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Abstract: The rigid body displacement mathematical model is a Lie group of the special Euclidean
group SE (3). This article is about the Lie algebra se (3) group. The standard exponential map from
se (3) onto SE (3) is a natural parameterization of these displacements. In technical applications, a
crucial problem is the vector minimal parameterization of manifold SE (3). This paper presents a
unitary variant of a general class of such vector parameterizations. In recent years, dual algebra
has become a comprehensive framework for analyzing and computing the characteristics of rigid-
body movements and displacements. Based on higher-order fractional Cayley transforms for dual
quaternions, higher-order Rodrigues dual vectors and multiple vectorial parameters (extended by
rotational cases) were computed. For the rigid body movement description, a dual tangent operator
(for any vectorial minimal parameterization) was computed. This paper presents a unitary method
for the initial value problem of the dual kinematic equation.

Keywords: dual quaternion; orthogonal dual tensor; dual algebra; minimal parameterization
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1. Introduction

Although classical, studying the motion of rigid solid bodies is still an interesting field
in robotics [1–9], computer vision [10–12], kinematic equations and robot manipulation [13],
Cosserat media, molecular dynamics, and astrodynamics [14–34]. The representation of
the integration of the translational component with that of the rotational motion of a rigid
motion is possible if we consider the rigid motion not only as a motion of points but
also as a motion of directed lines. Mathematically, this equivalence corresponds to the
isomorphism between the Lie group SE (3) and the Lie group of orthogonal dual tensors [3].
Thus, a homogeneous matrix (the generic element of SE (3)) uniquely corresponds to a
dual orthogonal tensor (the generic element of SO3). The reinvention of unit quaternions
for studying rigid rotations (equivalent to the Euler–Rodrigues parameters) suggested the
dual version of the notion: unit dual quaternion. It inherits the character of non-singularity
and the correspondence with homogeneous matrices dedicated to rigid motion. In the past
decades, theoretical bases were reevaluated, and a different technique emerged from the
theory of the dual algebra realm [2–5,10–12,14–16,18,35–44]. Numerous applications have
utilized dual quaternions, developing multiple algorithms for the kinematic equations
associated with robotic manipulators [1–9], hand-eye calibration [10–12], serial and parallel
robotic systems control [13], astrodynamics [14–34], etc. [10–12,14–16,18,39,40,42–46].

This paper aims to present a general framework for rigid body displacements in SE (3)
through the Lie group parametrization and rigid body motions using dual algebra [47–52].

The novelty of this paper is the approach of higher-order fractional Cayley transforms
from the Lie algebra of the Lie group of unit dual quaternions [53]. The closed-form ex-
pression of this transform and its inverse are explicitly determined, coordinate-free, and in
closed form. By the inverse of this higher-order fractional Cayley map (the inverse of the
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modified Cayley transform is a multi-valued function with n-branches), the higher-order
Rodrigues dual vector parameter and their shadow are obtained in explicit form. A novel
modification of the fractional Cayley transform for vectorial parameterizations of various
parameterizations embeds multiple documented attitude parameterization Cayley trans-
forms while expanding their applicability to pose parameterization. Regarding the motion
of a rigid body, a unitary method for the dual kinematic equation (the Poisson–Darboux
problem) is presented via a dual tangent operator of higher-order fractional Cayley trans-
forms for dual vector parameterization by rigid body motion. According to the authors’
knowledge, this paper presents it for the first time.

The paper is structured as follows: in the second section, a mathematical preliminary
for dual algebra (dual numbers, dual vectors, dual tensors) is introduced. Using these
mathematical results, we investigate in the third section the rigid body motion param-
eterization through an orthogonal dual tensor, and two equivalent representations are
provided. Using these findings, we investigate in the fourth and fifth sections the unit
dual quaternions, homomorphism with orthogonal dual tensors, and higher-order Cayley
map. In the seventh section, the definition and properties of the higher-order fractional
Cayley transform are presented. Moreover, kinematic equations and tangent operators for
multiple parameterizations with applications are discussed. The last section presents the
conclusions and further works.

2. Mathematical Preliminaries

In the following section, we provide properties of dual numbers, dual vectors, and
dual tensors. Additional details can be found in the following references: [35,36,42,45,46].

2.1. Dual Numbers

We denote the set of real dual numbers as R:

R = R+ εR =
{

a = a + εa0

∣∣∣a, a0 ∈ R, ε2 = 0, ε 6= 0
}

(1)

where a = Re(a) represents the real component of a and a0 = Du(a) signifies the dual
component. The operations of addition and multiplication among dual numbers establish
a ring in R that incorporates a zero divisor structure. This paper emphasizes several
properties of dual numbers, with a focus on magnitude and the inverse. The square
of a dual number’s magnitude adheres to the relationship |a|2 = a2, computable using
|a| = |a|+ εsgn(a)a0. Conversely, denoted by a−1 ∈ R, the inverse of a dual number exists
solely when Re(a) 6= 0, determined through a−1 = 1

a = 1
a − ε a0

a2 . Additionally, a dual
number a ∈ R qualifies as a zero divisor if and only if Re(a) = 0. These properties indicate
that the structure (R,+, ·) forms a ring that is both commutative and unitary, where each
element a ∈ R is either invertible or a zero divisor.

Any differentiable function f : I ⊂ R→ R, f = f (a) is completely defined on I ⊂ R
such that:

f : I ⊂ R→ R, f (a) = f (a) + εa0 f ′(a) (2)

Based on the previous property, we can compute: cosa = cosa− εa0sina; sina = sina+

εa0cosa; n
√

a = n
√

a + ε a0
n n√an−1 ; tana = tana + ε a0

cos2a ; arctan(a)

= arctan(a) + ε a0
1+a2

2.2. Dual Vectors

In the Euclidean space, the linear space of free vectors with dimension 3 is denoted by
V3. The ensemble of dual vectors is defined as:

V3 = V3 + εV3 =
{

a = a + εa0; a, a0 ∈ V3, ε2 = 0, ε 6= 0
}

(3)
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where a = Re(a) is the real part of a and a0 = Du(a) is the dual part. For dual vectors,
three products are considered: scalar product (denoted by a·b), cross product (denoted by
a× b) and triple scalar product (denoted by 〈a, b, c〉 = a·(b× c)). Regarding the algebraic
structure,

(
V3,+, ·R

)
is a free R-module [42].

For any dual vector a ∈ V3, the magnitude of a, denoted by |a|, is the dual number
which fulfills |a|·|a| = a·a and can be computed using:

|a| =
{
‖a‖+ ε a0·a

‖a‖ , Re(a) 6= 0

ε‖a0‖, Re(a) = 0
(4)

where ‖·‖ is the Euclidean norm. If |a| = 1, then a is called the unit dual vector.

Proposition 1 [42]. For any a ∈ V3, a dual number α ∈ R, and a unit dual vector ua ∈ V3 exist
to have:

a = α ua (5)

The computational formulas for α and ua, are ±α = |a|

±ua =


a
‖a‖ + ε

a×(a0×a)
‖a‖3 Re(a) 6= 0

a0
‖a0‖

+ εv× a0
‖a0‖ , ∀v ∈ V3 Re(a) = 0

(6)

Also, for Re(a) 6= 0, α, and uaare unique up to a sign change.

The result emphasizes that any dual vector a ∈ V3, with Re(a) 6= 0 corresponds with
a labeled directed line in the Euclidean three-dimensional space. This directed line has
the following parametric equation: r = a×a0

‖a‖2 + λ a
‖a‖ , ∀λ ∈ R. If Re(a) = 0 the parametric

equation is r = v + λ a0
‖a0‖

, ∀v ∈ V3, ∀λ ∈ R.

2.3. Dual Tensors

A R-linear mapping of V3 into V3 is called a Euclidean dual tensor:

T(λ1v1 + λ2v2) = λ1T(v1) + λ2T(v2), ∀λ1, λ2 ∈ R, ∀v1, v2 ∈ V3 (7)

Any tensor within the Euclidean dual space is referred to succinctly as a dual tensor,
and L(V3, V3) denotes the free R-module of dual tensors. Each dual tensor T ∈ L(V3, V3)
is subject to decomposition into T = T + εT0, with both T, T0 ∈ L(V3, V3) standing as real
tensors. Furthermore, the transposed dual tensor, denoted by TT, is defined by:

v1·(Tv2) = v2·
(

TTv1

)
, ∀v1, v2 ∈ V3 (8)

while, ∀v1, v2, v3 ∈ V3, Re(〈v1, v2, v3〉) 6= 0 the determinant is:

〈Tv1, Tv2, Tv3〉 = detT〈v1, v2, v3〉 (9)

For any dual vector a ∈ V3 the associated skew-symmetric dual tensor is denoted by
∼
a and is defined by:

∼
a b = a× b, ∀b ∈ V3 (10)

The previous definition leads us to the following result: for any skew-symmetric
dual tensor A ∈ L(V3, V3), A = −AT, there exists a distinct and unique dual vector
a = vectA, a ∈ V3 such that the relationship A b = a× b, ∀b ∈ V3. The set of skew-
symmetric dual tensors forms a structured entity specifically a free R-module of rank 3 that
is isomorphic with V3.
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Focusing on describing the dual tensor, in this paper we will use the category of invari-
ants called linear invariants, which are denoted by vectT = vect 1

2
[
T− TT], traceT where:

traceT =
〈Tv1, v2, v3〉+ 〈v1, Tv2, v3〉+ 〈v1, v2, Tv3〉

〈v1, v2, v3〉
(11)

for any v1, v2, v3 ∈ V3 with Re(〈v1, v2, v3〉) 6= 0 [42,45].
Given two dual vectors a and b ∈ V3, a⊗ b denotes a dual tensor called tensor (dyadic)

product and is defined by:

a⊗ b : V3 → V3, (a⊗ b)v = (v·b)a, ∀v ∈ V3 (12)

An important property of Equation (12) is (a⊗ b)(c⊗ d) = (b·c)a ⊗ d. If B =
{e1, e2, e3} is a right handed orthonormal basis of dual vectors, and a = ∑3

i=1 aiei,
b = ∑3

i=1 biei, the dyadic product a⊗ b is linked to a matrix of dual numbers computed

as [a⊗ b] = aebeT, where ae =
[
a1, a2, a3]T and be =

[
b1, b2, b3

]T
. Also, the skew-

symmetric tensor is linked to a matrix of dual numbers
∼
a
⌉
=

 0 −a3 a2

a3 0 −a1

−a2 a1 0

. More

details on relations between dual numbers, dual vectors, and dual matrices can be found
in [36,45].

3. Rigid Body Motion Parameterization through Orthogonal Dual Tensors

Let the orthogonal dual tensor set be denoted by:

SO3 =
{

R ∈ L(V3, V3)
∣∣∣RRT = I, detR = 1

}
(13)

where SO3 represents the set of real special orthogonal dual tensors and I stands as the unit
orthogonal dual tensor. The internal structure of any orthogonal dual tensor R ∈ SO3 is
illustrated in a series of results that were detailed in our previous work [45].

Theorem 1 [45]. (Structure Theorem). For any R ∈ SO3, a unique decomposition is viable:

R =
(

I + ε
∼
ρ
)

Q (14)

where Q ∈ SO3 and ρ ∈ V3 are called structural invariants.

Next, we introduce an isomorphism between the Lie group SE3 and the Lie group SO3:

Theorem 2 [45]. (Isomorphism theorem). The special Euclidean group (SE3, ·) and
(

SO3, ·
)

are
connected via the isomorphism:

φ : SE3 → SO3, φ(g) =
(

I + ε
∼
ρ
)

Q (15)

where g =

[
Q ρ
0 1

]
.

The inverse of φ is:

φ−1 : SO3 ↔ SE3; φ−1(R) =

[
Q ρ
0 1

]
(16)

where Q = Re(R), ρ = vect
(

Du(R)·QT).
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Considering the Lie group structure of SO3 and the result presented in the previous
theorems, we ascertain that any orthogonal dual tensor R ∈ SO3 can be used to globally
parameterize displacements of rigid bodies, as detailed in references [45,46].

Theorem 3 [45]. (Representation Theorem). For any orthogonal dual tensor R defined as in
Equation (14), a dual number α = α + εd and a dual unit vector u = u + εu0 can be computed
to have:

R(α, u) = I + sinα
∼
u + (1− cosα)

∼
u

2
= exp

(
α
∼
u
)

(17)

The computational formulas for α, u, d, u0, are:

α = atan2
(
± 1

2

√
(1 + traceQ)(3− traceQ); traceQ−1

2

)

u =



±vect
(

1√
(1+traceQ)(3−traceQ)

(
Q−QT)), when traceQ ∈ (−1, 3)

Qv+v
‖Qv+v‖ , ∀v ∈ V3, when traceQ = −1 (Q is symmetric)

ρ
‖ρ‖ , when traceQ = 3(Q = I)

d = ρ·u

u0 =

{ 1
2 ρ× u + 1

2 cot α
2 u× (ρ× u), α 6= 0

1
2 ρ× u, α = 0

(18)

The parameters α and u are called the natural invariants of R. The unit dual vector
u gives the Plücker representation of the Mozzi–Chalses axis [35], while the dual angle
α = α + εd contains the rotation angle α and the translation distance d. If α ∈ R, then
we have the parameterization of a rotation, while for α ∈ εR, the parameterization de-
scribes translation.

Theorem 4. The natural invariants α = α + εd, u = u + εu0 can be used to directly recover the
structural invariants Q and ρ from Equation (14):

Q = I + sinα
∼
u + (1− cosα)

∼
u

2

ρ = du + sinαu0 + (1− cosα)u× u0

(19)

Proof. To prove Equation (19), we need to use Equations (14) and (17). If these equations are
equal, then the structure of their dual parts lead to the result presented in Equation (19). �

4. Dual Quaternions and Orthogonal Dual Tensors

A dual quaternion can be defined as an associated pair of a dual scalar quantity and a
free dual vector [17,18,36,41]:

q̂ =
(

q, q
)

, q ∈ R, q ∈ V3 (20)

The set of dual quaternions will be denoted as Q and is a R-module of rank 4, if dual
quaternion addition and multiplication with dual numbers are considered.

The product of two dual quaternions q̂
1
=
(

q
1
, q

1

)
and q̂

2
=
(

q
2
, q

2

)
is defined by:

q̂
1
q̂

2
=
(

q
1
·q

2
−q

1
·q

2
, q

1
q

2
+ q

2
q

1
+ q

1
× q

2

)
(21)

Given the properties outlined above, it emerges that the R-module Q evolves into
an associative, non-commutative linear dual algebra of the fourth order, grounded in the
foundational structure of dual numbers. For every dual quaternion, as characterized by
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Equation (20), the following can be computed: the conjugate denoted by q̂∗ =
(

q,−q
)

,

and the norm, denoted by
∣∣∣q̂∣∣∣ = √

q̂q̂∗. When perceived purely within the context of a
free R-module, Q contains two remarkable submodules, namely QR and QV3

. The initial

submodule assembles entities of the form
(

q, 0
)

, q ∈ R, establishing an isomorphism with

R, and the second one, containing the pairs
(

0, q
)

, q ∈ V3, achieving an isomorphism with
V3. Moreover, the expression of any dual quaternion can be written as q̂ = q + q, where

q =
(

q, 0
)

and q =
(

0, q
)

, or q̂ = q̂ + εq̂0, where q̂, q̂0 are real quaternions.
Denoting U the set of real unit quaternions (|q̂| = 1) and U the set of dual unit

quaternions
(∣∣∣q̂∣∣∣ = 1

)
paves the way for understanding the components of a unit dual

quaternion, commonly referred to as dual Euler parameters in their scalar and vector forms.

Theorem 5. For any q̂ ∈ U, the following representation is valid:

q̂ =

(
1 + ε

1
2

ρ̂

)
q̂ (22)

where ρ ∈ V3 and q̂ ∈ U.

Proof. q̂ ∈ U⇐⇒ q̂ q̂* = 1⇐⇒ ( q̂ + εq̂0)
(

q̂* + εq̂*
0

)
= 1 ⇐⇒ q̂q̂* + ε

(
q̂0q̂* + q̂q̂*

0

)
= 1.

From previous equation it follows: q̂q̂* = 1⇐⇒ q̂ ∈ U and q̂0q̂* + q̂q̂*
0 = 0̂ ⇐⇒ q̂0q̂* ∈ V3 .

By denotation ρ̂ = 2q̂0q̂*, Theorem 5 is proved. �

This representation is the quaternion counterpart to Equation (14). Based on Theorem 5,
a dual number α and a dual vector u exist so that:

q̂ = cos
α

2
+ usin

α

2
= exp

(α

2
u
)

, ∀q̂ ∈ U (23)

Lemma 1. The mapping denoted exp : V3 → U , q̂ = exp α
2 is well defined and onto.

Given the way U is constructed, along with the rules governing the multiplication of
dual quaternions, we can conclude that the Lie group structure (V3 being the associated
Lie algebra, where the cross-product operation between dual vectors is intrinsic), allows
for the global parameterization of all possible rigid body motions.

Using the internal structure of any element from SO3, the following theorem is valid:

Theorem 6. The Lie groups U and SO3 are linked by an onto homomorphism:

∆ : U→ SO 3, ∆
(

q + q
)
= I + 2q

∼
q + 2

∼
q

2
(24)

Proof. Considering that any dual quaternion q̂ ∈ U can undergo decomposition as in-

dicated in Equation (23), it follows that the expression ∆
(

q̂
)
= exp

(
α
∼
u
)
∈ SO3. This

validates that relation Equation (24) is well defined. By straightforward computation, one
can confirm that ∆

(
q̂

2
q̂

1

)
= ∆

(
q̂

2

)
∆
(

q̂
1

)
.

Furthermore, any orthogonal dual tensor R ∈ SO3 can be expressed as per Theorem 3,

specifically, R = exp
(

α
∼
u
)

. Consequently, it is possible to identify a dual quaternion q̂ =

exp
( α

2 u
)

such that ∆
(

q̂
)
= R, substantiating that ∆ operates as a surjective homomorphism.

The proof is thus complete. �
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An important property of the previous homomorphism is that for q̂ and −q̂ we can
associate the same orthogonal dual tensor, which shows that Equation (24) is not injective
and U is a double cover of SO3.

5. Cayley Transform for Dual Orthogonal Tensors

The Lie algebra of SO3 is the skew-symmetric dual tensors set denoted by so3 ={
∼
α ∈ L(V3, V3)

∣∣∣∣∼α = −∼α
T
}

, where the internal mapping is
〈∼

α1,
∼
α2

〉
=
∼̃
α1α2 [45]. The link

between the Lie algebra so3, the Lie group SO3, and the exponential map is given by:

Theorem 7. [45]. The mapping

exp : so3 → SO3, exp
(∼

α
)
= e

∼
α =

∞

∑
k=0

∼
α

k

k!
(25)

is well defined and onto.

A screw axis is representable through a unit dual vector, while the screw parameters
(the angle of rotation about the screw and the translation along the screw axis) can be
combined into a dual angle. The computation of the screw axis intertwines with the task of
calculating the logarithm of an orthogonal dual tensor, represented as R, as it involves a
multifunction defined by

log : SO3 → so3, logR =
{∼

α ∈ so3

∣∣∣exp
(∼

α
)
= R

}
(26)

and is the inverse of Equation (25).
Based on Theorem 3, for any orthogonal dual tensor R, a Euler dual vector α =

α u = α + εα0 can be computed and represents the screw dual vector which embeds the
screw axis and screw parameters. The form of α implies that

∼
α ∈ logR. The types of

rigid displacements that can be parameterized by α are: (i) general screw displacement
(if α 6= 0, α0 6= 0 and α·α0 6= 0); (ii) pure translation (if α = 0 and α0 6= 0); and (iii) pure
rotation (α 6= 0 and α·α0 = 0). Also, if |α| < π, Theorem 3 can be used to uniquely recover
the Euler dual vector α which is equivalent to computing logR.

The first-order Cayley transform is a map between the Lie algebra so3 and the Lie
group SO3.

Theorem 8. The map

cay() : so3 → SO3, cay
(∼

v
)
=
(

I +
∼
v
)(

I− ∼v
)−1

(27)

is well defined and onto.

Proof. For any
∼
v ∈ SO3, the value of det

(
cay
(∼

v
))

is:

det
(

cay
(∼

v
))

= det
[(

I +
∼
v
)(

I− ∼v
)−1

]
=

1 + |v|2

1 + |v|2
= 1 (28)

while

cay
(∼

v
)[

cay
(∼

v
)]T

=
(

I +
∼
v
)(

I− ∼v
)−1(

I− ∼v
)(

I +
∼
v
)−1

= I (29)

Equations (28) and (29) prove that the first-order Cayley transform is well defined.
The computation for the inverse of tensor

(
I− ∼v

)
, is:

(
I− ∼v

)−1
=

1

1 + |v|2

(
∼
v

2
+
∼
v
)
+ I (30)
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Equations (27) and (30) leads to:

cay
(∼

v
)
= I + 2

|v|
1 + |v|2

∼
v
|v| +

(
1− 1− |v|2

1 + |v|2

) ∼
v

2

|v|2
(31)

Considering

sinα =
2tan α

2
1 + tan2 α

2
; cosα =

1− tan2 α
2

1 + tan2 α
2

(32)

result:

cay
(∼

v
)
= I + sinα

∼
u + (1− cosα)

∼
u

2
(33)

where α = 2arctan|v|. Therefore, the first-order Cayley transform is onto. �

The previous theorem leads to the following result:

Corollary 1. The parametrization cay(
∼
v) is associated with pure rotation if and only if |v| ∈ R.

Conversely, when |v| ∈ εR, cay(
∼
v) represents pure translation. In all other cases, the mapping

cay(
∼
v) describes a general rigid body displacement.

A dual vector b =
(
tan α

2
)
u (named Rodrigues dual vector) exists for the purpose of

having cay(
∼
b) = R, ∀R ∈ SO3, R = R(α, u) and Re(α) 6= kπ, k ∈ Z.

6. Cayley Transforms for Unit Dual Quaternions

In this section we studied the Cayley transform from Lie algebra to dual vectors V3 by
Lie group of unit dual quaternions U.

Theorem 9. The Cayley map cay : V3 → U

cay(v) = (1 + v)(1− v)−1 (34)

is well defined and onto.

Proof. Based on the quaternion product results, we can see that:

cay(v) =
1 + v
1− v

=
(1 + v)2

1 + |v|2
(35)

If we compute the norm of the previous equation, using quaternionic calculus:

|cay(v)| = |1 + v|
|1− v| =

√
1 + |v|2√
1 + |v|2

= 1 (36)

which proves that the map is well defined. In Equation (36) on using the definition:∣∣∣q̂∣∣∣ = √q̂q̂∗ ⇐⇒ |1 + v| =
√
(1 + v)(1− v) =

√
(1− v2) =

√
1 + |v|2. ∀q̂ ∈ U we can

find by Equation (35) a dual vector v ∈ V3, v =
q̂−1
q̂+1 to have cay(v) = q̂, which proves that

the map is onto. �

Corollary 2. cay(v) is the parameterization of a pure rotation if and only if |v| ∈ R. Meanwhile,
if |v| ∈ εR, the mapping cay(v)is the parameterization of a pure translation. Otherwise, cay(v) is
the parameterization of general rigid body displacement.
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A dual number α and a dual vector u can be considered to have:

q̂ = cos
α

2
+ usin

α

2
(37)

The results for Re(α) 6= 2kπ

σ = tan
α

4
u (38)

which can be interpreted as a modified Rodrigues dual vector [54] (a.k.a Wiener–Milenković
dual vector [55]).

The representation given by Equation (34) plays an important role in addressing the
complexities of successive rigid body displacements. Consider dual vectors σ1 = tan α1

4 u1
and σ2 = tan α2

4 u2 to describe two separate rigid displacements.
Consider q̂ as the dual quaternion representing the composition of two rigid body

displacements. Let σ = tan α
4 u be the modified Rodrigues dual vector of this rigid body

composition. The dual vector σ is expressed by the equation:

σ =
q̂− 1
q̂ + 1

(39)

Considering that q̂ = cay(σ2)cay(σ1), we obtain:

σ =

(
1+σ2
1−σ2

)(
1+σ1
1−σ1

)
− 1(

1+σ2
1−σ2

)(
1+σ1
1−σ1

)
+ 1

. (40)

The dual vector associated with Equation (40) is, after some quaternionic product
calculations:

σ =

(
1− |σ2|

2
)

σ1 +
(

1− |σ1|
2
)

σ2 + 2σ2 × σ1

(1− σ2·σ1)
2 + |σ2 × σ1|

2 (41)

Next, we present a Cayley-like fractional map:

Theorem 10. The fractional order Cayley-like map denoted as cay 1
2

: V3 → U is established
as follows:

cay 1
2
(v) = (1 + v)

1
2 (1− v)−

1
2 (42)

It is well defined and onto.

Proof. Using quaternionic calculus the chosen Cayley transform can also be expressed as:

cay 1
2
(v) =

√
1 + v
1− v

= ± 1 + v√
1 + |v|2

(43)

It is clear that cay 1
2
(v) is well defined and

∣∣∣cay 1
2
(v)
∣∣∣ = 1.

Now, for any q̂ ∈ U, q̂ = cos α
2 + usin α

2 , a dual vector v ∈ V3 exists to have, by
Equation (42):

v =
q̂2 − 1

q̂2 + 1
(44)

This dual vector is v = tan α
2 u, Re(α) 6= kπ, which proves that the map cay 1

2
(v) is

onto. �
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This also shows that the Rodrigues dual vector can be recovered through the inverse
of the Cayley map given in Equation (44).

Corollary 3. The parametrization cay 1
2
(v) is associated with pure rotation if and only if |v| ∈ R.

Meanwhile, if |v| ∈ εR, the mapping cay 1
2
(v) is the parameterization of a pure translation.

Otherwise, cay 1
2
(v) describes a general rigid body displacement.

Consider b1 = tan α1
2 u1 and b2 = tan α2

2 u2, the Rodrigues dual vectors that parameter-
ize two rigid displacements. The Rodrigues dual vector for the composition of these two
rigid body displacements is given by:

b =
b1 + b2 + b2 × b1

1− b1·b2
(45)

This result is a clear indication that we need to explore the properties of higher-order
fractional Cayley transforms.

7. Higher-Order Fractional Modified Cayley Transform

Up next, we introduce a range of findings derived from utilizing a set of fractional
Cayley transforms. Notably, these fractional Cayley transforms differ from those previously
documented in [20,21,56–58].

Theorem 11. The fractional order Cayley transform:

cay n
2

: V3 → U

cay n
2
(v) = (1 + v)

n
2 (1− v)−

n
2 , n ∈ N∗

(46)

are well defined and onto.

Proof. Using direct calculus we find that cay n
2
(v)cay n

2

∗(v) = 1 and
∣∣∣cay n

2
(v)
∣∣∣ = 1. �

The surjectivity is proved by the following theorem:

Theorem 12. The inverse of the previous fractional order Cayley map is a multi-valued function
with n branches cay n

2
(v)−1 : U→ V3 given by:

v =

n
√

q̂2 − 1

n
√

q̂2 + 1
(47)

Proof. By Equation (47): q̂ = (1 + v)
n
2 (1− v)−

n
2 =

(
1+v
1−v

) n
2 ⇐⇒ 1+v

1−v = n
√

q̂2 ⇐⇒ v =
n
√

q̂2−1

n
√

q̂2+1
. �

Corollary 4. The parameterization cay n
2
(v) is associated with a pure rotation if and only if

|v| ∈ R. Meanwhile, if |v| ∈ εR the mapping cay n
2
(v)is the parameterization of a pure translation.

Otherwise, the parameterization cay n
2
(v)describes a general screw displacement.

Considering that a dual number α and a dual vector u exist to have:

q̂ = cos
α

2
+ usin

α

2
(48)

we find that by Equation (48):

v = tan
α + 2kπ

2n
u, k = {0, 1, . . . , n− 1} (49)
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From Equation (49), k = 0, and the principal parameterization v0 = tan α
2n u, which is

the higher-order Rodrigues dual vector.
For k = {1, . . . , n− 1}, the dual vectors vk = tan α+2kπ

2n u are the shadow parameteriza-
tions that can be used to describe the same pose. Based on |v0| = tan α

2n and |vk| = tan α+2kπ
2n ,

shows that |vk| =
|v0|+tan kπ

n
1−|v0|tan kπ

n
. If Re(|v0|)→ ∞ , then Re(|vk|)→ −cot kπ

n , which allows the

avoidance of any singularity of type Re
( α

2n
)
= π

2 + kπ.

Theorem 13. If v ∈ V3 is the parameterization of a displacement obtained from Equation (41),

±q̂ =
1√(

1 + |v|2
)n

[pn(|v|) + qn(|v|)v] (50)

where:

pn(X) =
[n/2]

∑
k=0

(−1)k
(

n
2k

)
X2k (51)

qn(X) =
[(n−1)/2]

∑
k=0

(−1)k
(

n
2k + 1

)
X2k (52)

In Equation (51),
(

n
k

)
are binomial coefficients and [.] respresents the floor of a number.

Proof. Consider ±q̂ = (1 + v)
n
2 (1− v)

n
2 . Based on the properties of the dual quaternions

product results:

±q̂ =
(1 + v)n(√
1 + |v|2

)n =
1(√

1 + |v|2
)n

n

∑
k=0

(
n
k

)
vk. (53)

Considering that

vk =



|v|4p, k = 4p

|v|4pv, k = 4p + 1

−|v|4p+2, k = 4p + 2

−|v|4p+2v, k = 4p + 3

, p ∈ N (54)

the dual quaternion ±q̂ can be expressed by:

±q̂ =
1(√

1 + |v|2
)n [pn(v) + qn(v)·v] (55)

which proves the theorem. �

Lemma 2. The structure of the polynomials pn(X) and qn(X), given by Equations (51) and (52),
can be used to obtain the following iterative expressions:

pn+1(X) = pn(X)− X2qn(X)

qn+1(X) = qn(X) + qn(X)

p1(X) = 1, q1(X) = 1

(56)
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To assess the practicality of the iterative formulas, we present polynomials ranging from the second
to the fifth order, along with the corresponding quaternions that emerge:

•
p1(X) = 1; q1(X) = 1;

±q̂ = 1√
1+|v|2

[1 + v]; v = tan α
2 u

•
p2(X) = 1− X2; q2(X) = 2;

±q̂ = 1
1+|v|2

[
1− |v|2 + 2v

]
; v = tan α

4 u

•
p3(X) = 1− 3X2; q3(X) = 3− X2;

±q̂ = 1√
(1+|v|2)

3

[
1− 3|v|2 +

(
3− |v|2

)
v
]
; v = tan α

6 u

•
p4(X) = 1− 6X2 + X4; q4(X) = 4− 4X2;

±q̂ = 1

(1+|v|2)
2

[
1− 6|v|2 + |v|4 + 4

(
1− |v|2

)
v
]
; v = tan α

8 u

•
p5(X) = 1− 10X2 + 5X4; q5(X) = 5− 10X2 + X4;

±q̂ = 1√
(1+|v|2)

5

[
1− 10|v|2 + 5|v|4 +

(
5− 10|v|2 + |v|4

)
v
]
; v = tan α

10 u

A direct consequence is that previous equations hold true for both the primary param-
eterization and its corresponding shadows. Another important result is the following:

Theorem 14. The orthogonal dual tensor associated with Equation (55) is (according to Theorem 6):

R = I +
2pn(|v|)qn(|v|)(

1 + |v|2
)n

∼
v +

2q2
n(|v|)(

1 + |v|2
)n
∼
v

2
(57)

To demonstrate the efficacy of the iterative terms, we supply orthogonal dual tensors
from the second through the fifth order:

• R = I + 2
1+|v|2

[
∼
v +

∼
v

2
]

; v = tan α
2 u;

• R = I + 4

(1+|v|2)
2

[(
1− |v|2

)∼
v + 2

∼
v

2
]

; v = tan α
4 u;

• R = I +
2(3−|v|2)

(1+|v|2)
3

[(
1− 3|v|2

)∼
v +

(
3− |v|2

)∼
v

2
]

; v = tan α
6 u;

• R = I +
8(1−|v|2)

(1+|v|2)
4

[(
1− 6|v|2 + |v|4

)∼
v + 4

(
1− |v|2

)∼
v

2
]

; v = tan α
8 u;

• R = I +
2(5−10|v|2+|v|4)

(1+|v|2)
5

[(
1− 10|v|2 + 5|v|4

)∼
v +

(
5− 10|v|2 + |v|4

)∼
v

2
]

; v = tan α
10 u.

The composition of two rigid displacements parameterized by v1 and v2 can be
modeled by:

v =

n

√[(
1+v2
1−v2

) n
2
(

1+v1
1−v1

) n
2
]2
− 1

n

√[(
1+v2
1−v2

) n
2
(

1+v1
1−v1

) n
2
]2

+ 1

(58)

Until now we have discussed about the fractional Cayley transform for vectorial
parameterizations of type tan α

2n u and their shadows.
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Next, we uncover a new type of fractional Cayley transform for vectorial parameteri-
zations of type v = ϕ(α)u, where α and u are the natural invariants and ϕ(α) : R→ R is
smooth mapping.

Theorem 15. Consider a : V3 → R , a = a(v), with Re(a(v)) 6= 0.
The mapping caym n

2
(v) : V3 → U ,

caym n
2
(v) = (a(v) + v)

n
2 (a(v)− v)−

n
2 (59)

are well defined.

Proof. For any dual vector v ∈ V3 we have caym n
2
(v)caym n

2
(v)∗(v) = 1 and caym n

2
(v) =

± [a(v)+v]n√
(|a(v)|2+|v|2)

n .

Now consider q̂ = cos α
2 + usin α

2 ∈ U, the inverse of the mapping Equation (59)
contains n branches to have:

v
(

q̂
)
= a(v)tan

α + 2kπ

2n
u, k = {0, 1, . . . , n− 1} (60)

�

Theorem 16. If v = ϕ(α)u is a vectorial parameterization of displacement, with ϕ : R→ R
being invertible (denoted by ϕ−1(|v|), then the corresponding dual quaternion is:

±q̂(v) =
(a(v) + v)n√(
|a(v)|2 + |v|2

)n
(61)

where a(v) = |v|cot ϕ−1(|v|)+2kπ
2n , k ∈ {0, 1, . . . , n− 1}.

Proof. According to Equation (61) the following expression is true: a(v) = |v|cot α+2kπ
2n .

This expression combined with α = ϕ−1(|v|) proves the theorem. �

Theorem 17. If v = ϕ(α)u represents a vectorial parameterization of displacement, then the
associated dual quaternion is:

±q̂(v) =
1√

(1 + w2)
n
[pn(w) + qn(w)v] (62)

where w = |v|
a(v) and

pn(X) =
[n/2]

∑
k=0

(−1)k
(

n
2k

)
X2k (63)

qn(X) =
[(n−1)/2]

∑
k=0

(−1)k
(

n
2k + 1

)
X2k (64)

and [.]represents the floor of a number and
(

n
k

)
are binomial coefficients.

Corollary 5. The orthogonal dual tensor associated with Equation (63) is:

R = I +
2pn(w)qn(w)

(1 + w2)
n
∼
v +

2q2
n(w)

(1 + w2)
n
∼
v

2
(65)

where w = |v|
a(v) .
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Selections for the dual function a(v) enable the possibility of recovering various
vectorial parameterizations, including azimuthal projections [7], and have the potential for
extension to encompass pose parameterizations as well.

1 Let the normal higher-order dual Rodrigues vector v = 2ntan α
2n u, a(v) = 2n

• ±q̂ = 1√
(1+w2)

n [pn(w) + qn(w)v], where w = |v|
2n

• R = I + 2pn(w)qn(w)

(1+w2)
n
∼
v + 2q2

n(w)

(1+w2)
n
∼
v

2
, where w = |v|

2n

These parameterizations have the following asymptotical behaviors:

• lim
n→∞

(2n+v)n(√
4n2+|v|2

)n = exp
( α

2
)

• lim
n→∞

[
I + 2pn(w)qn(w)

(1+w2)
n
∼
v + 2q2

n(w)

(1+w2)
n
∼
v

2
]
= exp

(∼
α
)

.

2 Let the dual orthographic projection v = sin α
2 u, a(v) =

√
1− |v|2 and n = 1:

• ±q̂(v) =
√

1− |v|2 + v ∈ U

• R(v) = I + 2
√

1− |v|2∼v + 2
∼
v

2
.

3 Let the dual Lambert parameters v = sin α
4 u, a(v) =

√
1− |v|2 and n = 2:

• ±q̂(v) = 1− 2|v|2 + 2
√

1− |v|2v ∈ U

• R(v) = I + 4
(

1− |v|2
)√

1− |v|2∼v + 8
(

1− |v|2
)∼

v
2
.

4 Let the dual Breusing parameters v = tan α
4

√
cot α

4 u, a(v) =

√√
4+|v|4−|v|2

2 and n = 2:

• ±q̂(v) = a2(v)−|v|2

|a(v)|2+|v|2
+ 2a(v)
|a(v)|2+|v|2

v;

• R(v) = I +
4a(v)[a2(v)−|v|2]

(|a(v)|2+|v|2)
2
∼
v + 8a2(v)

(|a(v)|2+|v|2)
2
∼
v

2
.

5 Let the dual sin family parameters v = sin α
2n u; a(v) =

√
1− |v|2, n ∈ N∗:

• ±q̂(v) =
(√

1− |v|2 + v
)n

= Pn(|v|) + Qn(|v|)v;

• R(v) = I + 2Pn(|v|)Qn(|v|)
∼
v + 2Q2

n(|v|)
∼
v

2
.

where Pn(|v|) =
(√

1− |v|2
)n

pn

(
|v|√

1−|v|2

)
and Qn(|v|) =

(√
1− |v|2

)n−1
qn

(
|v|√

1−|v|2

)
,

pn(|v|) and qn(|v|) being computed from Equations (63) and (64).

8. Kinematic Equation and Tangent Operator by Multiple Parameterizations of Motion

Let Q = Q(t) ∈ SOR
3 and ρ = ρ(t) ∈ VR

3 represent the parametric expressions for any
rigid body motion.

The dual tensor function R(t) =
(

I + ε
∼
ρ(t)

)
Q(t), wheretrepresentsthetimevariable,

which can be parameterized by a curve in SO3. Consider l0 which contains the Plücker
coordinates of a line feature at the time t = t0. At a specific time instant t, the line undergoes
a transformation to become:

l(t) = R(t)l0 (66)
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Theorem 18. The velocity dual tensor function Φ is defined by the equation:

.
l = Φl, ∀l ∈ VR

3 (67)

which gives:
Φ =

.
RRT (68)

Consider Φ =
.

RRT, which leads to
.

RRT + R
.

R
T
= 0, equivalent to Φ = −ΦT. This

equivalence demonstrates that
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The dual vectorω = vect
.

RRT, also known as dual angular velocity of the rigid body
or dual spatial twist, can be expressed as:

ω =ω+ εv (69)

The pair (ω, v) is commonly referred to as the spatial twist of the rigid body. Here,ω
represents the instantaneous angular velocity of the rigid body and the velocity of spatial
twist; v =

.
ρ−ω× ρ represents the linear velocity of the point of the body that coincides

at any given time with the origin of the reference frame.
The following theorem enables the reconstruction of the rigid body motion based on

the knowledge of the spatial twist of the rigid body at any given time, which is equivalent
to having knowledge of the time-dependent dual angular velocity function.

Theorem 19. For a continuous dual functionω ∈ VR
3 , there exists a unique dual tensor R ∈ SOR

3
such that: { .

R =
∼
ω R

R(t0) = R0, R0 ∈ SO3
(70)

Proof. The initial value problem Equation (70) provides a unique solution if
∼
ω =

∼
ω(t) is a

continuous function.
Consider RT, the transpose of dual tensor R. Computing

d
dt

(
R RT

)
=

.
R RT + R

.
R

T
=
∼
ω R RT −R RT∼ω = 0 (71)

shows that:
R RT = R RT(t0) = I (72)

From Equation (72) it can be seen that det(R) ∈ {−1, 1}. As det(R(t0)) = detR0 = 1,
we see that: {

R RT = I

det(R) = 1
(73)

Hence, tensor R ∈ SOR
3 qualifies as a dual orthogonal tensor map.

The orthogonal dual tensor R fully models the six-degree-of-freedom rigid body
motion, Theorem 19 represents the dual form of kinematic equation. �

Corollary 6. If we consider the dual angular velocity in the body frame, ωB = RTω, thus
transforming Equation (70) into: { .

R = R
∼
ω

B

R(t0) = R0, R0 ∈ SO3

(74)

The dual tensor initial value problems Equation (70) and Equation (74) can be ex-
pressed as 18 separate real differential equations.
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Corollary 7. Let q̂ ∈ UR be a dual quaternion parameterization of rigid body motion, such that

∆
(

q̂
)
= R. The dual Poisson–Darboux problems Equations (70) and (74) can be considered as

equivalent to: 
.
q̂ = 1

2ωq̂

q̂(t0) = q̂
0

(75)

and 
.
q̂ = 1

2 q̂ωB

q̂(t0) = q̂
0

(76)

where ∆
(

q̂
0

)
= R0.

Initial value problems Equations (75) and (76) are equivalent to eight real differen-
tial equations.

If the natural invariant of the orthogonal dual tensor map R = R(t) is denoted by
α = α(t) and u = u(t), the following equations result, by Equations (23), (75), and (76):

.
α =ω·u =ωB·u, (77)

.
u = Θω = ΘTωB, (78)

where the dual tensor Θ = − 1
2

[∼
u + cot ( 1

2 α)
∼
u

2
]

.

The dual twist of the rigid body in space and in the body frame is expended, respec-
tively, using Equations (23), (75), and (76) by equations:

ω =
.
α u + sinα

.
u + (1− cosα)u× .

u (79)

ωB =
.
α u + sinα

.
u− (1− cosα)u× .

u (80)

Consider α ∈ VR
3 a Euler dual vector such that R = exp

(∼
α
)

.
According to the Equations (23), (77), and (78) we find:

ω = dexpα

.
α, (81)

where the dexpα is a tangent tensor:

dexpα = I +
1
2

sinc
2 |α|

2
∼
α + (1− sinc|α|)

∼
α

2

|α|2
(82)

In Equation (82) sinc|α| =
{ sin|α|

|α| i f Reα 6= 0

1 i f Reα = 0
.

The Poisson–Darboux problem Equation (70) corresponds to:{ .
α = dexp−1

α ω

α(t0) = α0
(83)

where exp
∼
α0 = R0, and tensor dexp−1

α , if the real part of α is different by 2π, we find that:

dexp−1
α = I− 1

2
∼
α +

(
1− |α|

2
cot
|α|
2

) ∼
α

2

|α|2
(84)

The kinematic equation problem from Equation (74) is equivalent to:
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{ .
α = dexpα

−TωB

α(t0) = α0

(85)

Theorem 20. If v is a higher-order Rodrigues dual vector, there are two dual tensors so that:{
ω = dcayn

.
v

ωB = dcayn
T .

v
(86)

{ .
v = dcayn

−1ω
.
v = dcayn

−TωB
(87)

The tangent operator dcayn and the kinematic tensor dcayn
−1 are given by the following closed

form equations:

dcayn =
2qn(|v|)pn(|v|)
(1+|v|2)

n I + 2q2
n(|v|)

(1+|v|2)
n
∼
v

+2
n(1+|v|2)

n−1−qn(|v|)pn(|v|)
|v|2(1+|v|2)

n v⊗ v
(88)

dcayn
−1 =

pn(|v|)
2qn

(
|v|
) I− 1

2
∼
v +

(
1 + |v|2

)
qn(|v|)− npn(|v|)

2n|v|2qn

(
|v|
) v⊗ v (89)

where caynv = R, and the polynomials pn, qn are given by the Equations (51) and (52).

Consider v ∈ VR
3 such that R = caynv. Taking into account Equation (86), the problems

(70) and (74) areequivalentto : { .
v = dcayn

−1ω

v(t0) = v0
, (90)

{ .
v = dcayn

−TωB

v(t0) = v0
(91)

where caynv0 = R0.
The initial value problems (83), (85), (90), and (91) are equivalent to six real differential

equations and are the minimal parameterizations of dual Poisson–Darboux problems (70)
and (74). According to the authors’ knowledge, this paper presents it for the first time.

9. Application of Minimal Parameterization of Rigid Body Displacement and Motion
Using Higher-Order Rodrigues Dual Vector

To assess the practicality of the iterative formulations, we present polynomials from
the second to fifth order, alongside the corresponding unit dual quaternion, orthogonal
dual tensor, tangent, and kinematic dual tensor:

• First order:

v = tan
α

2
u; (92)

p1(X) = 1; (93)

q1(X) = 1; (94)

±q̂ =
1√

1 + |v|2
[1 + v]; (95)
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R = I +
2

1 + |v|2

[
∼
v +

∼
v

2
]

; (96)

dcay1 =
2

1 + |v|2
[
I +

∼
v
]
; (97)

dcay1
−1 =

1
2

I− 1
2
∼
v +

1
2

v⊗ v (98)

• Second order:

v = tan
α + 2kπ

4
u; k = 0, 1; (99)

p2(X) = 1− X2; (100)

q2(X) = 2 (101)

±q̂ =
1

1 + |v|2
[
1− |v|2 + 2v

]
(102)

R = I +
4(

1 + |v|2
)2

[(
1− |v|2

)∼
v + 2

∼
v

2
]

(103)

dcay2 =
4(

1 + |v|2
)2

[(
1− |v|2

)
I + 2

∼
v + 2v⊗ v

]
(104)

dcay2
−1 =

1− |v|2

2
I− 1

2
∼
v +

1
2

v⊗ v (105)

• Third order:

v = tan
α + 2kπ

6
u; k = 0, 2 (106)

p3(X) = 1− 3X2; (107)

q3(X) = 3− X2; (108)

±q̂ =
1√(

1 + |v|2
)3

[
1− 3|v|2 +

(
3− |v|2

)
v
]

(109)

R = I +
2
(

3− |v|2
)

(
1 + |v|2

)3

[(
1− 3|v|2

)∼
v+

(
3− |v|2

)∼
v

2
]

(110)

dcay3 = 2

(1+|v|2)
3

[(
1− 3|v|2

)(
3− |v|2

)
I

+
(

3− |v|2
)2∼

v +
(

16 + 9|v|2
)

v⊗ v]
(111)

dcay3
−1 =

1− 3|v|2

3− |v|2
I− 1

2
∼
v +

11− |v|2

6
(

3− |v|2
)v⊗ v (112)
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• Fourth order:

v = tan
α + 2kπ

8
u; k = 0, 3; (113)

p4(X) = 1− 6X2 + X4; (114)

q4(X) = 4− 4X2; (115)

±q̂ =
1(

1 + |v|2
)2

[
1− 6|v|2 + |v|4 +4

(
1− |v|2

)
v
]
; (116)

R = I +
8
(

1− |v|2
)

(
1 + |v|2

)4

[(
1− 6|v|2 + |v|4

)∼
v +4

(
1− |v|2

)∼
v

2
]

(117)

dcay4 = 8

(1+|v|2)
4

[(
1− 6|v|2 + |v|4

)
(1 −|v|2

)
I

+4
(

1− |v|2
)∼

v+
(
|v|4 − 3|v|2 + 10

)
v⊗ v

] (118)

dcay4
−1 =

1− 6|v|2 + |v|4

8
(

1− |v|2
) I− 1

2
∼
v − 8|v|2 + 3

8
(

1− |v|2
)v⊗ v (119)

• Fifth order:

v = tan
α + 2kπ

10
u; k = 0, 4; (120)

p5(X) = 1− 10X2 + 5X4

q5(X) = 5− 10X2 + X4; (121)

±q̂ =
1√(

1 + |v|2
)5

[
1− 10|v|2 + 5|v|4+

(
5− 10|v|2 + |v|4

)
v
]
; (122)

R = I +
2
(

5− 10|v|2 + |v|4
)

(
1 + |v|2

)5

[(
1− 10|v|2+ 5|v|4

)∼
v +

(
5− 10|v|2 + |v|4

)∼
v

2
]

; (123)

dcay5 = 2

(1+|v|2)
5 [
(

1− 10|v|2 + |v|4
)(

5− 10|v|2 + |v|4
)

I

+
(

5− 10|v|2 + |v|4
)∼

v+
(

40− 48|v|2 + 40|v|4
)

v⊗ v
] (124)

dcay5
−1 =

1− 10|v|2 + |v|4

2
(

5− 10|v|2 + |v|4
) I− 1

2
∼
v +

45− 16|v|2 + |v|4

10
(

5− 10|v|2 + |v|4
)v⊗ v (125)

Equations (92)–(125) completely solve in closed form and a coordinate-free way the
minimal parameterization of rigid body displacement and motion, employing a higher-
order Rodrigues dual vector for n ∈ {1, 2, 3, 4, 5}.

For example, in [54], for the Rodrigues dual vector (n = 1), the real and dual part
components are obtained (dual Rodrigues parameters):

b1 = tan
α

2
u1 (126)
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b2 = tan
α

2
u2 (127)

b3 = tan
α

2
u3 (128)

b0
1 = d[1 + ( tan

α

2
)2]u0

1 (129)

b0
2 = d[1 + ( tan

α

2
)2]u0

2 (130)

b0
3 = d[1 + ( tan

α

2
)2]u0

3, (131)

which were obtained after rather laborious reasoning. Equation (92): b =
(
tan α

2
)
u, for

α = α + εd and a dual unit vector u = u + εu0, compacted succinctly includes all six
equations presented in [54]. Equations (95)–(98) present, respectively, the dual orthogonal
tensor, dual quaternion, dual tangent tensor, and dual kinematic tensor.

10. Conclusions

This paper proposes a novel approach to the minimal pose parameterization technique
using higher-order modified Cayley transforms. Our research is grounded on the properties
of maps connecting dual vectors to orthogonal dual tensors and unitary dual quaternions.
The evolved parameterization approach is comprehensive, coordinate-free, presented in
closed form, and incorporates various previously documented attitude parameterization
Cayley maps while extending them toward pose parameterization. The expressions rely
solely on dual vector algebra and have no transcendent functions. We also provide a unitary
method for dual kinematic equations (the Poisson–Darboux problem) via a dual tangent
operator of higher-order fractional Cayley transforms for dual vector parameterization by
rigid body motion. A general minimal parameterization of the kinematic equation of rigid
body motion is presented, according to the authors’ knowledge, for the first time in this
paper. In further work, we will research what can be changed if we replace dual Lie algebra
with dual mock Lie algebra [59,60] and how to define dual triple systems [61,62].
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Nomenclature

R(R) dual (real) numbers set
a (a) dual (real) number
V3 (V 3) dual (real) vectors set
a(a) dual (real) vector
L(V3, V3) Euclidean dual tensor set
A (A) dual (real) tensor
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∼
a skew-symmetric dual tensor corresponding to the dual vector a
SO3 (SO3) orthogonal Euclidean dual (real) orthogonal tensor set

VR
3

(
VR

3

)
Time-depending dual (real) vectorial functions

SOR
3 (SOR

3 ) Time-depending Euclidean dual (real) orthogonal tensorial functions
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