n, X, n2), f (X, Y)) (3)

viewΠ
2 (X, Y)

c≈ S2(1n, X, n2) (4)



Symmetry 2023, 15, 2083 5 of 18

Then, it means that protocol Π is secure under the semi-honest model. Where viewΠ
1

(X, Y) denotes the view of P1 in protocol Π, viewΠ
2 (X, Y) denotes the view of P2 in pro-

tocol Π, outΠ(X, Y) denotes the output of P2 in the protocol Π, and f (X, Y) denotes the
intersection calculation result of P2 in the ideal state.
Malicious security model: For protocol Π, for malicious participants P1 and P2 under
the realistic model that can arbitrarily deviate from the protocol, there exist probabilistic
polynomial-time adversaries S1 and S2 under the ideal model such that for all inputs X
and Y, the following equation is satisfied:

RealΠ
1 (X, Y)

c≈ (IdealF
S1
(X, Y)) (5)

RealΠ
2 (X, Y)

c≈ (IdealF
S2
(X, Y)) (6)

Then, it means that protocol Π is safe under the malicious model. RealΠ
1 (X, Y) de-

notes the perspective of P1 when P1 is a malicious participant under the realistic model,
IdealF

S1
(X, Y) denotes the perspective of P1 when running protocol Π under the ideal model.

RealΠ
2 (X, Y) denotes the perspective of P2 when P2 is a malicious participant under the

realistic model, and IdealF
S2
(X, Y) denotes the perspective of P2 when running protocol Π

under the ideal model.

2.5. Related Work

The idea of polynomial encoding (PE) associated with secure multi-party computation
and PSI can be traced back to the work of Manulis et al. [19]. They proposed the concept of
index-hiding message encoding (IHME) to solve the privacy-preserving group discovery
problem with linear computational and communication complexity. Then, a perfect security
construction for IHME using PE is given. Kolesnikov et al. [20] implemented the OPRF
protocol using PE, but PE requires a time complexity of O(n2), which is expensive for large
n. Subsequently, Pinkas et al. [21] proposed a polynomial-based PPRF scheme based on
the construction of [20] to apportion the cost of batching multiple OPRF calls together.
Kolesnikov et al. [22] constructed the reverse private membership test (RPMT) protocol
using polynomials and implemented the private set union (PSU) computation protocol
using RPMT. Pinkas et al. [13] designed polynomial slicing and streaming using PE and
used it to achieve a low communication PSI. Based on the above analysis, existing PE
technology suffers from high computational complexity in encoding and decoding.

To solve this problem, the researchers proposed the concept of OKVS. The leading
OKVS implementations are currently based on random matrices or cuckoo hashing. Then,
the development of OKVS can be traced back to Pinkas et al. [17], who proposed a fast
malicious secure two-party PSI protocol using the proposed PaXoS. However, due to the
random nature of the results produced by this scheme, there is a high risk of compromising
the data information of the participants. Therefore, Rindal et al. [15] designed a variant of
PaXoS, XoPaXoS, which effectively solved the data leakage problem. PaXoS has been much
more computationally efficient compared to PE, but is still not general enough.

Based on the above gap, Garimella et al. [18] introduced the concept of OKVS using
PaXoS as a starting point. According to the concept description, PE belongs to the most basic
construct of OKVS, while PaXoS belongs to a specific, binary type of OKVS. A new OKVS
structure, 3H-GCT, was designed along with the introduction of the OKVS concept [18].
3H-GCT expands the number of hash functions of the cuckoo hash map from two to
three on the basis of PaXoS, achieving an expansion from the particular to the general.
However, the Gaussian elimination method applied by 3H-GCT in the encoding process
still places a high demand on computational performance, and in this paper we endeavour
to demonstrate protocol solutions with low communication and computation volumes.
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3. Proposed OKVS

This section primarily focuses on explaining the encoding and decoding mechanisms
of our OKVS. In Section 3.1, we present the codec implementation details, and in Section 3.2,
we discuss the parameter selection scheme along with the results for the encoding and
decoding mechanisms.

3.1. OKVS Construction Based on Cuckoo Hash Graph

This section begins with the introduction of our proposed OKVS algorithm, which we
have named 3H-GCG. The main description of this algorithm is shown in Figure 1, which
implements the storage of n key-value pairs into a cuckoo hash graph.

Parameters:
• The algorithm is parameterized with the functions H = {h1, h2, h3}; each has a range [m]. Ni denotes

the node of cuckoo hash graph, i ∈ [m].
• In addition, the algorithm uses the functions li(·) and ri(·), where li(x) outputs a bit-vector of length

m with zero at all entries except of entries h1(x),h2(x) and h3(x). The function ri(x) outputs a random
bit-vector of length κ + 0.35log(n) with zero at all entries except for two random entries.
Algorithm:

EncodeH((k1, v1), . . . , (kn, vn)):
1. Initialize empty vectors l ∈ (Fl)m and r ∈ (Fl)κ+0.35log(n).
2. Initialize queue Q.
3. For all key-value pairs (k, v) such that h1(k) = hi(ka), h2(k) = hj(kb), h3(k) = hp(kc)(i, j, p ∈ [3] and

a, b, c ∈ [n], but ka, kb, kc 6= k), enqueue (k, v) into Q.
4. Store the ki ∈ Q into S := (l, r).
5. Store the ki /∈ Q into S := (l, r).
6. Set any empty position in l (and r) with a random value from Fm (and Fr), output S = (l, r).

DecodeH({S, x}):
Decode1({S, x}):

1. Compute li(ki), fetching parameters S = (l, r).
2. Return < li(ki), l >.

Decode2({S, x}):
1. Compute li(ki) and ri(ki), fetching parameters S = (l, r).
2. Return < (li(ki), ri(ki)), (l, r) >.

Figure 1. The 3-Hash Garbled Cuckoo Graph constructing approach, fitting n key-value pairs (ki, vi)

to a data structure S.

In this algorithm, the number of hash functions of the cuckoo hash graph is set to 3.
The three hash functions are h1, h2, h3, and their mapping ranges are [m]. In addition, the
node of the cuckoo hash graph is set to Ni and the range of i is also [m], in keeping with
the mapping range of the hash function. Further, two mapping functions li(·) and ri(·)
are set. In particular, we place some restrictions on the mapping values output by these
two functions to make them better serve our OKVS structure. Specifically, the output of
the mapping function li(·) is an m− long bit string and all but three positions are zeros,
where the three positions of li(x) are determined by h1(x), h2(x), and h3(x), respectively.
The mapping function ri(·), on the other hand, outputs an κ + 0.35log(n) long string of
bits, of which only two random positions are 1 and all other positions are zeros.

The encryption algorithm of 3H-GCG initializes two empty vectors l and r, and an
empty queue Q, as detailed in steps 1 and 2 of the encoding algorithm in Figure 1. Step 3
aims at classification. Since the mapping range [m] of the hash function is relatively small,
it is inevitable that the key values in the set of key-value pairs collide with each other when
hashing the values of different hash functions between elements. With the help of queue Q,
we can divide the key-value pairs that need to be encoded into two categories. The key-
value pairs where all three hashes collide are placed in queue Q, and the rest are placed
outside of queue Q. Step 4 is to secretly store the key-value pairs from the queue Q into l
and r. For ki, i ∈ [m] in Q, if ∃j ∈ [3], Nhj(ki)

is empty, then keep one empty position, fill the
other positions with random values if they are empty, and finally decide the value of the
retained empty position according to the position that is not empty, such that < li(ki), l >
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= vi. Otherwise, compute ri(ki) and use the random position determined by r(ki) to assist
in storing (ki, vi) such that < (li(ki), ri(ki)), (l, r) > = vi. Step 5 is to secretly store the
key-value pairs outside the queue Q into l and r. For ki not in Q, if ∃j ∈ [3], Nhj(ki)

is not
empty, then store the value of the empty node based on the nodes already set, such that
< li(ki), l > = vi. Otherwise, take two empty positions and store them randomly, and store
the other position according to the position already set, such that < (li(ki), ri(ki)), (l, r) > =
vi. Note in particular that during the execution of steps 4 and 5, the initialized null vectors
l and r are continually updated as key-value pairs are deposited. Until all the key-value
pairs are stored, the encoding process is completed by filling in the random values in step 6
to obtain S := (l, r).

Unlike existing algorithms, the decoding algorithm of 3H-GCG consists of two al-
gorithms Decode1 and Decode2. The user needs to compute both Decode1 and Decode2
algorithms if they do not know any conditions when decoding. Of the two results obtained,
at most one can be matched to the expected result.

Our OKVS construction is constructed with the idea of the cuckoo hash graph and
the hypergraph construction. But the concept of cuckoo hashing mentions that if the data
cannot be stored anymore, the other deposited elements will be cycled out until a free
spot is found to store all the elements. This approach has little efficiency difference in
decoding from our proposed 3H-GCG. However, having to constantly determine and re-
store elements during the encoding process increases computational overhead. Therefore,
the position of the elements stored will not change again. If a storage conflict is encountered,
the conflict is resolved directly by using the auxiliary position. This makes a considerable
improvement to coding efficiency.

In addition, this encoding and decoding approach needs to be used in special scenarios.
That is, at least one of the participants needs to have an expectation of the decoded result.
If one of the two numbers solved does not follow the number one expects, it is proved that
the number of the query is not stored in this OKVS. If one of the two numbers solved can be
matched to the expected number before decoding, it is proved that the number one wants
to confirm exists at this OKVS check. Based on the above description of the applicable
scenarios, we find that this OKVS encoding method can be applied to the PSI protocol.
The specific way in which the PSI protocol is constructed is described in detail in Section 4.

3.2. Parameter Analysis

In this work, the parameters to be analyzed are the output length l1 of H1, the output
length l2 of H2, and the number of cuckoo hash graph vertices m and the number of
auxiliary positions r. Of these, l1 and l2 are introduced when designing the PSI protocol in
the next section, and we will first discuss their parameter selection here.
Choices of l1, l2: Since H1 and H2 control the collision probability of the PSI protocol, l1
and l2 can be set to l1 = l2 = λ + log(n1n2) in a semi-honest security setting, where n1 and
n2 denote the number of elements of the sender and receiver sets, respectively. Under the
malicious security setting, l1 and l2 can be set to l1 = l2 = λ + log(Q1Q2), with Q1 and Q2
denoting the number of queries that the sender and receiver can make to the H1 and H2
random prediction machines, respectively.
Choices of m, r: In the 3H-GCG mechanism, S = (l, r), where |l| = m, |r| = r. To ensure
the success of encoding, m = 1.2n and r = κ + 0.35log(n) are taken. In this scheme,
the encoding fails when the auxiliary position is less than κ + 0.35log(n) at the time of
encoding. Refer to [18] for specific calculations.

Based on the aforementioned analysis, we establish a parameter selection scheme
tailored to varying numbers of set elements. The security parameters are set to λ = 40
and κ = 128. Specifically, we focus on the balanced PSI protocol, where n1 = n2 = n.
The details of this parameter selection scheme are presented in Table 1.
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Table 1. Parameter Selection.

n m r l1&l2 (Semi-Honest) l1&l2 (Malicious)

216 1.2n 134 72 120
218 1.2n 135 76 122
220 1.2n 135 80 124
222 1.2n 136 84 126
224 1.2n 137 88 128

4. Private Set Intersection

In this section, we outline the PSI protocol scheme we have developed. Section 4.1
introduces the VOLE-based OPRF protocol, while Section 4.2 demonstrates how the OPRF
protocol is used to design the VOLE-based PSI protocol.

4.1. OPRF-Based Vector-OLE

We begin by introducing a VOLE function that can be converted at random, which can
be adapted to the participant’s indication of malicious behaviour, and the whole scheme is
resistant to malicious adversaries; the process is illustrated in Figure 2.

Parameters:
• Two parties, a sender and a receiver.
• A finite field F.
• The size of the output vectors: m.

Functionality:
- No input from either sender or receiver.
- In the event that the receiver exhibits malicious behavior, wait for the transmission of C and A ∈ Fm.

Subsequently, sample ∆← F and calculate B = C− ∆A.
- In the event that the sender exhibits malicious behavior, wait for the transmission of B ∈ Fm and ∆ ∈ F.

Subsequently, sample A← Fm and calculate C := B + ∆A.
- If there is no malicious behaviour on either side, sample A and B ← Fm, as well as ∆ ← F, then

calculate C := B + ∆A.
- The functionality transmits ∆ and B to the sender, while sending C, calculated as ∆A+ B, and transmits

A to the receiver.

Figure 2. A random reversed VOLE functionality realization.

The whole VOLE scheme is adapted to both participants, with a restricted finite field
of F and all vectors of dimension set to m. No input is required from either participant
for the entire operation. If no malicious adversary is detected, vectors A and B and the
scalar ∆ are randomly selected by the VOLE processor, then it can be calculated that C
:= B + ∆A. If a malicious adversary is present during the implementation of Figure 2,
the implementation needs to be discussed on a case-by-case basis:

If receiver is a malicious adversary, receiver needs to generate its own A and C for
transmission to the VOLE processor; the processor takes a random value ∆ and computes
B := C− ∆A, returning B and ∆ to sender.

If sender is a malicious adversary, sender needs to generate the scalar ∆ and B by
himself and transmit both to the VOLE processor. The process then randomizes A and then
calculates C := B + ∆A and transmits A and C to the receiver.

Based on the above random reversed VOLE function that can resist a malicious
adversary, an OPRF protocol can be constructed to resist a malicious adversary. The specific
OPRF execution process is shown in Figure 3.
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Parameters:
• There exists two parties, a sender with set X ⊂ F of size n, and a receiver with set Y ⊂ F of size n.
• Linear 3H-GCG scheme (Encode, Decode), mapping n items to m slots.
• Computational and statistical security parameters κ and λ.
• Random oracles H1:{0, 1}∗ → {0, 1}t and H2:{0, 1}∗ → {0, 1}l and H3:{0, 1}l1 → {0, 1}l2 .

Protocol:
1. Sender samples ws ← F and sends s = H3(ws) to receiver.
2. Receiver computes D with Y and sends the randomly generated wr to sender. Note that the data

structure of D is consistent with the output data structure of 3H-GCG.
3. The parties invoke the VOLE functionality and neither party has any input. The receiver obtains C

and A′, while the sender obtains B and ∆, so that C = B + ∆A′. Note that C, A′and B are all OKVS structures
of 3H-GCG, like D.

4. Receiver computes A := A′ + D and sends A to the sender.
5. Sender sends ws to receiver, who aborts if H3(ws) 6= s. Both parties then compute w = ws + wr .
6. Sender computes P = ∆A + B and then outputs M1 = {H2(x, Decode1(P, x)− ∆H1(x) + w) | x ∈ X}

and M2 = {H2(x, Decode2(P, x)− ∆H1(x) + w) | x ∈ X}.

Figure 3. OPRF based on the 3H-GCG.

The receiver receives C and A′ and the sender receives B and scalar ∆ where C, A′,
and B, the same as D, are OKVS structures output by the 3H-GCG encoding algorithm.
The receiver assigns A′ + D to A, which is then sent to the sender. The sender sends the
ws generated in the first step to the receiver, who checks the ws against the s previously
received. If s is not equal to H3(ws), then the agreement aborts; if the two values are equal,
then both parties can calculate w = ws + wr, respectively. Finally, the sender computes P =
∆A + B and uses P to compute two decodes of 3H-GCG for the elements in the set X, and
the obtained results are integrated into the M1 and M2 sets, respectively. The reason for
having two sets here is that 3H-GCG has two decryption algorithms. The security of this
OPRF protocol is demonstrated in the next subsection.

4.2. PSI Protocol Description

We can adapt the OPRF protocol discussed in the previous section to create a PSI
protocol in the same security environment. This adaptation is illustrated in Figure 4.
Notably, the PSI protocol in Figure 4 primarily differs from the OPRF protocol in Figure 3
in just two key aspects.

Parameters:
• There exists two parties, a sender with set X ⊂ F of size n, and a receiver with a set Y ⊂ F of size n.
• Linear 3H-GCG scheme (Encode, Decode), mapping n items to m slots.
• Computational and statistical security parameters κ and λ.
• Random oracles H1: {0, 1}∗ → {0, 1}t, H2: {0, 1}∗ → {0, 1}l , H3: {0, 1}l1 → {0, 1}l2 and H3:{0, 1}l1 →

{0, 1}l2 .
Protocol:

1. Sender samples ws ← F and sends s = H3(ws) to receiver.
2. Receiver computes D = Encode({(y, H1(y)) | y ∈ Y}) = (LD , RD) using the Encode algorithm of

3H-GCG and sends the randomly generated wr to sender.
3. The parties invoke the VOLE functionality and neither party has any input. The receiver obtains

C and A′, while the sender obtains B and ∆, so that C = B + ∆A′. Note that C, A′, and B are all OKVS
structures of 3H-GCG, the same as D.

4. Receiver computes A := A′ + D and sends A to the sender.
5. Sender sends ws to receiver who aborts if H3(ws) 6= s. Both parties then compute w = ws + wr .
6. Sender computes P = ∆A + B and then computes M1 = {H2(x, Decode1(P, x)−∆H1(x)+w) | x ∈ X}

and M2 = {H2(x, Decode2(P, x)− ∆H1(x) + w) | x ∈ X}, then sends M1, M2 to receiver.
7. Receiver outputs {y ∈ Y | (H2(y, Decode1(C, y)) + w ∈ M1) ∨ (H2(y, Decode2

(C, y)) + w ∈ M2)}

Figure 4. The PSI protocol based on 3H-GCG.

The first place is where step 2 of the protocol accounts for the calculation of D, which
is derived by applying the coding algorithm of 3H-GCG to the receiver’s set. The second
place is the addition of a receiver output intersection at the end of the protocol. There
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is a practical detail in this intersection result calculation that reduces the receiver’s final
intersection matching effort. When constructing D, the results of sorting elements with the
queue can be left in place and elements not in the queue can be looked up directly in M1.
In the case of elements in the queue, a lookup is required in both M1 and M2. The whole
process is illustrated in Figure 5. During the encoding process, the participants in Figure 5a
completed the encoding themselves. During decoding, the encoder sends the encoded data
S to the decoder. The decoder decodes with its own value and sends the decoded value
to the encoder for matching. This decoding algorithm is more like probing whether the
decoder’s value is encoded into S or not.

Having the sets{(k1, v1), . . . ,(kn, vn)}
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Figure 5. Demonstration of 3H-GCG encoding and decoding process. (a) Encoding process; (b) de-
coding process.

5. Theoretical Analysis

The main work in this section is to analyze the performance of the PSI protocol scheme
in Section 4. In Section 5.1, we analyze the correctness of our PSI protocol. In Section 5.1
we analyze the security of our PSI protocol.

5.1. Correctness Analysis

In the following we give a correctness analysis of the PSI protocol in Section 4.2. For the
intersection part x = y, we only need to prove that Decode(C, y) = Decode(P, x)− ∆H1(x).
The detailed derivation process is as follows:

Decode(C, y) = Decode(P, x)− ∆H1(x)

= Decode(∆A′ + ∆D + B, x)− ∆H1(x)

= Decode(C + ∆D, x)− ∆H1(x)

= Decode(C, x) + Decode(∆D, x)− ∆H1(x)

= Decode(C, x) + ∆Decode(D, x)− ∆H1(x)

= Decode(C, x)

The Decode algorithm in the derivation of the above equation is generally applicable
to the decryption algorithms Decode1 and Decode2 of 3H-GCG in Section 3.1.

For the non-intersection part elements put into the Decode1 and Decode2 algorithms,
the value decrypted is a random value and the receiver cannot match this random value
with its own elements. Therefore, our proposed PSI protocol is correct.

5.2. Security Analysis

Our PSI protocol is resistant to brute force decryption attacks, statistical attacks,
and man-in-the-middle attacks due to the masking of encoded data in the protocol. Since
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it is stated in the literature [18] that a protocol secure in a malicious environment is not
necessarily secure in a semi-honest environment, our security analysis is divided into two
main parts. The first part is to demonstrate that the OPRF protocol proposed in Section 4.1
is resistant to malicious adversaries. The second part proves that the PSI protocol we
proposed in Section 4.2 is resistant to attacks by malicious adversaries. The security proof
satisfies the semi-honest security model and the malicious security model introduced in
Section 2.4.

Theorem 1. The PSI protocol proposed in Figure 4 has semi-honest security under the model where
H1 and H2 are random prediction machines and VOLE variant models.

Proof. We prove Theorem 1 by the following two lemmas.

Lemma 1. The PSI protocol proposed in Figure 4 can resist semi-honest sender under the model
where H1 and H2 are random prediction machines and VOLE variants.

Proof. We construct the simulator S1 as follows. Given the set of receivers Y, the S1 runs the
honest sender’s protocol to generate its perspective, but with the following differences: for
the VOLE machine, S1 runs the VOLE simulator, which generates a sender-side perspective.

Finally, the simulator S1 outputs the sender’s view. We prove (viewΠ
1 (X, Y), outΠ(X, Y))

c≈
(S1(1n, X, n2), f (X, Y)) by the following mixed arguments:

Hybrid 0: Sender’s view and receiver’s output under the real protocol.
Hybrid 1: Same as Hybrid 0, except that instead of running the VOLE mechanism,

S1 runs the VOLE simulator, which generates the structures A′, B, C, and the scalar ∆,
satisfying the equation C = B + ∆A′. The VOLE simulator sends B and ∆ to the sender. This
Hybrid is exactly the same as Hybrid 0.

Hybrid 2: Same as Hybrid 1, except that in this variant, S1 selects ”ws” based on
specific conditions. This variation holds statistical equivalence to Hybrid 1.

Hybrid 3: Same as Hybrid 2, except that the protocol terminates when there exists
x1, x2 ∈ X ∪ Y with x1 6= x2 such that H1(x1) = H1(x2). This termination probability is
negligible because H1 is collision resistant.

Hybrid 4: Same as Hybrid 3, except that there exist x1, x2 ∈ X ∪Y with x1 6= x2 such
that one of the following equations is satisfied, then the agreement aborts.

H2(x1, Decode1(P, x1)− ∆H1(x1) + w) = H2(x2, Decode1(P, x2)− ∆H1(x2) + w) (7)

H2(x1, Decode2(P, x1)− ∆H1(x1) + w) = H2(x2, Decode2(P, x2)− ∆H1(x2) + w) (8)

H2(x1, Decode1(C, x1) + w) = H2(x2, Decode1(C, x2) + w) (9)

H2(x1, Decode2(C, x1) + w) = H2(x2, Decode2(C, x2) + w) (10)

The protocol is designed to terminate immediately upon the occurrence of any of
these specified conditions. This rapid termination mechanism is an integral part of the
protocol’s efficiency and security measures. It ensures that in the event of certain predefined
situations, the protocol can gracefully and swiftly exit without proceeding further.

The termination probability in these cases is intentionally kept at an extremely low
level. This is primarily attributed to the inherent collision resistance of H2, a fundamental
cryptographic primitive used within the protocol. The reliance on H2’s collision resistance
properties adds an additional layer of security to the termination process, further reducing
the likelihood of any undesired or unexpected outcomes.
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It is important to emphasize that this termination mechanism is a crucial component
of the protocol’s robustness, ensuring that it can withstand various adversarial scenarios
while maintaining its integrity and security.

Hybrid 5: Same as Hybrid 4, except that the output of P2 is replaced with f (X, Y). The
final output will change when and only when x ∈ X, y ∈ Y, x 6= y but H2(x, Decode1(P, x)−
H1(x) + w) = H2(y, Decode1(C, y) + w). Since H2 is collision resistant and the parameters
of l2 are chosen large enough, the probability of output change is negligible.

Hybrid 6: Same as Hybrid 5, except that the protocol will no longer abort. The
indistinguishability between Hybrid 5 and Hybrid 6 is based on the collision resistance of
H1 and H2 and the conversion of the VOLE.

Lemma 2. The PSI protocol proposed in Figure 4 can resist the semi-honest receiver under the
model where H1 and H2 are random prediction machines and VOLE variants.

Proof. We construct the simulator S2 as follows. Given the set of senders X, S2 runs the
honest receiver’s protocol to generate its perspective, but with the following differences: S2
randomly generates 3H-GCG coding structure D. For each element x ∈ I, x is decrypted
according to the decoding method of 3H-GCG (Decode1, Decode2) to obtain the two values
M1(x) and M2(x). S2 runs the VOLE simulator to generate the vectors C, A′, B, and the

scalar ∆, and sends vectors C and A′ to the receiver. We prove viewΠ
2 (X, Y)

c≈ S2(1n, X, n2)
by the following mixed arguments:

Hybrid 0: Receiver perspective under the real protocol.
Hybrid 1: Same as Hybrid 0, except that the protocol aborts when there exists x1, x2 ∈

X ∪Y and x1 6= x2 such that H1(x1) = H1(x2). This abort probability is negligible because
H1 is collision-resistant.

Hybrid 2: Same as Hybrid 1, except that when there exists x1, x2 ∈ X ∪ R, R is the set
consisting of random values, and x1 6= x2 such that one of Equations (7)–(10) is satisfied,
then the protocol aborts .

Hybrid 3: Same as Hybrid 2, except that instead of running the VOLE mechanism,
S2 runs the VOLE simulator, which generates the structures A′, B, C and the scalar ∆,
satisfying the equation C = B + ∆A′. The VOLE simulator sends A′ and C to the receiver.
This Hybrid is identical to Hybrid 2.

Hybrid 4: Same as Hybrid 3, Hybrid 4 introduces a slight variation in the protocol,
specifically involving the actions of S2. In this modified hybrid, S2 plays a unique role
by considering the intersection set I, which represents the common elements between
the two parties’ datasets. Additionally, S2 generates a set of n1 − |I| random values and
employs the sophisticated decoding algorithm of 3H-GCG, utilizing both Decode1 and
Decode2 procedures.

The outcome of this process yields two sets of decoded values, denoted as M1 and
M2, which S2 subsequently transmits to the receiver. It is essential to highlight that the
randomly generated values remain entirely concealed from the receiver throughout this
operation, ensuring data privacy and security.

One noteworthy aspect of Hybrid 4 is the statistical indistinguishability it shares
with Hybrid 3. This property signifies that an external observer or attacker would find it
exceptionally challenging to differentiate between the two hybrids based on the information
available to them. This inherent similarity adds an extra layer of cryptographic strength
and resilience to the protocol, contributing to its overall security.

Hybrid 5: Same as Hybrid 4, except that the protocol no longer aborts. Hybrid 4
and Hybrid 5 are indistinguishable due to the collision resistance of H1 and H2 and the
convertibility of the VOLE.

Theorem 2. The PSI protocol proposed in Figure 4 has malicious security under the model where
H1 and H2 are random prediction machines and VOLE variant models.
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Proof. First assume that the sender is malicious and sets up simulator M. The interaction
between the malicious sender and simulator M is as follows:

1. Before the participating parties start executing the PSI protocol, the simulator M waits
for the messages y sent by the malicious sender instead of the OPRF model, and all
the y sent from the set Y′.

2. After the malicious sender sends M1 and M2 to the simulator M, M computes Y1 :=
{y ∈ Y′ ∧ y′ /∈ Y′ s.t. y 6= y′ ∧ F(y) = F(y′)} and then execute the PSI protocol with Y1.
Since the simulator has ruled out the collision case F(y) = F(y′), the above simulation
is correct and indistinguishable. However, there exists the case F(y) = F(y′) where
the probability of having an element x in the set X of senders satisfying F(y′) = F(x)
is 2−λ, which is overall indistinguishable. We prove it using the following hybrid
argument:

Hybrid 0: Same protocol as the original, but the simulator M interacts with the
malicious sender instead of the VOLE.

Hybrid 1: Similar to Hybrid 0, except that A is generated by sampling under a uniform
distribution instead of summing over A′ and D. In the perspective of the malicious sender,
A′ is also uniformly distributed, so Hybrid 1 is indistinguishable from Hybrid 0.

Hybrid 2: Similar to Hybrid 1, except that the simulator M no longer calls the Encode
algorithm, so the protocol does not terminate even if the Encode algorithm fails to encode.
Since the cuckoo hash graph OKVS generated by 3H-GCG has not been queried and is
therefore also randomly sampled, the upper bound on the probability of protocol termina-
tion is 2−λ. So, Hybrid 2 is statistically indistinguishable from Hybrid 1. It is worth noting
that any input from the receiver is no longer used in this hybrid.

Hybrid 3: Similar to Hybrid 2, except that the protocol terminates if the query
H2(x, Decode(P, x)− ∆H1(x) + w) has been queried before. Otherwise, the simulator M
invokes the decoding step of the OPRF protocol to respond to the query. Since the queries
H2(x, Decode(P, x)− ∆H1(x) + w) are all similarly distributed and the malicious sender
has negligible probability to query H2(x, Decode(P, x)− ∆H1(x) + w), Hybrid 3 is indistin-
guishable from Hybrid 2.

Assuming the recipient is malicious and sets up simulator M, the interaction between
the malicious recipient and simulator M is recorded as follows:

1. The simulator M replaces the OPRF model and when the malicious recipient sends a
query message to M, the simulator records the set X of messages sent by the malicious
recipient and sends the response message after the query to the malicious recipient.

2. The simulator executes the PSI protocol with the collected X and the Y held by itself
as input to obtain the intersection set Z.

3. The simulator uses the elements in Z and the consistent values of the non-intersecting
elements in Y to input into OPRF for calculation, the calculated values are assembled
into Y′, and Y′ is sent to the malicious recipient.

Consistent values for the non-intersecting elements of Y are added throughout the
third step of the simulation, and only this differs from the real protocol. However, since
such consistent values occur with probability 2−λ, this change is indistinguishable. We
prove it using the following hybrid argument:

Hybrid 0: Same protocol as the original, but the simulator M interacts with the
malicious sender instead of the VOLE.

Hybrid 1: Similar to Hybrid 0, except that A is generated by sampling under a uniform
distribution instead of summing over A′ and D. In the perspective of the malicious sender,
A′ is also uniformly distributed, so Hybrid 1 is indistinguishable from Hybrid 0.

Hybrid 2: Similar to Hybrid 1, except that the simulator M no longer calls the Encode
algorithm, so the protocol does not terminate even if the Encode algorithm fails to encode.
Since the cuckoo hash graph OKVS generated by 3H-GCG has not been queried and is
therefore also randomly sampled, the upper bound on the probability of protocol termina-
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tion is 2−λ. So Hybrid 2 is statistically indistinguishable from Hybrid 1. It is worth noting
that any input from the receiver is no longer used in this hybrid.

Hybrid 3: Similar to Hybrid2, except that the protocol terminates if the query H2(x,
Decode(P, x) − ∆H1(x) + w) has been queried before. Otherwise, the simulator M in-
vokes the decoding step of the OPRF protocol to respond to the query. Since the queries
H2(x, Decode(P, x)− ∆H1(x) + w) are all similarly distributed and the malicious sender
has negligible probability to query H2(x, Decode(P, x)− ∆H1(x) + w), Hybrid 3 is indistin-
guishable from Hybrid 2.

6. Theoretical Efficacy Analysis and Experimental Comparison

The main work in this section is to analyze the efficacy of the 3H-GCG designed in
Section 3 and the PSI protocol designed in Section 4 of this paper in terms of theoretical
efficacy and the efficacy of the experimental implementation results.

The experiments were conducted on a host machine with the specifications of a
LAPTOP-7CRPMU9N, featuring an AMD Ryzen 7 5800H processor clocked at 3.20 GHz.
This system ran a 64-bit operating system and utilized an x64-based processor. For experi-
mentation purposes, a virtual machine running Ubuntu 22.04 was employed. The virtual
machine was allocated 8 GB of RAM, creating an isolated environment for conducting the
research.All of our experiments are implemented in C/C++, including our work as well as
replications of existing work. The VOLE mechanism was used in an extended version of
Schoppmann et al. [23].

6.1. OKVS Part

Figure 6 illustrate the bit sizes of the post-coding structures of the individual OKVS
structures. Figure 6 shows a comparison of the data in the semi-honest setting and in the
malicious setting where the horizontal coordinate represents the logarithmic value of the set
size owned by the participant with a base of two, and the vertical coordinate is the number
of bits of the OKVS structure. The independent variable for both line graphs is the growth
in the size of the number of elements of the set, and it grows exponentially. The random
matrix is the method of reference [24] and the 3H-GCT is the method of reference [5]. It
is evident that the construction size of our 3H-GCG scales more favorably with set size
compared to the structural growth exhibited by the random matrix method. Moreover, it
remains competitive with 3H-GCT.

Figure 6. Schematic illustration of the size of each OKVS coding structure.

In Table 2, we list the existing constructs that meet the OKVS definition and analyze
the type separately, the ratio of the original data to the constructed data, the encoding
overhead and the batch decoding overhead. These analyses are based on constructing
OKVS with a failure probability of 2−λ. We developed the 3H-GCG protocol by extending
the principles of 3H-GCT and introducing specific constraints during its construction. As a
result, we observed an approximately 7.5% improvement in the ratio between raw and
processed data, while the encoding and decoding overhead maintained a consistent order
of magnitude. Although the overall ratio is slightly lower than that achieved by the PaXoS
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structure, 3H-GCG stands out due to its ability to handle both binary and linear data
types, making it more versatile when compared to the PaXoS structure, which is primarily
designed for binary data types.

Table 2. Different OKVS constructions and their properties with an error probability of 2−λ.

OKVS Encoding Cost (Batch) Decoding Cost Rate

polynomial O(nlog2n) O(nlog2n) 1

random matrix (binary) O(n3) O(n2) 1

random matrix (linear) O(n3) O(n2) 1/(1 + λ)

garbled bloom filter O(nλ) O(nλ) O(1/λ)

PaXoS [17] O(nλ) O(nλ) 0.4-O(1)

3H-GCT [18] (binary) O(nλ) O(nλ) 0.8-O(1)

3H-GCT [18] (linear) O(nλ) O(nλ) 0.8-O(1)

3H-GCG(ours) (binary) O(nλ) O(nλ) 0.86-O(1)

3H-GCG(ours) (linear) O(nλ) O(nλ) 0.86-O(1)

6.2. PSI Part

We compare the traffic of the PSI protocol in [3–7,19,25,26] with that of our protocol
in a theoretical analysis. Note that these analyses are based on a semi-honest security
environment and a malicious security environment. The specific results are presented in
Table 3, where it can be seen that the communication overhead of our protocol outperforms
other protocols when the set size is 216.

Table 3. Comparison of the theoretical communication overheads of various PSI protocols.

Protocals Communication n = nx = ny
216 220 224

Semi-Honest PSI

DH-PSI [24] 4κnx + (λ + log(nxny))ny 584n 592n 600n
KKRT16 [25] 6κnx + 3(λ + log(nxny))ny 984n 1008n 1032n
PRTY19 low-Comm [13] 3.5κnx + 1.02(2 + λ + log(nx))ny 509n 513n 517n
PRTY19 fast [13] 3.5(1 + 1/λ)κnx + 2(λ + log(nxny))ny 603n 619n 635n
PRTY20 [17] 9.3κnx + (λ + log(nxny))ny 1208n 1268n 1302n
CM20 [27] 4.8κnx + (λ + log(nxny))ny 678n 694n 702n
RS21 w = 2 [15] 224n0.05

x + 307nx + 40ny + log(nxny)ny 914n 426n 398n
GPR+21 star [18] 5.6κnx + (λ + log(nxny))ny 780n 788n 804n
OURS 3.4κnx + (λ + log(nxny))ny 507n 515n 523n

Malicious PSI

PRTY20 [17] 11.8κnx + 2κny 1766n
GPR+21 star [18] 8.6κnx + 2κny 1357n
OURS 7.1κnx + 2κny 1165n

Some protocols have additional parameters, which are approximated by κ, λ. Note that
the coefficients shown below often vary (non-linearly) as a function of n, κ, λ. The second
column contains overheads for fixed λ = 40, κ = 128 (representatively), while the last
three columns also fix the size of the set. More importantly, our protocols are resistant to
malicious adversary attacks on a semi-honestly secure basis, and have a good competitive
edge in terms of security.

We have undertaken reproduction work on existing PSI protocols and compared these
protocols experimentally with our protocol, and the comparison results are shown in Table 4.
All protocols operate in a LAN environment at less than 1 Gbps with sub-millisecond latency.
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The experimental data are divided into two parts, runtime and traffic, in milliseconds (ms)
and megabytes (MB), respectively. We classify these protocols into two categories, semi-
honest sets and malicious sets, and compare them separately. From the results, we can see
that we make a size limit on the encoded data, so our scheme has an optimal communication
overhead. Based on the data in Table 4, it can be seen that in the semi-honest setting, our
protocol can compete strongly with the work of Kolesnikov et al. [25] in terms of runtime.
The communication aspect is not able to surpass the dominance of Pinkas et al. [13],
but our work is not far from it in terms of communication volume. Under the malicious
setting, our protocol has a significant advantage over other existing protocols in terms
of runtime, especially reaching the fastest at set sizes of 218. Communication is also
minimized compared to other existing protocols, with an approximately 10% improvement
over existing protocols. Analyzed from an overall perspective, our PSI protocol compared
to the PSI protocols proposed in the literature [27] is more advantageous in terms of
both communication and computational overhead, which fully justifies the relevance of
our work.

Table 4. Comparison of experimental data, with optimal data categorized by semi-honest and
malicious settings marked in the figure in bold.

Protocol Setting Running Time (Set Size n) (ms) Communication (MB)
216 218 220 222 216 218 220 222

DH-PSI [24] se 31,378 127,893 518,620 2,063,949 4.69 19 76 308
KKRT16 [25] se 99 406 1170 7916 7.73 31.88 128.5 530.1
PRTY20 (w = 2) [17] se 534 910 2673 18,806 13.21 54.56 224.5 861.9
CM20 [27] se 409 1217 6515 29,148 5.343 21.75 87.66 357.6
SpOT-low [21] se 878 3476 14,558 90,144 3.91 15.6 63.2 253
SpOT-fast [21] se 561 2354 6190 36,150 4.61 18.9 76.4 314
GPR+21 [18] se 129 492 1365 8574 5.63 22.8 96.71 385.63
OURS se 117 392 1176 8120 5.14 20.97 85.45 344.27

RR17a [3] ma 1366 5619 - - 154.17 616.55 - -
RR17b [4] ma 716 2727 12,010 - 95.78 383.03 1616.03 -
PRTY20 [17] ma 476 1803 3128 18,679 14.71 60.33 247.6 950
GPR+21 [18] ma 146 577 1674 10,134 8.68 35.59 136.66 532.97
OURS ma 153 563 1652 12,304 8.26 30.15 116.38 459.7

7. Conclusions

In this paper, we proposed a new OKVS scheme, 3H-GCG, which improves on existing
schemes and is more suitable for scenarios where decoding results are already expected.
Based on this, we used 3H-GCG to construct an OPRF protocol and combine it with the
VOLE approach to design a PSI protocol that can withstand malicious adversaries. And
we give detailed security proofs for the PSI protocol. Finally, we compared the designed
OKVS scheme and PSI protocol with other existing schemes. When the set size is 218 ∼ 220,
our PSI protocol is less computationally intensive than other existing protocols. The final
results show that for our 3H-GCG, the ratio of raw data to constructed data is improved
by about 7.5% over other existing OKVSs. Under the semi-honest security setting, our PSI
protocol achieves the fastest runtime with a set size of 218. Under the malicious security
setting, our PSI protocol has about 10% improvement in communication compared to other
existing protocols.

With the increasing number of real-life privacy protection scenarios, such as smart
homes, smart cities, remote healthcare, smart transportation, and smart education, the need
for privacy protection is becoming more stringent. Furthermore, it is worth noting that PSI
protocols may also find application in the field of Computer-Aided Vehicle (CAV) traffic be-
havior research [28], further expanding the horizons of their utility. Specifically, the results
of current research developments in PSI protocols in terms of reducing communication
and computational overhead are sufficient for practical needs. As the various applications
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become smarter, there are higher requirements for privacy computing protocols, such as
security, scalability, and adaptability. For example, there is a greater need for privacy
computing protocols that are resistant to malicious adversaries, and a greater need for
privacy computing protocols that can be operated collaboratively by multiple participants.
This will be the goal of our future research.
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