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Abstract: This essay’s title is justified by discussing a class of Yang–Mills-type theories of which
standard Yang–Mills theories are special cases but which is broad enough to include gravity as a
double field theory. We use the framework of homotopy algebras, where conventional Yang–Mills
theory is the tensor product K b g of a ‘kinematic’ algebra K with a color Lie algebra g. The larger
class of Yang–Mills-type theories are given by the tensor product of K with more general Lie-type
algebras, of which K itself is an example, up to anomalies that can be canceled for the tensor product
with a second copy K̄. Gravity is then given by K b K̄.

Keywords: double copy; homotopy algebras; double field theory

The title of this essay is of course meant as a provocation, a provocation of the kind
people engage in when they say such things as ER = EPR (denoting the conjectured
correspondence [1] between Einstein–Rosen bridges (ER) [2] and Einstein–Podolsky–Rosen
(EPR) entanglement [3]). Such statements appear nonsensical but perhaps suggest a novel
interpretation of the terms involved that could be quite revealing. To say that gravity is a
Yang–Mills theory is not nonsense but actually false if by Yang–Mills theory one means the
standard text book theories labeled by the structure constants fabc of a ‘color’ Lie algebra
g and by gravity one means the Einstein–Hilbert action in the same dimension. Indeed,
in the context of perturbative quantum field theory (QFT), Yang–Mills theories carry only
cubic and quartic couplings and are renormalizable, while Einstein–Hilbert gravity is
non-polynomial and non-renormalizable.

Rather, here, we suggest the definition of a broader class of ‘Yang–Mills-type’ theories
based on the homotopy algebra formulation of field theories to be explained below [4–6].
In this framework, the textbook Yang–Mills theory takes the form of a tensor product Kb g

of a homotopy algebra K that encodes the kinematics of Yang–Mills theory, with the color
Lie algebra g [7]. One may then define the larger class of Yang–Mills-type theories as the
tensor product of K with more general ‘Lie-type’ algebras, namely homotopy Lie or L8
algebras. The kinematic algebra K itself carries, in a hidden way, such a Lie-type algebra
up to obstructions that, however, cancel on a subspace of the tensor product Kb K̄ with
a second copy K̄, as has been proved to the order relevant for quartic couplings [8–10].
We may thus define the yet larger class of Yang–Mills-type theories as those given by the
tensor product of K with an obstructed Lie-type algebra for which the obstructions are
canceled on a non-trivial subspace. So defined, it is just a fact that there is a subspace of
K b K̄ defining a Yang–Mills-type theory that is gravity. Importantly, this theory is not
Einstein–Hilbert gravity but rather double field theory, which includes the graviton, an
antisymmetric tensor (B-field) and a scalar (dilaton) [11–13].

Our construction is directly inspired by, and a gauge invariant off-shell generalization
of, the ‘double copy’ technique of amplitudes [14–16], known to the general public under
the slogan ‘ Gravity = (Yang–Mills) 2 ’. We think that the slogan ‘ Gravity = Yang–Mills ’ is
more appropriate, a viewpoint that can perhaps be justified most succinctly as follows:
Since the standard textbook presentation of Yang–Mills theory gives a Lagrangian in terms
of structure constants fabc, we can think of Yang–Mills theory as a machine: a machine that
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takes as input structure constants fabc and produces as output a QFT. The framework of
homotopy algebra allows us to reinvent Yang–Mills theory as a more powerful machine that
accepts as input more general ‘Lie-type’ algebras. Feeding in a conventional Lie algebra,
this machine produces standard Yang–Mills theory, but feeding in a second copy of the
kinematic algebra itself produces double field theory.

Let us begin by explaining the relationship between homotopy algebras and field
theories. A field theory is defined by introducing a set of fields, which here we denote
collectively by ψ, by specifying field equations or an action and, possibly, by specifying
gauge symmetries and their dual Noether/Bianchi identities. We will focus on perturbation
theory, where the fields form a vector space (the sum of two fields is again a field), and
so do the gauge parameters, etc. More precisely, the totality of these objects form a graded
vector space X, which means that we assign, as a book-keeping device, an integer called
degree to each object, depending, e.g., on whether it is a field or a gauge parameter. Such
gradings are familiar from the BV-BRST formalism, where they are related to the ghost
number [17,18].

One then defines various maps on this graded vector space in order to encode, for
instance, kinetic terms, interaction vertices, and gauge transformations, which define the
theory. Specifically, at least in perturbation theory, one can write the action as

S “
1
2
@

ψ, B1pψq
D

`
1
3!
@

ψ, B2pψ, ψq
D

`
1
4!
@

ψ, B3pψ, ψ, ψq
D

` ¨ ¨ ¨ , (1)

i.e., as a sum of quadratic terms, cubic terms, and so on. We have written the terms of
order n` 1 in fields using a universal inner product x , y and multilinear maps Bn with n
arguments. Furthermore, one assumes, for instance, that the field equations and gauge
transformations with gauge parameters λ, respectively, are given by

B1pψq `
1
2

B2pψ, ψq `
1
3!

B3pψ, ψ, ψq ` ¨ ¨ ¨ “ 0 , (2)

and
δψ “ B1pλq ` B2pλ, ψq `

1
2

B3pλ, ψ, ψq ` ¨ ¨ ¨ . (3)

It must be emphasized that the Bn, when evaluated on different objects such as fields
or gauge parameters, are a priori independent maps, distinguished by the degrees of
their inputs. For instance, B1, which is known as the differential, acts according to the
following chain:

¨ ¨ ¨ X´1 X0 X1 X2 ¨ ¨ ¨

λ ψ EoM Noether

B1 B1 B1

(4)

where the interpretation of each space is indicated in the second line. According to (3),
B1 acting on λ P X´1 is defined by the zeroth-order, inhomogeneous terms of the gauge
transformations, while according to (2), B1 acting on ψ P X0 is defined by the linear terms of
the equations of motion. For instance, in Yang–Mills theory, B1 on fields is the second-order
differential ‘Maxwell operator’, while B1 on gauge parameters is the first-order differential
operator of the Abelian gauge transformation. Linearized gauge invariance requires

δpB1pψqq “ B1pB1pλqq “ 0 . (5)

This relationship is summarized as B2
1 “ 0, which moreover must hold on the entire

complex (4), where it also encodes linearized Noether identities.
More generally, the Bn are determined so that the non-linear equations of motion,

gauge transformations, and so on correctly describe the desired field theory. They must,
of course, satisfy consistency conditions following from those of field theory, such as, for
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instance, gauge covariance of the field equations or closure of the gauge algebra. Thus, with
any consistent (perturbative) field theory, we are given a graded vector space X equipped
with maps Bn obeying various consistency relations. This is what mathematicians call a
structure. So what is the general structure of field theory? This is the category of homotopy
Lie algebras or L8 algebras. These generalizations of Lie algebras are defined as integer
graded vector spaces X “

À

iPZ Xi equipped with multilinear maps Bn of intrinsic degree
`1 (i.e., the degree of the output is the sum of the input degrees plus 1), which are graded
symmetric (e.g., B2px1, x2q “ p´1qx1x2 B2px2, x1q, where in exponents, x denotes the degree).
This means that, depending on the input, the map may be symmetric, as when evaluated
on fields, or antisymmetric, as when evaluated on gauge parameters. The Bn are subject to
an infinite number of L8 relations. The first relation is B2

1 “ 0, and we display the next two
relations:

B1pB2px1, x2qq ` B2pB1px1q, x2q ` p´1qx1 B2px1, B1px2qq “ 0 ,

B2pB2px1, x2q, x3q ` p´1qx3px1`x2qB2pB2px3, x1q, x2q ` p´1qx1px2`x3qB2pB2px2, x3q, x1q

` B1pB3px1, x2, x3qq ` B3pB1px1q, x2, x3q ` two terms “ 0 .

(6)

These state, respectively, that the differential B1 obeys the Leibniz rule with respect to
the 2-bracket B2 and that the Jacobi identity only needs to hold ‘up to homotopy’, with
the failure being governed by the differential B1 and the ‘3-bracket’ B3. The L8 relations
encode the consistency conditions of field theory, for instance, the gauge covariance of (2)
under (3).

We now turn to the L8 algebra of Yang–Mills theory. The familiar action, written in
terms of the non-Abelian field strength Fµν

a “ Bµ Aν
a ´ Bν Aµ

a ` f a
bc Aµ

b Aν
c, reads

SYM “ ´
1
4

ż

dx FµνaFµνa , (7)

where dx denotes the flat space volume element in D dimensions. Expanded in fields and
using integrations by part, this becomes

SYM “

ż

dx
”

1
2 Aµ

a lAa
µ `

1
2 pB

µ Aa
µq

2 ´ fabc Bµ Aa
ν Aµb Aνc ´ 1

4 f e
ab fecd Aa

µ Ab
ν Aµc Aνd

ı

, (8)

where l “ BµBµ denotes the d’Alembert operator. For the following applications, it is
useful to pass to an equivalent formulation by introducing an auxiliary scalar:

SYM “

ż

dx
”

1
2 Aµ

a lAa
µ ´

1
2 ϕa ϕa ` ϕa B

µ Aa
µ ` ¨ ¨ ¨

ı

, (9)

with the ellipsis denoting the same cubic and quartic terms as in (8). Integrating out ϕa,
one recovers (8).

One could now determine the L8 algebra of Yang–Mills theory as sketched above, but
it is more useful to immediately ‘strip off’ color and to write this algebra as a tensor product
of the color Lie algebra g with another kind of homotopy algebra. The latter ‘kinematic’
algebra is defined on a vector space K that carries the same objects as the L8 algebra of
Yang–Mills but without color indices, which by an abuse of language we denote by the
same letters and names. K defines a chain complex (with degrees shifted by one)

K0 K1 K2 K3

Kp0q : λ Aµ E

Kp1q : ϕ Eµ N

m1 m1 m1

b b b

(10)
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where the differential m1 satisfies m2
1 “ 0. For instance, on gauge parameters and fields,

respectively, m1 acts as

m1pλq “

ˆ

Bµλ
lλ

˙

P K1 , m1

ˆ

Aµ

ϕ

˙

“

ˆ

B ¨ A´ ϕ
lAµ ´ Bµ ϕ

˙

P K2 , (11)

where we use the short-hand notation B ¨ A “ Bν Aν. Thanks to the introduction of ϕ, we
have a Z2 grading K “ Kp0q ‘Kp1q and a map b of intrinsic degree ´1, whose action is
indicated in the diagram (10). For instance, bpAµ, ϕq “ ϕ, where the output is re-interpreted
as a gauge parameter and hence degree shifted. In addition, K carries a graded symmetric
2-product m2 of degree zero and a 3-product m3 of degree ´1, which we display evaluated
on the fields

mµ
2 pA1, A2q “ B ¨ A1 Aµ

2 ` 2 A1 ¨ BAµ
2 ` B

µ A1 ¨ A2 ´ p1 Ø 2q ,

mµ
3 pA1, A2, A3q “ A1 ¨ A2 Aµ

3 ` A3 ¨ A2 Aµ
1 ´ 2 A1 ¨ A3 Aµ

2 ,
(12)

where the external µ index indicates the vector component in K2.
A graded vector space K equipped with maps m1, m2, m3 and possibly higher maps,

subject to certain symmetry properties, is called a C8 algebra (the homotopy version of
a commutative associative algebra) provided that, in addition to m2

1 “ 0, the following
relations hold:

m1pm2pu1, u2qq “ m2pm1pu1q, u2q ` p´1qu1 m2pu1, m1pu2qq ,

m2
`

m2pu1, u2q, u3
˘

´m2
`

u1, m2pu2, u3q
˘

“ m1pm3pu1, u2, u3qq `m3pm1pu1q, u2, u3q

` p´1qu1 m3pu1, m1pu2q, u3q ` p´1qu1`u2 m3pu1, u2, m1pu3qq .

(13)

The first relation is the Leibniz rule. The second relation states that m2 is associative ‘up to
homotopy’, and in general, there may be infinitely many more relations. A C8 algebra is a
special case of an A8 algebra where the m2 is graded symmetric, while the higher mn for
n ě 3 are subject to graded Young–Tableaux-type symmetries.

The L8 algebra of Yang–Mills theory is now obtained from the C8 algebra K by
tensoring with the color Lie algebra g [7] (see [19] for a review):

XYM “ Kb g . (14)

At the level of the vector space, this just means that the objects in (10) are made g-valued by
decorating them with color indices (and degree shifting by one):

x “ ua b ta P XYM , (15)

where ta are the generators of g. One obtains the fields, gauge parameters, etc., of Yang–
Mills theory. The Bn encoding the L8 structure on (14) are

B1pxq “ m1puaq b ta ,

B2px1, x2q “ p´1qx1 m2pua
1, ub

2q fab
c b tc ,

B3px1, x2, x3q “
”

p´1qx2 m3pua
1, ub

2, uc
3q ` p´1qx1px2`1qm3pua

2, ub
1, uc

3q
ı

fad
e fbc

d b te ,

(16)

where in this case all Bn for n ą 3 are zero. The L8 relations on XYM follow from the
C8 relations on K and the Jacobi identities for fab

c. The resulting B2 and B3 encode the
full Yang–Mills theory; in particular, using (12), they reproduce the cubic and quartic
interactions.

With the decomposition (14) of homotopy algebras, we have separated Yang–Mills
theory into its ‘kinematic’ and its ‘color’ parts, with the former being an ‘associative-type’
algebra and the latter a ‘Lie-type’ algebra. The idea inspired by the double copy procedure
of amplitudes is to replace g in (14) by another type of Lie algebra based on the kinematics
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of Yang–Mills theory (‘kinematic Lie algebra’) in order to obtain gravity. While K started
its life as an associative-type algebra, it actually also admits a hidden Lie-type algebra (in a
suitably generalized sense). Borrowing terminology from linguistics, we may refer to the
former as the ‘surface structure’ and the latter as the ‘deep structure’.

In order to display this deep structure, we use the map b defined in (10), which is
nilpotent, b2 “ 0, to define a new Lie-type bracket on K as the failure of b to act via the
Leibniz rule on m2:

b2pu1, u2q :“ bm2pu1, u2q ´m2pbu1, u2q ´ p´1qu1 m2pu1, bu2q . (17)

From this definition, it follows with b2 “ 0 that b obeys the Leibniz rule with b2, and hence,
b can be thought of as a second differential of opposite degree to m1. The deep structure
on K is a generalization of a Batalin–Vilkovisky (BV) algebra. A BV algebra consists of
a (graded) commutative and associative product together with a nilpotent operator that,
however, does not act via the Leibniz rule on the product but rather is of ‘second order’
(similar to the BV Laplacian of the BV formalism). Defining then a 2-bracket as the failure of
the differential to act via the Leibniz rule on the product, one obtains a Lie bracket satisfying
the Jacobi identities and a compatibility condition with the product. The differential b, the
2-product m2, and the 2-bracket b2 above want to be a BV algebra but fail to be that because
(i) b is not second order with respect to m2, and (ii) m2 is not associative. These failures
suggest that there is a homotopy BV algebra (BV8 algebra [20]), but there is an additional
failure due to the relation

m1b` bm1 “ l , (18)

where l denotes the d’Alembert operator. This relation quickly follows with (10) and
(11), and it means that m1 and b are compatible only up to ‘l–failures’. This has various
ramifications. For instance, the original differential m1 does not obey the Leibniz rule with
respect to b2:

m1pb2pu1, u2qq ` b2pm1pu1q, u2q ` p´1qu1 b2pu1, m1pu2qq “ 2 m2pB
µu1, Bµu2q , (19)

where the ‘anomaly’ on the right-hand side follows from (17), (18), and l being second-
order. Similar l-failures appear in other relations. Formalizing these failures one can define
a more general algebraic structure that is realized on the kinematic space K of Yang–Mills
theory, which following Reiterer we denote by BV˝

8 [21]. This includes as a subalgebra a
C8 algebra and as a ‘subsector’ an L8 algebra that, however, is obstructed by l-failures.
(An operator b and an associated BV˝

8 algebra are also realized in self-dual Yang–Mills
theory [22] and 3D Chern–Simons theory [8,23,24].)

We can now turn to the construction of gravity in the form of double field theory
(DFT). Due to the l-failures, a general BV˝

8 algebra is not quite of ‘Lie-type’ and cannot be
tensored with the kinematic algebra K to obtain a genuine L8 algebra of gravity. However,
taking a second copy K̄ of the kinematic algebra itself, these failures can be canceled
on a subspace of the tensor product K b K̄. Denoting all objects of K̄ with a bar, the
full tensor product space Kb K̄ is a chain complex carrying two natural differentials of
opposite degrees:

B1 :“ m1 b 1` 1b m̄1 , b´ :“ 1
2 pbb 1´ 1b b̄q , (20)

which both square to zero due to m2
1 “ b2 “ 0. The l-failure relation (18) now implies

B1b´ ` b´B1 “ ∆ , ∆ :“ 1
2 pl´ l̄q . (21)

We can eliminate the ‘∆-failure’ by going to a subspace with ∆ “ 0. To explain this
point, we first note that since K is a space of functions of coordinates x, and K̄ is a space
of functions of coordinates x̄, Kb K̄ is a space of functions of doubled coordinates px, x̄q.
(This is familiar from quantum mechanics: the tensor product of two one-particle Hilbert
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spaces of wave functions of one coordinate yields the two-particle Hilbert space of wave
functions of two coordinates). We may then impose ∆ “ 0 on functions and products of
functions, which in DFT is known as the strong constraint and essentially equivalent to
identifying coordinates x with coordinates x̄. We will return to the ‘weakly constrained’
case momentarily.

We thus consider the subspace

VDFT :“
!

ψ P Kb K̄
ˇ

ˇ

ˇ
∆ψ “ 0 , b´ψ “ 0

)

, (22)

where b´ψ “ 0 restricts the spectrum appropriately. Together, both constraints in here are
known as level-matching constraints. The space VDFT is precisely the complex of DFT as
derived from closed string field theory in [11]. For instance, the fields in degree zero (with
an overall degree shift by 2) are given by

peµν̄ , e , ē , fµ , f̄µ̄q P pK1 b K̄1q ‘ pK0 b K̄2q ‘ pK2 b K̄0q , (23)

where eµν̄ encodes spin-2 and B-field fluctuations, e and ē are two ‘dilatons’, one of which
is pure gauge, and fµ and f̄µ̄ are auxiliary fields that can be integrated out. More generally,
VDFT encodes the gauge parameters and gauge-for-gauge parameters of DFT, etc., so that,
for instance, δψ “ B1pΛq implies δeµν̄ “ Bµλ̄ν̄ ` B̄ν̄λµ, exhibiting the ‘double copy’ structure
of linearized diffeomorphisms and B-field gauge transformations.

Turning to the non-linear structure, we have to define higher brackets on VDFT. The
2-bracket can be written, in an input-free notation explained in [8], as

B2 :“ ´ 1
4

`

b2 b m̄2 ´m2 b b̄2
˘

“ ´ 1
2 b´pm2 b m̄2q , (24)

where the second equality holds on the subspace b´ “ 0. This 2-bracket obeys the Leibniz
relation, c.f. (6), thanks to b´ anticommuting with B1 for ∆ “ 0. The second L8 relation
in (6) involving the Jacobiator can be satisfied upon defining a suitable B3, which is more
involved but can be written entirely in terms of the BV˝

8 structures of Yang–Mills theory [8].
With the above general L8 dictionary, this determines the complete gravity theory to
quartic order, in particular, via (1), the quartic couplings.

Let us emphasize two features of this construction of gravity as a Yang–Mills-like
theory:

• The gauge algebra of DFT, which is a duality covariant version of the diffeomorphism
algebra of gravity, originates rather directly from the couplings of Yang–Mills theory.

• 4-graviton amplitudes can be computed with the B2 and B3 above and by construction
exhibit the factorization into Yang–Mills amplitudes.

Above, we have essentially identified the two coordinates x and x̄ in order to obtain
‘N “ 0 supergravity’ (Einstein gravity coupled to B-field and dilaton) as a strongly con-
strained DFT. It is, however, possible to obtain a weakly constrained DFT, at least if all
dimensions are toroidal, in which the fields genuinely depend on x and x̄, subject only to
l “ l̄ (level-matching for string theory on tori). One uses that the total space Kb K̄ carries
a BV∆

8 structure and performs an operation known as homotopy transfer (see, e.g., [25–28])
to the subspace ∆ “ 0, together with an additional non-local shift of B3 [29]. The resulting
space realizes an L8 algebra of weakly constrained functions and hence defines a consistent
field theory containing momentum and winding modes without other higher string modes.
The momentum and winding modes are encoded in the doubled coordinate dependence of
the massless fields. Hull and Zwiebach constructed such a theory to cubic order starting
from string field theory in 2009 [11], but since then, it has been an open problem to construct
the theory to quartic and higher orders.

We close this essay with a tantalizing possibility. Suppose a weakly constrained
DFT with doubled compact coordinates and standard non-compact coordinates can be
constructed to all orders in fields. This theory is expected to have an improved UV behavior.
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While the strongly constrained theory must exhibit the usual UV divergencies of general
relativity, a weakly constrained theory features infinite towers of additional massive states
(that in particular are charged under diffeomorphisms along the non-compact dimensions).
Since these states run in loops, this theory should have an improved UV behavior. Indeed,
as shown by Sen [30], a weakly constrained DFT can in principle be derived from the full
closed string field theory upon integrating out all string modes that are not part of the
DFT sector [28]. The theory so constructed then inherits the UV finiteness of the full string
theory [30]. Therefore, constructing a weakly constrained DFT from scratch might lead,
possibly upon including α1 corrections [31,32], to a consistent theory of quantum gravity.
Perhaps there is a quantum theory of gravity much ‘smaller’ than the currently explored
string theories, and perhaps this quantum gravity is secretly a Yang–Mills theory.

Note added: After submitting this essay to the arxiv, we were informed by Anton Zeitlin
that his early papers [7,33] already contain BV8 structures, which, remarkably, have even
been suggested to relate to gravity along lines closely related to the above discussion [34].
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