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Abstract: The Stimulated Raman Adiabatic Passage, a very efficient technique for manipulating
a quantum system based on the adiabatic theorem, is analyzed in the case where the manipulated
physical system is interacting with a spin bath. The exploitation of the rotating wave approximation
allows for the identification of a constant of motion, which simplifies both the analytical and the
numerical treatment, which allows for evaluating the total unitary evolution of the system and bath.
The efficiency of the population transfer process is investigated in several regimes, including the
weak and strong coupling with the environment and the off-resonance. The formation of appropriate
Zeno subspaces explains the lowering of the efficiency in the strong damping regime.

Keywords: STIRAP; spin bath; quantum Zeno effect

1. Introduction

The adiabatic theorem [1,2], according to which a quantum system subjected to a
slow varying Hamiltonian evolves in such a way as to keep constant the populations
of the instantaneous eigenstates of the Hamiltonian (the so-called adiabatic following of
the eigenstates of the Hamiltonian), is a key tool in quantum technologies. Indeed, it
allows for the efficient manipulation of the state of the relevant quantum system [3–7]. The
Stimulated Raman Adiabatic Passage (STIRAP) [8–12] is a widely used technique lying in
the realm of adiabatic evolutions. The standard scheme is aimed at realizing a complete
population transfer from one state to another, which is realized via the exploitation of a
Raman coupling scheme involving an auxiliary state coupled to the other two through
suitable pulses with time-dependent amplitudes. The specific features of such pulses
should ensure the validity of the adiabatic approximation and make an eigenstate of the
time-dependent Hamiltonian coincide with the initial state of the system at the beginning
of the process and with the target state at the end of the application of the pulses. This
technique is still extensively studied [13–15], and improvements of the original scheme
have been proposed, for example, including shortcuts to adiabaticity, which allow for
the shortening of the duration of the process [16–20], though this modified technique has
the disadvantage of requiring a more complicated apparatus to implement additional
Hamiltonian terms necessary for the shortcuts.

Since no system is perfectly isolated and no experimental setup can be without imper-
fections, the stability of the process with respect to uncertainty or fluctuations in the relevant
parameters, such as amplitudes and phases of the pulses, has been studied [21,22]. Also, the
role of quantum noise associated with the presence of the quantized electromagnetic fields
has been extensively investigated with different approaches, including non-Hermitian
Hamiltonians, which are appropriate in the case where some of the involved state is un-
dergoing decays toward states different from those involved in the STIRAP scheme [23].
When the decays happen to induce transitions between the states of the STIRAP scheme,
the non-Hermitian Hamiltoninan approach does not fit anymore since it cannot describe
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incoherent transitions between the states of the Raman scheme. Therefore, a master equa-
tion approach is necessary, and the relevant equation in the Lindblad form can be obtained
under different assumptions [24–28], according to the general theory of open quantum sys-
tems in the Markovian limit [29,30], starting with a Hamiltonian interaction model between
the three-state system and a bosonic bath corresponding to the electromagnetic field.

The physical scenarios of interest for the STIRAP technique range from cold gases [31–33]
to condensed matter [34–40], plasmonic systems [41,42], superconducting devices [43–45]
and trapped ions [46,47]. Though the typical source of quantum noise considered in such
systems is due to radiative processes associated with the interaction with the electromag-
netic field, in many cases the system to be manipulated is close enough to other atomic
systems to be considered in interaction with them. This is the case, for example, for Ni-
trogen Vacancies in diamonds [36,39,40] or rare-earth-doped crystals [34,35]. Recently, the
adiabatic manipulation of spin defects in magnetics materials has been studied, including
the environmental effects due to the interaction with the surrounding spins [48]. It is
then meaningful to consider STIRAP processes in the presence of interaction with a spin
environment, which fits, for example, the physical scenarios of solid-state physics and
nuclear magnetic resonance (NMR).

In this paper, we present a theoretical and numerical study of the effects of a spin
bath made of identical particles on a quantum system manipulated through the STIRAP
technique. Though descriptions of systems interacting with spin environments through
master equations are possible [49–51], we will consider unitary dynamics. Indeed, thanks
to the rotating wave approximation (RWA) and the consequent conservation of the number
of excitations, the total effective dynamics of the system and bath can be analyzed, making
some specific analytical predictions and efficient numerical simulations. We first analyze
the model theoretically, predicting some general behaviors. Second, focusing on the
homogeneous case, which constitutes a significant mathematical simplification, we report
on some numerical simulations confirming the analytical predictions. Such a simplified
version of the model emerges when all the spins interact with the three-state system in the
same way. Though these assumptions appear somehow restrictive, there are experimental
scenarios where they have been realized, such as NMR spectroscopy [52].

This paper is structured as follows. In Section 2, the Hamiltonian model describing
the three-state system interacting with a spin environment is introduced. In Section 3, an
analytical study of the model is presented in order to predict the behavior of the efficiency
in some special regimes, such as the weak and the strong damping. Section 4 is dedicated
to the numerical results obtained for the homogeneous model. Finally, in Section 5 we
extensively discuss the numerical and analytical results.

2. Physical Model

STIRAP Hamiltonian—Let us consider a three-state system: one state, |g1〉, is assumed
as the initial condition, another one, |g2〉, is the target state, where the population should
be transferred from the initial state, and the third one, |e〉, is an auxiliary state. As shown
in Figure 1, each of the first two states is coupled to the third one by two coherent pulses,
which allows for the realization of an adiabatic following responsible for the required
population transfer. Here, we assume that |g1〉 and |g2〉 belong to a degenerate energy
subspace, while the auxiliary state |e〉 has an energy gap ν with the other two.

This three-state system in the presence of the pulses is governed by the Hamiltonian
(h̄ = 1):

HS = ν|e〉〈e|+ Ωp(t)(eiν′t|g1〉〈e|+ e−iν′t|e〉〈g1|)

+ Ωs(t)(eiν′t|g2〉〈e|+ e−iν′t|e〉〈g2|) . (1)
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In the rotating frame whose relevant transformation is generated by GS = ν′|e〉〈e|, it
becomes the following:

H̃S = ∆S|e〉〈e|+ Ωp(t)(|g1〉〈e|+ |e〉〈g1|) + Ωs(t)(|g2〉〈e|+ |e〉〈g2|) , (2)

where ∆S = ν − ν′. The instantaneous eigenvalues of this operator are 0, (∆S ± (∆2
S +

4(Ω2
s + Ω2

p))
1/2)/2, and the eigenstate corresponding to zero is as follows:

|0〉 = cos θ|g1〉 − sin θ|g2〉 , tan θ(t) =
Ωp(t)
Ωs(t)

(3)

Figure 1. Λ-coupling scheme involving the three atomic states |g1〉, |g2〉 and |e〉. Population is
supposed to be transferred from state |g1〉 to state |g2〉, which is accomplished via two pulses in the
so-called counterintuitive sequence, where the coupling between |g2〉 and |e〉 precedes the coupling
between |e〉 and |g1〉. The inset represents the typical shape of the pulses.

The standard and generally more efficient way to transfer the population from |g1〉 to
|g2〉 is the exploitation of the so-called counterintuitive sequence, consisting of applying the
two pulses in such a way that Ωs precedes Ωp. It implies that θ initially assumes the value
0 and eventually the value π/2, which in turn implies that the state |0〉 initially coincides
with |g1〉 and finally with |g2〉. A typical choice for the pulses is the following:

Ωs =
Ω0√

2
sech(t/τ) cos[π/4(tanh(t/τ) + 1)] , (4a)

Ωp =
Ω0√

2
sech(t/τ) sin[π/4(tanh(t/τ) + 1)] . (4b)

Though the analytic expression of such functions could seem weird, the relevant edges
reproduce pretty well the typical shapes of pulses in real experiments and allow for the
obtainment of analytical results in many cases [23]. Time evolution occurs in a time window
[−T, T] large enough to have the amplitudes of the two pulses essentially vanish at t = ±T.
The width (τ) and amplitude (Ω0) of the pulses must be chosen in such a way to satisfy
the condition for the adiabatic approximation. This means that the ratios between matrix
elements of the time derivative of the Hamiltonian and the squares of the relevant transition
frequencies are supposed to be much smaller than the unity. Specifically, since such ratios
are proportional to Ω0τ, it is sufficient to require (Ω0τ)−1 � 1.

System–environment interaction—Since the three-state system is interacting with its
environment, the relevant free and interaction Hamiltonian must be considered, starting
from the Schrödinger picture and then moving again to the rotating frame previously
mentioned. Assuming that the environment consists of a large set of identical two-state
systems, the total Hamiltonian is the following:

H = HS + HE + HI , (5)

where HS is the free Hamiltonian of the system given in (1), while

HE =
L

∑
k=1

ω

2
(σ

(k)
z + 1k) , (6)
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is the free Hamiltonian of the environment, with L being the number of spins (or, more
generally, two-state systems) and ω the natural frequency of such spins (whose energy in
their state |↓〉 is assumed to be zero). Finally, the system–environment coupling is given by
the following:

HI = ∑
m=1,2

(|gm〉〈e|+ |e〉〈gm|)⊗
L

∑
k=1

η
(m)
k
2

σ
(k)
x , (7)

where the real number η
(m)
k is the coupling constant between the k-th spin and the |gm〉− |e〉

transition. Here, σ
(α)
k are the Pauli operators associated with the k-th spin, while 1k is the

relevant identity operator.
In the rotating frame, whose relevant transformation is generated by GS + GE, with

GE = (ν′/2)∑k σ
(k)
z , we obtain the following:

H̃E =
L

∑
k=1

∆E
2
(σ

(k)
z + 1k) , (8)

with ∆E = ω− ν′, and the following system–bath interaction term:

H̃I =
1
2 ∑

m=1,2
|gm〉〈e| ⊗

L

∑
k=1

η
(m)
k σ

(k)
+ + H.c. , (9)

which has been evaluated under the RWA, which means neglecting the so-called counter-
rotating terms, which in our case are 2−1 ∑m,k|gm〉〈e|η(m)

k σ
(k)
− + H.c.. This approximation is

crucial in our treatment since it allows for the identification of a constant quantity, as it is
well clarified in the following.

All considered, the total Hamiltonian in the rotating frame is H̃S + H̃E + H̃I .
Homogeneous model—The homogeneous model emerges when all the spins of the

bath are assumed to interact equally with the three-state system (∀k η
(1)
k = η

(2)
k ≡ η). In

this case, after introducing Jα = ∑L
k=1 σ

(k)
α /2, we obtain the following:

H̃E = ∆E(Jz + L/2) , (10)

H̃I = η(|e〉〈g1|+ |e〉〈g2|)⊗ J− + H.c. . (11)

From these expressions, it naturally emerges that the most appropriate basis to describe
the environment in this case is the basis of the total angular momentum |j, m〉.

We can now reconsider the coupling scheme, which is better represented in Figure 2,
where the state |e〉|j, m〉 is shown to be coupled not only with the states |gk〉|j, m〉 through
the pulses but also with the states |gk〉|j, m + 1〉 through the system–environment interac-
tion. A more complete description of the coupling scheme should also include the coupling
through the pulses of states |gk〉|j, m + 1〉 to |e〉|j, m + 1〉 and so on.

The simplified notation used for the states of the bath, involving states |j, m〉, does not
put in evidence the fact that the single-spin angular momenta and the intermediate squared
angular momenta are also necessary to identify a quantum state. The generic state |j, m〉 is
then to be meant as |j, m, {j1, j2, ...jN , j12, j123, ...}〉, with j1...k being the quantum number as-

sociated with the square of the angular momentum operator J2
1...k =

(
∑k

i=1 Ji

)2
[53].

Since the squares of all such intermediate angular momenta commute with the total
Hamiltonian, they essentially do not play any role in the dynamics, in the sense that,
starting from a generic state ρS ⊗∑mm′ α

j
mm′ |j, m, {jα}〉〈j, m′, {jα}|, the system will evolve

into a linear combination of states with the same set of intermediate angular momenta:



Symmetry 2023, 15, 2028 5 of 12

∑mm′kk′ ckk′
jmm′(t)|k〉〈k

′| ⊗ |j, m, {jα}〉〈j, m′, {jα}|, where the coefficients ckk′
jmm′(t) do not de-

pend on the set of quantum numbers {jα}.

Figure 2. Λ-coupling scheme in the presence of interaction with the spin bath. The state |e〉|j, m〉 is
coupled to the states |g1〉|j, m〉 and |g2〉|j, m〉 via the two pulses (represented by the blue solid arrow
and red solid arrow), and it is coupled also to the states |g1〉|j, m + 1〉 and |g2〉|j, m + 1〉 through the
bath (represented by the green dashed arrows).

3. Analysis of the Model

Two important behaviors of the STIRAP efficiency can be predicted under the assump-
tion of a zero-temperature environment, which means assuming that the bath is initially in
the state |{↓}〉, indicating all the spins in the state |↓〉. The first property is the robustness
of the population transfer in the weak coupling regime. The second one is the diminishing
of efficiency at strong coupling due to the rise of a Zeno partitioning of the Hilbert space.

To prove the first property, consider that the generic state (c1|g1〉+ c2|g2〉)|{↓}〉 be-
longs to the kernel of H̃E + H̃I for any values of c1 and c2, which guarantees that it is
protected from the environment. Therefore, the adiabatic following of the dark state of
the STIRAP Hamiltonian is insensitive to the spin bath, as far as diabatic transitions are
not significant (such transitions are always present, since in every regime the adiabatic
evolution is an approximated one).

In the strong coupling regime, the efficiency approaches zero. Though the most natural
explanation of this fact could seem to be the dissipation induced by the environment, it
is important to note that this is not the case. In fact, the true phenomenon responsible for
the diminishing of the efficiency is the formation of Zeno subspaces and the establishment
of Zeno dynamics [54,55]. Such an effect occurs, for example, when a strong interaction
is able to render other interactions ineffective. More naively, this happens because the
strong interaction can be considered the main Hamiltonian term, whose eigenspaces are the
Zeno subspaces, while the other Hamiltonian terms are treatable as perturbations and are
almost unable to induce transitions between the Zeno subspaces. The relevant constrained
dynamics is called Zeno dynamics [56,57], which can happen to be established even in
the presence of a non-Hermitian Hamiltonian [58]. In our specific case, a very strong
system-environment coupling (playing the role of the main Hamiltonian terms) makes the
state |e〉|{↓}〉 belong to a Zeno subspace different from that to which the states |g1〉|{↓}〉
and |g2〉|{↓}〉 belong, which effectively deactivates the coherent coupling associated with
the pulses. The neutralization of the effects of the pulses can be better understood in terms
of the Hamiltonian eigenstates. Consider first that in the strong coupling regime H̃S can
be considered as a perturbation with respect to the other terms. Next, observe that the
operator H̃I + H̃E commutes with the number operator N̂ = |e〉〈e|+∑k(σ

(k)
z + 1k)/2, which

means that a series of invariant subspaces corresponding to specific total excitations can be
identified. Concerning the eigenspace with zero excitations, it is spanned by the two ground
states |gm〉|{↓}〉, with m = 1, 2. The subspace with one excitation has dimension 2L + 1 and
is spanned by the following states: |e〉|{↓}〉, |g1〉|{↓} ↑k {↓}〉 and |g2〉|{↓} ↑k {↓}〉, where
|{↓} ↑k {↓}〉 is a state of the bath with all the spin in the state |↓〉 except for the k-th spin,
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which is in the state |↑〉. Let us now introduce the states |ϕm〉 = |gm〉∑k ξ
(m)
k |{↓} ↑k {↓}〉,

with ξ
(m)
k = η

(m)
k /ηm and

ηm =

√
∑
k
(η

(m)
k )2 . (12)

The restriction of the interaction in the (9) term to the subspace with one excitation
takes the following form:

H̃I = ∑
m

ηm(|e〉|{↓}〉〈ϕm|+ |ϕm〉〈{↓}|〈e|) . (13)

The restriction of H̃E given by (10) on the subspace with one excitation has |e〉|{↓}〉
as the eigenstate corresponding to the eigenvalue zero and all the other states spanning a
subspace corresponding to the eigenvalue ∆E. Therefore, it is straightforward to find that
H̃I + H̃E possesses the following two eigenstates and relevant eigenvalues:

|Φ±〉 = cos φ(sin χ|ϕ1〉+ cos χ|ϕ2〉)± sin φ|e〉|{↓}〉, (14)

with

χ = arctan(η1/η2) ,

φ = arctan
(

γ±
√

1 + γ2
)

,

γ =
∆E√

(η1)2 + (η2)2
,

and

E± =
1
2

(
∆E ±

√
(η1)2 + (η2)2 + ∆2

E

)
. (15)

Moreover, there are 2L− 1 eigenstates related to the eigenvalue ∆E (each of them has one
excitation in the bath), one of which is the state |D〉 = cos χ|ϕ1〉 − sin χ|ϕ2〉. It is crucial to
emphasize that |e〉|{↓}〉 is involved only in the states |Φ±〉. Once the system Hamiltonian
H̃S in (2) is added, considering the strong coupling regime, we can treat the effects of this
contribution through perturbation theory. Since the states |gm〉|{↓}〉 are connected by H̃S
only to |e〉|{↓}〉, the expressions of the relevant eigenstates of H̃S + H̃E + H̃I corrected to
the first order are as follows:

|Gm〉 = |gm〉|{↓}〉+ ∑
α=±

〈Φα|HS|gm〉|{↓}〉
Eα

|Φα〉 . (16)

Under the assumption
√
(η1)2 + (η2)2 � |∆E|, |Ω0|, the denominators of the first-

order corrections become essentially equal to ±
√
(η1)2 + (η2)2/2 and the coefficients

attributed to |Φ±〉 turn out to be of the order of Ω0/
√
(η1)2 + (η2)2. Therefore, the higher

the coupling constants between the three-state system and the spin bath, the more the
states |Gm〉 approach |gm〉|{↓}〉 at any time, neutralizing the interaction induced by H̃S.
It is anyway important to note that high values of ∆E can determine a diminishing of the
absolute value of one of the denominators then compromise the freezing of the dynamics.
Finally, we remark that for the homogeneous model the condition to satisfy for the Zeno
dynamics to occur reduces to η

√
2L� ∆E, Ω0.

4. Numeric Results

Here, we show some numerical results (obtained by solving the Schrödinger equation
using a fourth-order Runge–Kutta method) for the efficiency of the population transfer in
the presence of interaction with the spin environment for the homogeneous model and
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under the zero-temperature assumption. The latter hypothesis means that it is populated
only at the ground energy level with all the spins in the state |↓〉, which corresponds to
j = L/2, m = −j. The three-state system starts in the state |g1〉 and from t = −T to t = T is
subjected to the pulses, which are supposed to realize the adiabatic following to |g2〉. The
relevant quantity defining the efficiency of the process is then nothing but the population
of state |g2〉 in the final state ρ(T) of the system:

P(T) ≡ 〈g2|ρS(T)|g2〉 . (17)

In Figure 3a, the population of state |g2〉 at time t = T is plotted as a function of the
coupling constant with the spins of the environment η. Different sizes of the environment
are considered, i.e., different numbers of spins in the environment (L = 10, 20, 40). The
pulses have specific features, which guarantee the validity of the adiabatic approximation
(according to the previous discussion), hence allowing for a perfect population transfer, in
the ideal case (i.e., in the absence of the environment). Indeed, for very small values of η the
population transfer is perfect, since the final population of |g2〉 is equal to 1. On the contrary,
for higher values of η the efficiency diminishes, reaching the value zero. It is well visible
that an increase in the number of spins of the environment determines a diminishing of the
efficiency of the population transfer, in the sense that the knee of the curve of efficiency
starts for smaller values of η. In all plots of Figure 3, the detunings ∆S and ∆E are assumed
to be much smaller than the pulse amplitudes (in particular, 1 = T∆S = T∆E � TΩ0 = 10),
which produce essentially the same results obtained for ∆S = ∆E = 0 (whose relevant
plots are not reported here). In Figure 3b, the relevant purity is reported, showing that the
final state is essentially pure except that for the values of η corresponding to the slope. In
the case of a complete population transfer, the purity of the state of the three-state system
is clearly equal to 1, since it obviously coincides with ρS(T) = |g2〉〈g2|. Then, the purity
becomes lower in a range of values corresponding to the slope of the efficiency curve and
becomes again equal to 1 when the efficiency is zero and the final state is ρS(T) = |g1〉〈g1|.
Figure 3c shows the variance in Jz of the environment, in order to establish the involvement
of the states of the bath at the end of the population transfer process. The higher the
quantity σ2(Jz) ≡ 〈J2

z 〉 − 〈Jz〉2, the bigger the number of states of the bath involved in the
universe state after the action of the pulses. According to one’s expectation, this quantity is
non-vanishing in the same range of values of η where the purity is lower than unity.

According to the general theory of Holstein–Primakoff, there is an effective equivalence
between a giant spin (here corresponding to the sum of all the spins of the environment)
and a harmonic oscillator [59], in the sense that, for a fixed value of the quantum number j
associated with J2, restricting to the lowest part of the spectrum of Jz, the three operators
Jz + j11, J+/

√
2j and J−/

√
2j act very similarly to the operators a†a, a† and a of a one-

dimensional harmonic oscillator. All this considered, in Figure 4 the efficiency of the
population transfer is reported, including the rescaling of the coupling constant (differently
from Figure 3a), where it is well visible that the three situations considered corresponding
to L = 10, 20 and 40 produce equivalent results, as a consequence of the fact that they all
correspond to the interaction with the same effective harmonic oscillator. For the sake of
readability, we remind here that we have not put the factor 1/

√
L in the model. Therefore,

after taking L = 10 as the reference case, the rescaling in the cases L = 20 and 40 is obtained
by multiplying the system–bath interaction term by the factor

√
10/L, as indicated in

the caption.
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(a) (b)

(c)

Figure 3. Dynamical properties for different bath sizes when the system is prepared in state |g1〉:
(a) final population of state |g2〉 (P(T) ≡ 〈g2|ρS(T)|g2〉); (b) purity of the final state of the system;
(c) the variance in Jz of the end of the process (t = T), denoted as σ2(Jz). All such quantities are
plotted as functions of the coupling constant η (in units of 1/T and in logarithmic scale). In all the
plots, different values of the number of spins in the bath are considered: L = 10 (black dashed line),
L = 20 (red pointed line) and L = 40 (green solid line). All the other parameters are always the same:
TΩ0 = 100, τ/T = 0.1, T∆S = 1 and T∆E = 1.

Figure 4. Final population of state |g2〉 (P(T) ≡ 〈g2|ρS(T)|g2〉) when the system is prepared in the
state |g1〉 as functions of the coupling constant η (in units of 1/T and in logarithmic scale). Different
values of the number of spins in the bath are considered along with relevant rescaling of the system–
environment interaction term by the factor

√
10/L. The spin numbers are L = 10 (black dashed line),

L = 20 (red pointed line) and L = 40 (green solid line). All the other parameters are always the same:
TΩ0 = 100, τ/T = 0.1, T∆S = 1 and T∆E = 1. According to the Holstein–Primakoff theory, the three
situations are essentially equivalent and the relevant curves consequently coincide.

In Figure 5, the efficiency of the population transfer is shown for different values of
the parameter ∆E and for L = 10 spins. It is important to note that values of ∆E very
different from ∆S imply that the system–environment interaction is off-resonant (in fact,
∆E − ∆S = ω− ν), diminishing the effects of the environment on the system. Indeed, for
higher values of ∆E the knee of the efficiency curve starts for higher values of η. Anyway,
for large enough values of the system–environment coupling constant the efficiency still
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vanishes. It is interesting to note the non-monotonic behavior of the efficiency in the
intermediate regime, especially in the two cases T∆E = 5 and T∆E = 10. The origin of this
non-monotonicity is probably traceable back to the competition of effects due to high value
of η and ∆E discussed in the end of Section 3.

Figure 5. Final population of state |g2〉 (P(T) ≡ 〈g2|ρS(T)|g2〉) when the system is prepared in the
state |g1〉 as functions of the coupling constant η (in units of 1/T and in logarithmic scale). Different
values of ∆E are considered: T∆E = 1 (black dashed line), T∆E = 50 (red pointed line), T∆E = 100
(green solid line) and T∆E = 500 (blue bold solid line). All the other parameters are always the same:
TΩ0 = 100, τ/T = 0.1 and T∆S = 1.

5. Discussion

A model for the STIRAP protocol in the presence of interaction between the three-state
system and a spin bath has been introduced and analytically studied, focusing on the case
where the bath is initially in its ground state. Behaviors at weak and strong couplings
have been predicted. The numeric resolution of the dynamics (all performed through
a fourth-order Runge–Kutta method through a code implemented by us) specialized to
the homogeneous case and consequent curves of efficiency of the population transfer vs.
the system–environment coupling constant η show in a clear way that the efficiency is
essentially equal to 1 for small values of η, as one reasonably expects, and zero for high
values of such a parameter (which is well visible in Figure 3 and subsequent figures).
The first behavior is in fact intuitive since for very small values of η the environment is
supposed not to influence significantly the STIRAP process. The second feature seems to
be pretty intuitive, too, since in the presence of a strong interaction with the environment
the adiabatic following of the eigenstates of the system Hamiltonian is supposed to be
jeopardized by dissipation. Nevertheless, it has been shown that the true motivation for
such diminishing of the efficiency is to be traced back to the rise of Zeno subspaces and
relevant Zeno dynamics, sometimes also referred to as dynamical decoupling (i.e., the
neutralization of the couplings associated with the pulses) induced by the environment. In
terms of the properties of the Hamiltonian, it is possible to show that the states |gk〉|{↓}〉
approach two ground states of the total Hamiltonian of the system and environment
in the regime of very high values of η, while the state |e〉|{↓}〉 belongs to a different
subspace, which effectively implies the neutralization of the pulses supposed to induce the
adiabatic population transfer. In order to further support this interpretation and exclude the
occurrence of dissipation in the regime of very strong coupling, consider that if dissipation
occurred at high values of η, since the state |e〉 is coupled both to |g1〉 and |g2〉 through the
bath, the effect would be a redistribution of the total population between the two ground
states, instead of a vanishing population for state |g2〉. In passing, it is interesting to note
that our numeric results confirm the Holstein–Primokoff theory, according to which no
significant effects should be observed with an increase in the size for the environment and
simultaneous rescaling of the coupling constant by a factor proportional to the inverse of
the number of bath spins. This has been clearly shown in Figure 4. Therefore, in further
resolutions, we have focused on the L = 10 case in order to reduce the time of calculation.

In the case of spins off-resonant with respect to the transition frequencies of the
three-state system, the numeric analysis reported in Figure 5 shows again the predictable
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behaviors for small and very high values of η, but, in the range of intermediate–high
values of η, there are oscillations of the efficiency. Such behavior is probably due to a
complicated interplay between high values of the detuning ∆E, which tends to deactivate
the environment, and the strengthening of the interaction with the spins of the bath.

In conclusion, we have predicted the efficiency of a STIRAP protocol of a system
interacting with a spin environment, showing that the efficiency is very high for small
values of the coupling constant and, because of a Zeno effect, it goes to zero for very
high values of such a coupling strength. Moreover, we have singled out the presence of
oscillations of the efficiency in some ranges of the parameters. The obtained results suggest
that it could be interesting to investigate in depth the reason for the oscillatory behavior,
which is unexpected because it is seemingly absent in the case of the bosonic bath. Since our
analysis is based on the conservation of a quantity traceable back to the RWA, it could be
interesting to investigate the system without such an approximation. Finally, interactions
between the spins of the bath will likely change the predictions here reported.
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