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Abstract: A self-diffusiophoretic problem is considered for a chemically active dimer consisting of
two equal touching spherical colloids that are exposed to different fixed-flux and fixed-rate surface
reactions. A new analytic solution for the autophoretic mobility of such a catalytic Janus dimer is
presented in the limit of a small Péclet number and linearization of the resulting Robin-type boundary
value problem for the harmonic solute concentration. Explicit solutions in terms of the physical
parameters are first obtained for the uncoupled electrostatic and hydrodynamic problems. The dimer
mobility is then found by employing the reciprocal theorem depending on the surface slip velocity
and on the normal component of the shear stress acting on the inert dimer. Special attention is given
to the limiting case of a Janus dimer composed of an inert sphere and a chemically active sphere
where the fixed-rate reaction (Damköhler number) is infinitely large. Examples are given, comparing
the numerical and approximate analytic solutions of the newly developed theory. Singular points
arising in the model are discussed for a dimer with a fixed-rate reaction, and the flow field around
the dimer is also analysed. The new developed theory introduces a fast way to compute the mobility
of a freely suspended dimer and the induced flow field around it, and thus can also serve as a sub
grid scale model for a multi-scale flow simulation.

Keywords: self-diffusiophoresis; dimer and tangent-sphere coordinates; chemically-active Janus;
symmetry-breaking; electrokinetics

1. Introduction

The subject of autophoretic mobility of active colloids (rigid or deformable) contin-
ues to attract attention within the nano-technology community, for example, in recent
reviews [1,2]. Among the various physical/chemical mechanisms related to the self-
propulsion problem of freely suspended micron-size particles in an unbounded solute in the
absence of any external forcing [3–5], we chose here self-diffusiophoresis as an archetypal
problem [6–8]. Within this framework, particle mobility is deduced by a symmetry-breaking
effect resulting from different types of surface on the two spheres. The first is a fixed-flux
(absorption/release) mechanism and the other is a fixed-rate one-step chemical reaction [8].
In the limiting case of a small Péclet number, i.e., when advection is considered small with
respect to diffusion, the governing equation for the solute concentration is governed by
the Laplace equation and is subject to a mixed (Robin-type) boundary condition on the
colloid’s surface together with a proper far-field limit.

There is a vast body of literature on self-propulsion of capped Janus spherical colloids
arising due to material/chemical symmetry-breaking which can be modelled by applying
disparate boundary conditions over different parts of the surface [9–16], typically with a
symmetric Janus composed of two hemispheres. However, other three-dimensional (3D)
geometries that can be analytically handled are, for example, convex separable shapes,
such as ellipsoidal and spheroidal particles (slender rods and elliptic discs as limiting
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cases) [17–23]. Note that for such simple autotropic shapes (possessing three planes of
symmetry), the self-phoretic mobility can be directly found (under the assumption of a
thin reaction layer [8]) in terms of the induced surface slip velocity [24] without using
the reciprocal theorem [25]. This involves resolving the hydrodynamic (Stokes) problem
and finding the shear stress over a uniformly translating inert particle. Note that for a
perfectly symmetric spherical colloid suspended in a free space, the autophoretic mobility
can be directly obtained by calculating the average of the slip velocity over the particle
surface. However, such a simple averaging procedure does not hold, for example, in the
present dimer configuration (pair interaction).

The self-diffusiophoresis problem between two chemically active interacting spherical
colloids is also amenable to analysis by employing a separable bi-spherical coordinate
system [26–28]. Identical chemical activity is assumed on the two adjacent spheres and self-
propulsion is a result of geometric asymmetry (different radii). An induced mobility of two
interacting spheres (dumbbell) can also result from applying different chemical activities
on two spheres of the same size [29]. A constant fixed reaction has been assumed on the
spherical spheres [26–30]. A special Janus dimer (JD) configuration is that of two identical
touching spheres possessing distinct chemical surface activities, which is again amenable to
analysis using a separable 3D orthogonal tangent-sphere coordinate system [31]. In contrast
to the bi-spherical (BS) system, the tangent-sphere (TS) curvilinear system admits a more
direct and compact integral formulation (as compared to infinite summation in BS) and was
found useful in obtaining explicit solutions for some related electrostatic problems [32].

Motivated by the recent advent in self-propelling platforms, such as micro/nano mo-
tors with the capability of effectively transforming surface chemical energy into mechanical
energy resulting in phoretic motions [33–35], we consider here the self-diffusiophoresis
problem of a chemically active spherical Janus dimer and obtain explicit expressions for
the dimer mobility. By employing the extended Robin-type boundary condition on the two
spheres, corresponding to using distinct values for the fixed-rate and fixed-flux parame-
ters [8], we obtain explicit solutions for the autophoretic mobility of a Janus dimer in terms
of the chemical (fixed-flux and fixed-rate) reactions prevailing over the two spheres. Finally,
following ref. [16], we consider the special interesting case of a dimer-motor composed of
an inert sphere and a chemically active sphere in the limit of an infinitely large Damköhler
number [8] and derive a simple practical analytic expression for its self-diffusiophoretic
velocity which may serve as a benchmark solution.

It should be noted that in large-scale applications, effects from adjacent dimers or
nearby walls may be influential on the motion of the dimer. Contact between heteroge-
nous parts of different dimers can lead to collective behaviour and to convoluted motion
with six degrees of freedom. Noticeable numerical and analytical studies of interacting
colloids of different shapes of heterogeneous chemical and electrical properties have been
carried out. This includes for example investigating the effect of colloid’s geometry (e.g.,
sphere/rod [36]), solid particle and gas bubble interaction in a liquid medium [37], mo-
tion of a large set of charged particles [38]. The present study, which focuses on a single
free dimer, can be considered as an interaction between two (identical) touching spherical
colloids forming a dimer, where the effect of nearby particles and boundaries is left for
future study.

The structure of the paper is as follows: The problem formulation is presented in
the Materials and Methods under Section 2.1 for a general free catalytic Janus dimer in
the limit of a small Péclet number and a thin interaction layer [8], by employing the
integral tangent-sphere formulation [32]. The solute concentration is shown to be governed
by the Laplace Equation and by a mixed (Robin-type) boundary condition applied on
the dimer’s surface. A proper solution for the harmonic concentration is presented in
Section 2.2 by means of solving two coupled ordinary differential equations. Some exact
solutions are also compared against the obtained numerical and asymptotic solutions. An
integral expression for the induced slip velocity on the dimer’s surface is then presented
obtained in Section 2.3 by employing a special variant of using the reciprocal theorem [25].
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This procedure requires solving the Stokes (low-Reynolds) hydrodynamic problem of a
uniformly translating inert dimer in order to determine the corresponding shear stress
component over its surface as presented in Section 2.4. An explicit solution is then derived
for the autophoretic mobility of such a Janus dimer as well as for the Stokes stream function
of a self-propelled catalytic dimer. Finally, we provide a simple explicit expression for the
mobility of a dimer composed of an inert sphere and a chemically active sphere in the limit
of a very large Damköhler number [16] in Section 2.5. We follow with a discussion of the
analytic results thus found, including a comparison against numerical computations and
asymptotic approximations including a short conclusion section. A list of the main symbols
is presented after Section 4, followed by Appendix A detailing the numerical procedure
developed to solve the coupled ordinary differential equations derived in order to compute
the dimer mobility and the flow field around it.

2. Materials and Methods
2.1. Problem Formulation

We consider a catalytic Janus dimer (JD) consisting of two touching rigid chemically
active spheres of the same size, freely suspended in an unbounded symmetric electrolyte
of dynamic viscosity K, diffusivity k, and ambient concentration C∞. For simplicity, we
consider all parameters as constants. The two spherical surfaces (possessing different
surface activity) are denoted here by S±, (see Figure 1). Under the assumption of a small
Péclet number and a thin interaction layer [8], the linearised solution for the solute concen-
tration C (normalised by C∞) is governed by the Laplace Equation ∇2C = 0 and a mixed
(Robin-type) boundary condition applied on the two dimer surfaces (S±):

∂C
∂n

= −α± + β±C on S±. (1)

which is subject to C → 1 in the far-field. Here, ∂/∂n denotes the outward normal deriva-
tive to the dimer surface and the four dimensional parameters (α±, β±) represent the
corresponding chemical activities on S±. Following Michelin and Lauga [8], α represents
the “fixed-flux” parameter whereas β is the so-called “fixed-rate” parameter which is also
associated with the Damköhler number (the ratio between the diffusivity and reactive time
scales). Note that for a chemically active JD the four parameters (α±, β±) are generally
different. However, if one of the surfaces S± is chemically inactive (inert), then the cor-
responding parameters of (α, β) vanish, and Equation (1) reduces on that surface to the
homogenous Neumann boundary condition, i.e., ∂C/∂n = 0.
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Figure 1. Schematic description of the dimer composed of two spheres of the same size but of different
surface activities, where the dimer is freely suspended in an unbounded symmetric electrolyte of
dynamic viscosity K, diffusivity k, and ambient concentration C∞.

The self-diffusiophoretic mobility of the JD depends on the velocity slip induced on
the surfaces S±, which following [39] can be expressed as

→
us = M±∇||C, (2)
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where M± denotes the mobility coefficients on S± respectively and ∇|| represents the
surface tangential derivative. Our task here is to obtain an explicit (analytic) expression
for the self-diffusiophoretic mobility of a general active JD in terms of the six parameters
(α±, β±, M±), including the JD radius (a) and solute viscosity (K). Note that the solute
diffusivity (k) and the ambient concentration (C∞) are already included in the normalised
parameters (α±, β±).

Taking advantage of the axisymmetric nature of the physical problem with respect to
the line of centres (z axis), it is convenient to employ here a semi-separable tangential-sphere
system (µ, υ), which is related to a cylindrical system (r, z) by the following transforma-
tion [31,32]:

r =
µ

µ2 + υ2 , z =
υ

µ2 + υ2 , (3)

where µ ∈ [0, ∞] and υ ∈ [0, ∞]. Note that (r, z) in Equation (3) are normalised with respect
to the diameter of the two spheres (2a). In addition, the surface of the upper surface (see
Figure 1) namely z > 0 is given by υ = 1, whereas the surface of the lower surface (z <
0) is represented by υ = −1. The corresponding surfaces of the two spheres composing
the dimer are thus denoted by S± with the corresponding parameters of (α±, β±, M±).

2.2. Solute Concentration

Bearing in mind that the solute concentration C(µ, υ) is a harmonic function satisfying
C → 1 at infinity, one can write [32]:

C(µ, υ) = 1 +
(

µ2 + υ2
)1/2 ∫ ∞

0
[A(s)cosh(sυ) + B(s)sinh(sυ)]J0(sµ)ds, (4)

where Jn(s) denotes the Bessel function of order n, and the coefficients A(s) and B(s) can
be found by satisfying Equation (1). Thus, substituting Equation (4) into Equation (1) and
noting that ∂/∂n =

(
1 + µ2)−1

∂/∂υ on S±, i.e., at υ = ±1 respectively, one gets:

±A(s)cosh(s) + B(s)sinh(s)± [A(s)sinh(s)± B(s)cosh(s)]
∓ d

dS

{
s d

ds [A(s)sinh(s)± B(s)cosh(s)]
}
=

−(α± − β±)e−s + β±[A(s)cosh(s)∓ B(s)sinh(s)]
. (5)

When deriving Equation (5) we used the following identity [40]:

1/
(

µ2 + υ2
)1/2

=
∫ ∞

0
e−s|υ| J0(sµ)ds. (6)

Finally, Equation (5) is actually two equations that can be written as:

1
sinh(s)

d
ds

[
s× sinh2(s) dA(s)

ds

]
+ β+−β−

2 A(s)cosh(s) + β++β−
2 B(s)sinh(s)

= e−s

2 [(α+ − α−)− (β+ − β−)]
(7a)

1
cosh(s)

d
ds

[
s× cosh2(s) dB(s)

ds

]
+ β+−β−

2 B(s)sinh(s) + β++β−
2 A(s)cosh(s)

= e−s

2 [(α+ − α−)− (β+ − β−)]
. (7b)

It is interesting to note that for the special case where (β± = 0), namely for a fixed-flux
reaction, a first integral can be found for Equation (7) resulting in:

dA(s)
ds

=
α+ − α−

4
× s− e−ssinh(s)

s× sinh2(s)
,

dB(s)
ds

=
α+ + α−

4
× s + e−ssinh(s)

s× cosh2(s)
(8)

which can be solved by numerical integration. One should note the singularity of A(s)
at s = 0, behaving as log(s) where B(s) is finite at s = 0. Both A(s→ ∞) and B(s→ ∞)
approach zero, making the integration of Equation (8) well defined.
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Equation (7) can be solved numerically by discretising it using staggered central finite
differences [41], and employing a block matrix tri-diagonal solver as further detailed in
Appendix A. The asymptotic solution of Equation (7) for large s yields:

A(s) =
γ+(β+ + β−)− γ−(β+ − β− − 4)

2(β+ − 2)(β− + 2)
e−2s, B(s) =

γ−(β+ + β−)− γ+(β+ − β− − 4)
2(β+ − 2)(β− + 2)

e−2s, (9)

where
γ± = (α+ ± α−)− (β+ ± β−). (10)

Note that for β± = 0, Equation (9) yields A(s) = −(α+ − α−)e−2s/2 and B(s) =
−(α+ + α−)e−2s/2 in agreement with Equation (8) under the limit s→ ∞ .

2.3. Velocity Slip

The slip velocity on the JD can be expressed following Equations (2) and (4) as
→
u s = M±u± ê µ where

u±(µ) =
(

1 + µ2
) ∂

∂µ

[(
1 + µ2

)1/2 ∫ ∞

0
F±−(s)J0(sµ)ds

]
on S ±, (11)

and
F±(s) = A(s)cosh(s)± B(s)sinh(s). (12)

Here ê µ denotes a unit vector along the curvilinear coordinate µ. Integration by parts
of Equation (11) renders:

u±(µ) =
(
1 + µ2)1/2

µ

{
µ2
∫ ∞

0

[
d
ds

(sF±(s)J0(sµ))− s
dF±(s)

ds
J0(sµ)

]
ds +

∫ ∞

0
sF±(s)

dJ0(sµ)

ds
ds
}

. (13)

The integral of the first term on the right hand side (RHS) of Equation (13) vanishes
and since sµ2 J0(sµ) = −sd[sdJ0(sµ)/ds]/ds, Equation (13) reduces to

u±(µ) =
(

1 + µ2
)1/2 ∫ ∞

0
sG±(s)J0(sµ)ds, (14)

where

G±(s) =
d2F±(s)

ds2 − F±(s) =
1

cosh(s)
d
ds

[
cosh2(s)

dA(s)
ds

]
± 1

sinh(s)
d
ds

[
sinh2(s)

dB(s)
ds

]
. (15)

It is important to note that G±(s), which determines the slip velocity on the JD by
means of Equation (14), is expressed in terms of the first derivatives of A(s) and B(s), thus
enabling us to directly use Equation (8) for the fixed-flux case.

Once the slip velocity u±(µ) of Equation (14) on the dimer’s surface is known, the self-
diffusiophoretic mobility of the JD can be expressed by means of the reciprocal theorem for
Stokes flows [25] in terms of the tangential component of the normal shear stress σµυ(µ,±1)
exerted on an inert dimer moving with a unit velocity along the line of centres (z axis).
Thus, following [28] the dimer mobility velocity (along the z axis of symmetry) is given by:

U d = ∑
M±
Dv

∫
S±

u±(s)σµυ(µ,±1)dS, dS =
2πµdµ

(1 + µ2)
2 , (16)

where S = S+ ∪ S−, ∑ represent a sum over S+ and S−, and Dv denotes the drag acting on
the inert dimer moving with unit velocity in the z direction.

What remains is to find the hydrodynamic shear stress component σµυ(µ,±1) of a
chemically inactive (inert) rigid dimer translating along its axis of symmetry, as demon-
strated in the following section.
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2.4. Hydrodynamic Problem of an Inert Dimer

In order to find the mobility of a chemically active JD by means of the reciprocal theo-
rem and Equation (16), one needs first to solve the hydrodynamic problem of an inert dimer
moving with a unit velocity in the z direction (axis of symmetry). Assuming creeping
(Stokes) flow of an incompressible fluid, the velocity field

→
u (r, z) and the hydrodynamic

pressure p(r, z), expressed in body attached cylindrical coordinate system, are governed by

K∇2→u = ∇p, ∇ ·→u = 0, (17)

subject to
→
u = 0 on S and

→
u · êz = −1 together with p = 0 far from the body.

Following [42,43] the tangent-sphere coordinate system was employed along with
a stream function formulation Ψ(µ, υ), where the corresponding velocity components
uµ(µ, υ) and uυ(µ, υ) are given by:

uµ(µ, υ) =

(
µ2 + υ2)2

µ

∂Ψ(µ, υ)

∂υ
, uυ(µ, υ) = −

(
µ2 + υ2)2

µ

∂Ψ(µ, υ)

∂µ
, (18)

where

Ψ(µ, υ) =
1
2

µ2

(µ2 + υ2)
2 +

µ

(µ2 + υ2)
3/2

∫ ∞

0
H(s, υ)J1(sµ)ds, (19)

and
H(s, υ) = C(s)cos h(sυ) + υD(s)sin h(sυ). (20)

The two coefficients C(s) and D(s) in Equations (19) and (20) can be readily found
by applying the no-slip and no-penetration boundary conditions on the dimer surface
(υ = ±1), namely Ψ(µ,±1) = 0 and ∂Ψ(µ,±1)/∂υ = 0, leading to [43]:

C(s) = −1 + s + e−2ssinh(2s)/s
2s + sinh(2s)

, D(s) =
s + e−ssin hs
2s + sinh(2s)

. (21)

Once the stream function and the velocity components of Equation (18) are known
one can calculate the normal shear component σµυ(µ,±1) exerted on the dimer surface
as [44–46]:

σµυ(µ,±1)
K

=
∂

∂µ

(
uυ

hµ

)
+

∂

∂υ

(
uµ

hυ

)
, (22)

where the corresponding metric coefficients in Equation (22) are given by hµ = hυ =(
µ2 + υ2)−1. Next, since uυ =

(
∂uµ

)
/(∂µ) = 0 on υ = ±1, Equations (18) and (22) yield:

σµυ(µ,±1)
K

=
1
hυ

∂uµ

∂υ
=

(
1 + µ2)3

µ

∂2Ψ(µ,±1)
∂υ2 , (23)

substituting Equation (19) into Equation (23) renders:

σµυ(µ,±1)
K

= −µ

2
+

3µ

2(1 + µ2)
+
(

1 + µ2
)3/2 ∫ ∞

0
I(s)J1(µs)ds, (24)

whereby Equation (21):

I(s) = s2[C(s)cosh(s) + D(s)sinh(s)] + 2sD(s)cosh(s)

= − s
2 e−s(1 + s) +

2s[s+e−ssinh(s)]
2s+sinh(2s)

(25)

Finally, the viscous drag Dv exerted on the inert dimer can be computed by means of
the stream function formulation of [42,43] which leads to:

Dv = −6πK f , f =
2
3

∫ ∞

0
sC(s)ds ' 0.645, (26)
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in agreement with the Faxen’s value for the case of two equal sized touching spheres
reported in [45].

2.5. The Mobility of an Active Dimer

Once the normal shear component σµυ(µ) has been obtained (see Equations (24) and
(25)) the reciprocal theorem of Equation (16) can be used along with the induced slip
velocity of Equations (14) and (15) and constant mobility coefficients M± to render:

U d = 1
3 f

∫ ∞
0 [M−u−(µ)−M+u+(µ)]

σµυ

µ
µdµ

(1+µ2)
2

= 1
3 f

s ∞
0 s[M−G−(s)−M+G+(s)]

[
− µ2

2(1+µ2)
3/2 +

3µ2

2(1+µ2)
5/2

]
J1(µs)dsdµ

+ 1
3 f

t ∞
0 s[M−G−(s)−M+G+(s)]I(t)J1(µt)J1(µs)dtdsdµ

, (27)

where I(t) is defined in Equation (25). The double integral in the right hand side of
Equation (27) can be evaluated using the following two identities [40]:∫ ∞

0

µ2

(1 + µ2)
3/2 J1(µs)dµ = e−s,

∫ ∞

0

µ2

(1 + µ2)
5/2 J1(µs)dµ =

s
3

e−s, (28)

and the triple integral in Equation (27) can be evaluated using [47]:∫ ∞

0
J1(µs)J1(µt)µdµ =

δ(s− t)
s

, (29)

where δ(s) denotes the Dirac delta function.
Finally, substituting Equations (27) and (28) into Equation (27) yields:

U d = 1
3 f

∫ ∞
0 [M−G−(s)−M+G+(s)][s(s− 1)e−s + 2I(s)]ds

= 4
3 f

∫ ∞
0 [M−G−(s)−M+G+(s)] s2sin hs

2s+sin h(2s)ds
, (30)

which provides the sought analytical solution for the diffusiophoretic self-propulsion
mobility of an active JD in terms of the parameters G±(s) defined in Equation (15), where
A(s) & B(s) are the solutions of Equation (5) and I(s) is given in Equation (25).

Once the mobility Ud of the JD is explicitly obtained in Equation (30), it is then possible
to express the Stokes stream function Ψ̃ for the velocity field around the active dimer as;

Ψ̃(µ, υ) =
Ud
2

µ2

(µ + υ2)
2 +

µ

(µ + υ2)
3/2

∫ ∞

0
Q(s, υ)J1(sµ)ds, (31)

where in lieu of [43]:

Q(s, υ) =
[
υÃ(s) + B̃(s)

]
sin h(sυ) +

[
υC̃(s) + D̃(s)

]
cos h(sυ). (32)

The four unknown coefficients Ã(s), B̃(s), C̃(s), D̃(s) in Equation (32) are obtained by
imposing the proper boundary conditions on the no-slip rigid JD surface (see Equation (14)):

Ψ̃(µ,±1) = 0, uµ(µ,±1) =

(
1 + µ2)2

µ

∂Ψ̃(µ,±1)
∂υ

= M±
(

1 + µ2
)1/2 ∫ ∞

0
sG+−(s)J1(sµ)ds.

(33)
For example, imposing the no-penetration condition in Equation (33) leads to:

B̃(s)sin h(s) + C̃(s)cos h(s) = 0
Ã(s)sin h(s) + D̃(s)cos h(s) = − 1

2 Ud

(
1 + 1

s

)
e−s, (34)

Since [40]:
µ2

(1 + µ2)
1/2 =

∫ ∞

0

(
1 +

1
s

)
e−s J1(µs)ds. (35)
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Next, in lieu of Equations (31) and (32) and the no-slip condition in Equation (33),
one gets ∫ ∞

0

∂Q
∂υ

(s,±1)J1(sµ)ds = ±3
2

Ud
µ

(1 + µ2)
3/2 + M±

∫ ∞

0
sG±(s)J1(sµ)ds. (36)

Recalling again [40] that µ/
(
1 + µ2)3/2

=
∫ ∞

0 se−s J1(sµ)ds and substituting Equation (32)
in Equation (36) renders:

±Ã(s)[sin h(s) + s ∗ cos h(s)] + C̃(s)[cos h(s) + s ∗ sin h(s)]
+s
[

B̃(s)cos h(s) + D̃(s)sin h(s)
]
= s
[

M±G±(s)± 1
2 Ude−s

]. (37)

and thus:

Ã(s)[sin h(s) + scos h(s)] + sD̃(s)sin h(s) = s
2 [M+G+(s)−M−G−(s) + Ude−s]

C̃(s)[cos h(s) + ssin h(s)] + sB̃(s)cos h(s) = s
2 [M+G+(s) + M−G−(s)]

. (38)

Finally, combining Equation (34) with Equation (38) provides the following explicit solutions
for the four coefficients determining the Stokes stream function of Equations (31) and (32):

Ã(s) =
Ud(s+e−ssin h(s))+s[M+G+(s)−M−G−(s)]cos h(s)

2s+sin h(2s)

B̃(s) = − s[M+G+(s)+M−G−(s)]cos h(s)
2s−sin h(2s)

C̃(s) = − s[M+G+(s)+M−G−(s)]sin h(s)
2s−sin h(2s)

D̃(s) = −Ud[1+s+(e−s/s)sin h(s)]+s[M+G+(s)−M−G−(s)]sin h(s)
2s+sin h(2s)

. (39)

Note that for the particular no-slip case, i.e., M± = 0, Equation (39) reduces to the
already known solution corresponding to an inert dimer given in Equation (21), where
B̃(s) = C̃(s) = 0, Ã(s) = D(s), D̃(s) = C(s) and Ud = 1.

2.6. Infinitely Large Damköhler Number

A special interesting limiting case [16] of the above formulation is when one of the
spheres is inert (υ = −1) and the other (υ = 1) is chemically active with an infinitely large
Damköhler number (β+ → ∞). The corresponding boundary conditions on the solute
concentration C for this case are thus given by:

∂C
∂n

∣∣∣∣
υ=−1

=
1
hυ

∂C
∂υ

∣∣∣∣
υ=−1

= 0, C|υ=1 = 0. (40)

In lieu of Equation (5) one gets for (α− = β− = α+ = 0, β+ → ∞) the following
two equations:

A(s)cos h(s) + B(s)sin h(s) = 0
1

sin h(s)
d
ds

(
sinh2(s) dA(s)

ds

)
= 1

cos h(s)
d
ds

(
cosh2(s) dB(s)

ds

), (41)

which determine the coefficients A(s) and B(s). The leading-order asymptotic solution of
Equation (41) for very large s is:

A(s) = B(s) = −e−2s. (42)

The numerical solution procedure for solving Equation (41) is given in Appendix A. It
is important to note that the agreement between the numerical solution of Equation (41)
and the asymptotic solution given in Equation (42) is quite good, at least for A(s). Hence,
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there is merit in analytically calculating the JD mobility by using the simple asymptotic
solutions of Equation (42) which render:

G+(s) = 0, G−(s) = −8e−3s. (43)

Finally we find that the resulting JD mobility Ud in the limiting case of an infinitely
large Damköhler number can be directly obtained from Equation (30) by substituting
Equations (25) and (42) as:

Ud = − 32
3 f

M−
∫ ∞

0

s2e−3ssinh(s)
2s + sin h(2s)

ds, (44)

where by virtue of Equation (26) and f = 0.645, one gets Ud = −0.2480 × M−. This
value was also validated by substituting the approximate solutions of Equation (42) into
the general expression of Ud given in Equation (30) and numerically integrating Equa-
tion (30). However, if the numerical solutions for A(s) and B(s) are used, Equation (30) yields
Ud = −0.3261×M−. Once the dimer mobility Ud is known the stream function and flow
field can be explicitly found using Equations (31), (32) and (39).

3. Results and Discussion

To illustrate the newly derived solutions for dimer mobility, two cases are initially
analysed. The first case is a dimer with an upper active sphere with a fixed rate of β+ = 1
and zero fixed flux, i.e., α+ = 0, while the lower sphere is inert, i.e., β− = α− = 0. The
solutions for the first derivatives of A(s) and B(s) are given in Figure 2, following the
numerical solution of Equation (7) and using the approximate solution of Equation (9).
The plot for dA/ds is given in a log scale for better clarity. The choice of plotting the first
derivatives of A(s) and B(s) and not A(s) and B(s) themselves originates from the expression
for the mobility Ud of Equation (30), which mostly depends on those derivatives and less
on the second derivatives according to Equation (15).

It is clear that there is a very good agreement between the numerical and approximate
solutions for s > 1 but not for small s. Hence, the approximate solutions of Equation (9) can
be seen as the outer solutions for A(s) and B(s), although the agreement for dB/ds at small
s can still be argued as fair.

Examining the approximate solutions of Equation (9), one can see that for α+ = β− =
α− = 0, we can rewrite the approximate solutions as:

A(s) = B(s) = − β+

(β+ − 2)
e−2s. (45)

Hence, both approximate solutions are equal and converge to Equation (42) for β+ → ∞ .
The change of sign in A(s) and B(s) when β+ becomes larger than two, should also be noted
as it affects the direction of the dimer’s mobility Ud given by Equation (30). However, the
numerical solution of Equation (7) points to a singularity at about β+ ' 1.85, where a change
in the sign of Ud also occurs as discussed further on when examining Table 1.

Table 1. Mobility velocities according to Equations (7)–(9) and for the cases of Figures 2 and 3, i.e.,
(β+ = 1, α+ = β− = α− = 0) and (β+ = β− = 0, α+ = 1, α− = 2) respectively.

Case Equation (7), Numerical Solution Equation (8), Exact (β±=0) Solution Equation (9), Approximate Solution

U+
d Figure 2 −0.09 0 0

U −
d Figure 2 0.4037 0 0.2480

U+
d Figure 3 −0.3422 −0.3423 −0.2480

U −
d Figure 3 −0.1391 −0.1390 −0.1240
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Figure 2. The variations of the first derivatives of (a) A(s) and (b) B(s) with s for β+ = 1,
α+ = 0, β− = α− = 0 according to the numerical solution of Equation (7) and the approximate
solution of Equation (9).

The second case to be studied is when both spheres have zero fixed rates, i.e., β+ =
β− = 0 and different fixed fluxes, which in this particular case are α+ = 1, α− = 2. In
this case the exact solution of Equation (8) holds and the solutions for the first derivatives
of A(s) and B(s) are presented in Figure 3. Excellent agreement is achieved between the
numerical solution of Equation (7) and the exact solution of Equation (8), where very good
agreement between all three solutions is also achieved for s > 1. Nevertheless, this time
the approximate solution for dB/ds at s < 1 does not agree well with the other solutions,
reinforcing the limitation of its accuracy as an outer solution for s > 1.
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Figure 3. The variations of the first derivatives of (a) A(s) and (b) B(s) with s for β+ = 0,
α+ = 1, β− = 0, α− = 2 according to the numerical solution of Equation (7), the approximate solu-
tion of Equation (9), and the exact solution of Equation (8). The numerical solution of Equation (7)
and the exact solution of Equation (8) lines coincide.

Following Equation (30), the dimer’s mobility Ud can be expressed as

Ud = U+
d M+ + U −

d M−. (46)

The values of U+
d & U −

d are shown in Table 1 for the cases depicted in Figures 2 and 3
after performing the integration expressed in Equation (30). As expected, the exact solution
according to Equation (8) agrees very well with the numerical solution for the case of
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Figure 3, i.e., zero fixed rate β+ = β− = 0 and yields no mobility for the case of Figure 2,
i.e., zero fixed flux α+ = α− = 0.

The agreement between the numerical and approximate solutions is qualitatively good
as both agree concerning the proper use of the sign, but there is a difference of up to 40% in
the case of Figure 2. In that case U+

d is almost zero. The effect of varying β+ on the dimer
mobility for the case with a lower inert sphere and an upper sphere with zero fixed flux,
i.e., α+ = β− = α− = 0 is illustrated in Figure 4. It is seen that in general

∣∣U −
d

∣∣ � ∣∣U+
d

∣∣
particularly for low and high values of β+. This means that the mobility is actually mostly
affected by the mobility constant of the lower inert sphere M− as already seen in Section 2.6
for the case pf β+ → ∞ . However, near the singular points (where the first is around
β+ ' 1.85 as discussed in the context of Figure 2), the two terms of the dimer mobility
are of similar magnitude, as seen in Figure 4, for the range of 1 < β+ < 10. It should also
be noted that those points of singularity usually mark a change in the signs of U+

d & U −
d .

The fact that the outer solution of Equation (46) points only towards the first singularity
indicates that the origin of the higher singularities is from the near fields of A(s) and B(s).
The numerical solution blows up at the points of singularity (where the matrix of Equation
(A4) becomes ill conditioned), pointing to the limitation of the current theory regarding
those points.
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Figure 4. The variation of the dimer mobility with the upper sphere fixed-rate β+ for the case of
a dimer with a lower inert sphere and no fixed flux for the upper sphere, i.e., α+ = β− = α− = 0,
where the solution was achieved by numerically solving Equations (7) and (30).

The flow fields corresponding to Figures 2 and 3 are illustrated in Figure 5. They were
calculated from the stream function formulation presented in Equation (31). This flow
field is attached to the dimer, and hence the far field shows uniform flow opposite to the
direction of Ud that can be calculated from Table 1, while taking M+ = M− = 1. There is not
much flow activity (as relative to the dimmer) in the area between the two spheres and
both flow fields show wakes both in the axial z direction and in the radial r direction, with
a visible effect at a distance of at least four times the spheres’ radii.

A more careful examination of the axial and radial velocity wakes shows a symmetric
axial wake as one may expect from the Stokes flow with the same rate of velocity recovery
for both cases. The universal behaviour of the far field of the normalised wake recovery is
typical to Stokes flow as already known for a particle of an arbitrary shape embedded in
free steam [48]. The axial wake is somewhat shorter, but one can conclude that at about a
distance of three times the sphere’s diameter (the diameter is considered as one in these
plots), the velocity recovery is almost complete.



Symmetry 2023, 15, 2019 13 of 19Symmetry 2023, 15, x FOR PEER REVIEW 13 of 18 
 

 

(a) 

 

(b) 

 

Figure 5. The velocity vector field around the dimer for the cases of (a) Figure 2 and (b) Figure 3, 
where 𝑀 = 1, 𝑀 = 1 and the vector’s length was rescaled for clarity. 

Figure 5. The velocity vector field around the dimer for the cases of (a) Figure 2 and (b) Figure 3,
where M+ = 1, M− = 1 and the vector’s length was rescaled for clarity.

This wake recovery has a consequence when one wants to use the developed theory
as a sub grid scale model for simulating the motions of several interacting dimers. This
is because the theory assumes a single dimer suspended in a free space (i.e., neglecting
the effect of nearby dimers), hence the implementation will be limited to a dilute mixture
of dimers in the medium. As a rule of thumb, one may check that the average distance
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between dimers is not smaller than six times the sphere’s diameter for the accuracy of
using this new developed theory as a sub grid model in a larger simulation, when it comes
to dimers of the properties investigated in Figures 2 and 3.

Finally, for completeness we show the variations of the first derivatives of the functions
A(s) & B(s) in Figure 6, for the case of Section 2.6, i.e., the upper sphere having an infinite
Damköhler number (β+ → ∞) and the lower sphere being inert. We see that the agreement
for dA/ds is very good between the asymptotic solution of Equation (42) and the numerical
solution for all ranges of s. However, the agreement for dB/ds is very good only for
s > 1. This explains the difference of about 24% found between the approximate and
numerical values for Ud as expressed at the end of Section 2.6. The flow fields showed
similar patterns to the previously discussed cases, and thus for the sake of brevity it is not
further discussed here.
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Figure 6. The variations of (a) A(s) and (b) B(s) with s for the case of a lower inert sphere and an
upper sphere with an infinitely large Damköhler number (β+ → ∞), according to the numerical
solution of Equation (41) and the approximate solution of Equation (42).
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4. Conclusions

A chemically active dimer consisting of two geometrically equal touching spherical
colloids with different fixed fluxes and fixed rates for solute concentration was considered
as it moves in a free space. New analytical solutions have been derived using two aux-
iliary functions A(s) and B(s) to compute the dimer mobility and the flow field around
it. Approximate solutions were derived for both A(s) and B(s) which were revealed to be
generally accurate as outer solutions when compared with the numerical solutions or the
exact analytical solutions that were available for a dimer with no fixed-rate reaction. In the
case of an upper sphere with a fixed-rate β+ and an inert lower sphere, the dimer mobility
was found to be highly dependent on the mobility constant of the lower inert sphere M-.
However, points of singularity in the newly developed solutions were also found, where
the first point is indicated by the approximate outer solutions of A(s) and B(s). At those
points the assumption of linearity used in this study may become questionable, and further
investigation is required. What is clear is that besides the first point of singularity, other
singularities at higher s occur due to the inner solutions of A(s) and B(s), pointing to a merit
in developing analytical inner solutions for A(s) and B(s) in the future.

The presented numerical procedure makes it an attractive candidate as a sub grid
scale model for a multi-scale simulation of a mixture of dimers. The numerical procedure
is rapid and should be easily implemented as long as the dimer’s properties make it far
from the points of singularity discussed earlier. The assumption of a dimer embedded in
a free space, limits this application for dilute mixture of dimers, where a simple rule of
thumb was suggested of keeping an average distance of at least about six times the sphere’s
diameter between the dimers. The effect of nearby walls or other boundaries can also be
important. This is not modelled in this study, but it can be analysed, for example using the
image method. The effect of a nearby wall may become significant when the dimer is at a
distance from the wall of less than three times the sphere’s diameter.
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Abbreviations
List of main symbols

A(s) Auxiliary function defined in Equation (4) and governed by Equation (7)

Ã(s)
Stream-function coefficient defined in Equation (32) and found in Equation (39) for
active dimer

a Radius of the sphere, normalised to 1
2 .

B(s) Auxiliary function defined in Equation (4) and governed by Equation (7)

B̃(s)
Stream-function coefficient defined in Equation (32) and found in Equation (39) for
active dimer

C Solute concentration

C(s)
Stream-function coefficient defined in Equation (20) and found in Equation (21) for
inert dimer

C̃(s)
Stream-function coefficient defined in Equation (32) and found in Equation (39) for
active dimer
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Dv Drag

D(s)
Stream-function coefficient defined in Equation (20) and found in Equation (21) for
inert dimer

D̃(s)
Stream-function coefficient defined in Equation (32) and found in Equation (39) for
active dimer

F(s) Auxiliary function defined in Equation (12)
f Faxen’s value of about 0.645

G(s)
Auxiliary function defined in Equation (15) and used to compute the dimer mobility
in Equation (30)

Jn Bessel function of the first kind and of n order
K Dynamic viscosity
k Diffusivity
M Mobility coefficient of the sphere
n Unit direction normal to the sphere
p Pressure
r Polar radial direction
S Surface area of the sphere
s Integration variable, e.g., Equation (4)
Ud Dimer mobility, computed in Equation (30)
→
u Velocity vector
z Axial (axisymmetry) co-ordinate, see Figure 1
α Sphere’s fixed-flux reaction
β Sphere’s fixed-rate reaction
µ Tangential-sphere system co-ordinate, defined in Equation (3)
σ Shear tensor
υ Tangential-sphere system co-ordinate, defined in Equation (3)
Ψ Stream function of the inert dimer
Ψ̃ Stream function of the active dimer
( )+ A property that belongs to the upper sphere
( )− A property that belongs to the lower sphere
JD Janus dimer

Appendix A. Numerical Solutions for the Functions A(s) and B(s)

In order to numerically solve Equation (7), the concept of staggered central finite
difference is used as follows:

d
ds

[
s× sinh2(s)

dA(s)
ds

]
i
∆s = si+0.5 × sinh2(si+0.5)

dA(s)
ds

∣∣∣∣
i+0.5
− si−0.5 × sinh2(si−0.5)

dA(s)
ds

∣∣∣∣
i−0.5

, (A1)

where ∆s = si+0.5 − si−0.5. Hence, discretising Equation (7a) using a uniform grid leads to:

si+0.5 × sinh2(si+0.5)(Ai+1 − Ai)− si−0.5 × sinh2(si−0.5)(Ai − Ai−1)

+ β+−β−
4 sinh(2si)∆s2 Ai +

β++β−
2 sinh2(si)∆s2Bi =

(α+−α−)−(β+−β−)
2 e−ssinh(si)∆s2, (A2)

where I = 1, 2, . . . , N. Taking that s1 = ∆s/2 means that the value of A0 does not affect
the solution of Equation (A2) (as long as A(s) has a singularity up to 1/s2). Similarly the
discretised Equation (7b) can be written as:

si+0.5 × cosh2(si+0.5)(Bi+1 − Bi)− si−0.5 × cosh2(si−0.5)(Bi − Bi−1)

+ β+−β−
4 sinh(2si)∆s2Bi +

β++β−
2 cosh2(si)∆s2 Ai =

(α+−α−)−(β+−β−)
2 e−scosh(si)∆s2, (A3)

Again, taking that s1 = ∆s/2 means that the value of B0 does not affect the solution of
Equation (A3) (as long as B(s) has a singularity lower than 1/s). For a very large s the bound-
ary conditions for Equations (A2) and (A3) can be taken as AN+1 = ANe−2∆s, BN+1 =
BNe−2∆s respectively, following Equation (9).

Equations (A2) and (A3) can be rewritten as a block tri-diagonal matrix equation
as follows:
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b1 c1 0 0 0 0 0
a2 b2 c2 0 0 0 0

0
. . . . . . . . . 0 0 0

0 0 ai bi ci 0 0

0 0 0
. . . . . . . . . 0

0 0 0 0 aN−1 bN−1 cN−1

0 0 0 0 0 aN bN





X1
X2
...

Xi
...

XN−1
XN


=



F1
F2
...

Fi
...

FN−1
FN


, (A4)

where,

ai =

(
si−0.5 × sinh2(si−0.5) 0

0 si−0.5 × cosh2(si−0.5)

)
, i = 2 · · ·N, (A5)

ci =

(
si+0.5 × sinh2(si+0.5) 0

0 si+0.5 × cosh2(si+0.5)

)
, i = 1 · · ·N, (A6)

bi =

(
β+−β−

4 sinh(2si)∆s2, β++β−
2 sinh2(si)∆s2

β++β−
2 cosh2(si)∆s2, β+−β−

4 sinh(2si)∆s2

)
− ai − ci

[
1− e−2∆s ×Θ(N − 0.5)

]
, i = 1 · · ·N, (A7)

Xi =

(
Ai
Bi

)
, Fi =

(
(α+−α−)−(β+−β−)

2 e−ssinh(si)∆s2

(α+−α−)−(β+−β−)
2 e−scosh(si)∆s2

)
, i = 1 · · ·N. (A8)

a1 = 0 and Θ(N − 0.5) is the step function. Equation (A4) can be solved using the
block Thomas algorithm [41].

Equation (41) can be discretised in a similar manner yielding:

ai =

(
0 0

sinh2(si−0.5) −tan h(si)cosh2(si−0.5)

)
, i = 2 · · ·N, (A9)

ci =

(
0 0

sinh2(si+0.5) −tan h(si)cosh2(si+0.5)

)
, i = 1 · · ·N, (A10)

bi =

(
1, tan h(si)
0, 0

)
− ai − ci

[
1− e−2∆s ×Θ(N − 0.5)

]
, i = 1 · · ·N, (A11)

Xi =

(
Ai
Bi

)
, Fi =

(
−e−s/cos h(si)

0

)
, i = 1 · · ·N, (A12)

where Equation (41) was divided by cosh(s) and Equation (42) was multiplied by sinh(s) before
discretisation. The matrix equation again can be solved using the block Thomas algorithm.
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