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Strongly Regular Graphs, and Modified Krein Parameters of a
Strongly Regular Graph
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Abstract: In this paper, in the environment of Euclidean Jordan algebras, we establish some in-
equalities over the Krein parameters of a symmetric association scheme and of a strongly regular
graph. Next, we define the modified Krein parameters of a strongly regular graph and establish some
admissibility conditions over these parameters. Finally, we introduce some relations over the Krein
parameters of a strongly regular graph.
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1. Introduction

This paper is an extended version of the work “An Euclidean Jordan Algebra of Sym-
metric Matrices Closed for the Schur Product of Matrices” presented in Congress Circuits,
Systems, Communications, and Computers 2023 [1]. For a good understanding of the
theory of Euclidean Jordan algebras we refer to the book Analysis on Symmetric Cones
(see [2]) For a good survey about association schemes we refer to the texts presented in
References [3,4]. To apply matrix theory to engineering, mathematics, and cryptography,
we refer to References [5,6]. Several mathematicians and engineers have developed their
investigation into several science areas of mathematics, working in the environment of Eu-
clidean Jordan algebras (see, for instance, References [7–9]). Euclidean Jordan algebras have
also become a good tool for analyzing discrete structures’ eigenvalues like strongly regular
graphs (see [10]). We must also say that other authors extended the properties of the spec-
trum of a symmetric matrix to simple Euclidean Jordan algebras (see, for example, [11,12]).
Euclidean Jordan algebras have also become an excellent environment to analyze the
spectrum of symmetric association schemes. We now describe the plan of the paper. In
Section 2, we describe the principal concepts of real finite-dimensional Jordan algebras and
real finite-dimensional Euclidean Jordan algebras that one needs to understand in the next
sections of this paper. In Section 3, we present a description of some properties of symmet-
ric association schemes and some examples. In Section 4, we define the Krein parameters
of a Euclidean Jordan algebra associated with a symmetric association scheme, and next,
we deduce some admissibility conditions over these Krein parameters. In Section 5, we
present some theory about strongly regular graphs. Next, in Section 6, we define the
modified Krein parameters of a strongly regular graph and establish some inequalities
over these type parameters. And, we define in this section some new inequalities over
the Krein parameters of a strongly regular graph. Finally, in the last section, we present
some considerations about the Krein parameters of a symmetric association scheme and of
a strongly regular graph.

2. Some Theory about Jordan Algebras and Euclidean Jordan Algebras

Herein, we will describe only the more relevant concepts about the theory of finite-
dimensional real Euclidean Jordan algebras that we will use in this paper.
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Let us consider a real finite-dimensional vector space A equipped with a vector
multiplication of vectors F. Then, A is a real Jordan algebra if it is a real commutative
algebra such that, for any of its elements a and b, we have a2FF(aFb) = aF(a2FFb),
where a2F = aFa. And, for any natural number l, the powers of order l are defined in the
following way: a0F = e, a1F = a, alF = aFa(l−1)F, l ≥ 2, where e is the unit element of the
vector multiplication of the finite-dimensional real Jordan algebra A. One says that A is a
real Euclidean Jordan algebra if A is equipped with an inner product •|• such that, for any
elements x, y, and z of A, we have (xFy)|z = y|(xFz). In the following text of this paper,
we will use the abbreviation RFEJA to designate a real finite-dimensional Euclidean Jordan
algebra. We are only interested in an RFEJA with a unit, which we will denote always by e.
And, we will use the abbreviation EJA to designate an Euclidean Jordan algebra.

Let us consider an RFEJA B equipped with the operation of the multiplication of its
vectors F, the inner product of its vectors •|•, and with the multiplication unit e. The rank
of the element h in B is the smallest natural number t such that {e, h1F, . . . , htF} is a linearly
dependent set, and we write rank(h) = t. Since B is an RFEJA, then for any h ∈ B, we have
rank(h) ≤ dim(B). We define rank(B) = max{rank(h) : h ∈ B}. An element h ∈ B is an
idempotent if h2F = h. The idempotent h and g are orthogonal if hFg = 0. We say that the
set of non-null vectors of B, {h1, h2, . . . , ht} is a complete system of orthogonal idempotent,
and the abbreviation that we will use through will be CSOI, if h2F

k = hk, for k = 1, . . . , t,
hkFhl = 0, if k 6= l and 1 ≤ k, l ≤ t, and ∑t

j=1 hj = e. An idempotent of B is primitive if it
is a non-zero idempotent of B and cannot be written as a sum of two non-zero orthogonal
idempotent. A Jordan frame of B is a set S = {h1, h2, . . . , hs} of non-zero idempotent of B
such that S is a complete system of orthogonal idempotent, along the text we will use the
abbreviation JF to designate it, such that each idempotent is primitive.

Theorem 1 ([2], p. 43). Let us consider an RFEJA B with the unit e. Then, for h in B, there exist
unique real numbers α1, α2, . . . , αl , all distinct, and a unique CSOI { f1, f2, . . . , fl} such that

h = α1 f1 + α2 f2 + · · ·+ αl fl . (1)

Decomposition (1) is called the first spectral decomposition of h.

Theorem 2 ([2], p. 44). Let us consider an RFEJA B with unit e and such that rank(B) = r.
Then, for each h in B, there exists an JF { f1, f2, · · · , fr} and real numbers β1, · · · , βr−1 and βr
such that (2) is verified.

h = β1 f1 + β2 f2 + · · ·+ βr fr. (2)

Decomposition (2) is called the second spectral decomposition of h.
In an RFEJA, all the Jordan frames have the same cardinally as their rank.

3. Some Properties of Symmetric Association Schemes

A symmetric associative scheme F with d classes is a finite set X provided with d + 1
relations Ci such that

1. {C0, C1, . . . , Cd−1, Cd} is a partition of X ×X ;
2. C0 = {(a, a) : a ∈ X};
3. For i ∈ {0, 1, · · · , d} if (a, b) ∈ Ci, then (b, a) ∈ Ci;
4. For each i, j, l ∈ {0, 1, · · · , d}, there exists a real number pl

ij such that, for all (a, b) in
Cl , we have (3).

|{c ∈ X : (a, c) ∈ Ci ∧ (c, b) ∈ Cj}| = pl
ij. (3)

5. pl
ij = pl

ji, ∀i, j, l ∈ {0, 1, . . . , d}.
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The classes {C0, C1, . . . , Cd} of symmetric association schemes can be described through
their adjacency matrices {A0, A1, . . . , Ad}, where Ai for i = 0, 1, . . . , d is defined as (Ai)rs =
1 if and only if (r, s) ∈ Ci and (Ai)rs = 0 otherwise.

So, the matrices associated to a symmetric association scheme F satisfy the follow-
ing equalities.

1. A0 = In;
2. ∑d

i=0 Ai = Jn;
3. Ai = AT

i ;
4. Ai Aj = ∑d

l=0 pl
ij Al , ∀i, j ∈ {0, 1, . . . , d};

5. ∀i = 1, · · · , d, (Ai)rs ∈ {0, 1}, ∀r, s = 1, · · · , n.

We must note that Property 2 implies that the matrices Ai, i = 0, 1, . . . , d form a linear
independent set of matrices of the vector space formed by real symmetric matrices of order
n over the field R with the usual operations of addition of matrices and multiplication of a
matrix by a scalar.

In the following, we will designate a symmetric association scheme by SAS. We will
define an SAS by the matrices Ais, and we will say consider the SAS F = {A0, A1, . . . , Ad}.

Example 1. Let us consider the SAS F = {A0, A1, A2.A3}, where A0 = I6 and

A1 =



0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

,

A2 =



0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0

,

A3 =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

. (4)

The SAS F defined by the matrices presented in (4) verifies the multiplication in Table 1.
In Table 1 of the SAS F , we have that B = 2A0 + A2 and C = 2A3 + A1.
Herein, we must say that the algebraA spanned by the elements of the SAS F = {A0, A1, A2,

. . . , Ad} is an RFEJA such that rank(A) = d + 1 and dim(A) = d + 1. As a consequence, there
exists a unique JF, {E0, E1, · · · , Ed} that is the basis of A with E0 = Jn

n . Since the algebra A is
a commutative algebra spanned by symmetric matrices, we can say that this Jordan frame can be
obtained by considering a matrix A with d + 1 distinct eigenvalues of A and next determine the
projectors on each common proper subspace of A using the equality (5)

Ei =
d

∏
l=0,l 6=i

A− λl In

λi − λl
(5)

where the λi’s for i = 0, 1, . . . , d are the distinct eigenvalues of A.
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Table 1. Table of multiplication.

A0 A1 A2 A3

A0 A0 A1 A2 A3
A1 A1 B C A2
A2 A2 C B A1
A3 A3 A2 A1 A0

Remark 1. To obtain a JF, {E0, E1, E2, E3} of the RFEJA, A spanned by the matrices of the SAS
F of the Example 1 and using the notation λ0 = −2, λ1 = −1, λ2 = 1 and λ3 = 2, we can write
that Ei = ∏3

l=0,l 6=i
A1−λl I6

λi−λl
for i = 0, 1, . . . , 3, since A1 is a matrix with the distinct eigenvalues

λ0, λ1, λ2, and λ3. So, after some calculations, we obtain:

E0 =
1
6

A0 −
1
6

A1 +
1
6

A2 −
1
6

A3,

E1 =
1
3

A0 −
1
6

A1 −
1
6

A2 +
1
3

A3,

E2 =
1
3

A0 +
1
6

A1 −
1
6

A2 −
1
3

A3 −
1
3

A3,

E3 =
1
6

A0 +
1
6

A1 +
1
6

A2 +
1
6

A3 =
J6

6
.

Example 2. Let us consider the SAS F = {A0, A1, A2, A3}, where

A0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

,

A1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

,

A2 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

,

A3 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

.

The process of multiplication of the matrices of the SAS F is described in Table 2.
We have that the projectors on the proper sub-spaces of the matrix A1 that has the eigen-

values −1 and 1 are P0 = 1
2 A0 − 1

2 A1, P1 = 1
2 A0 +

1
2 A1 and the projectors associated with

the proper sub-spaces of A2 are: P2 = 1
2 A0 − 1

2 A2, P3 = 1
2 A0 +

1
2 A2. Hence, the JF of the EJA

spanned by the SAS F is the set {E0, E1, E2, E3} such that E0 = P0P2 = 1
4 A4 − 1

4 A1 − 1
4 A2 +

1
4 A3, E1 = P1P2 = 1

4 A4 +
1
4 A1 − 1

4 A2 − 1
4 A3, E2 = P0P3 = 1

4 A4 − 1
4 A1 +

1
4 A2 − 1

4 A3,
E3 = P1P3 = 1

4 A4 +
1
4 A1 +

1
4 A2 +

1
4 A3 =

J4
4 .
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Table 2. Table of multiplication 2.

A0 A1 A2 A3

A0 A0 A1 A2 A3
A1 A1 A0 A3 A2
A2 A2 A3 A0 A1
A3 A3 A2 A1 A0

4. Krein Parameters of a Particular Euclidean Jordan Algebra

Let us consider an SAS with d classes, F = {A0, A1, . . . , Ad} and the real vector space
A = {α0 A0 + α1 A1 + · · ·+ αd Ad : α0 ∈ R, αi ∈ R, i = 1, · · · , d}. Then, A is a real algebra,
closed for the Schur product of two of its matrices, when it is equipped with the usual
product of real matrices of order n. Now, one proves that A is a commutative algebra.

Firstly, we will show that Ai Aj = Aj Ai. Indeed, we have Ai Aj = AT
i AT

j = (Aj Ai)
T =(

∑d
k=0 pk

ji Ak

)T
= ∑d

k=0 pk
ji A

T
k = ∑d

k=0 pk
ji Ak = Aj Ai. Let u and v be two elements of A. Let

us consider the following notation: u = ∑d
i=0 αi Ai and v = ∑d

j=0 β j Aj. Then, we have the
following calculations:

uv =

(
d

∑
i=0

αi Ai

)(
d

∑
j=0

β j Aj

)

=

(
d

∑
i=0

αi AT
i

)(
d

∑
j=0

β j AT
j

)

=

(
d

∑
i=0

αi Ai

)T( d

∑
j=0

β j Aj

)T

=

((
d

∑
j=0

β j Aj

)(
d

∑
i=0

αi Ai

))T

=

(
d

∑
j=0

d

∑
i=0

β jαi Aj Ai

)T

=

(
d

∑
j=0

d

∑
i=0

β jαi(Aj Ai)
T

)

=

(
d

∑
j=0

d

∑
i=0

β jαi(AT
i AT

j )

)

=

(
d

∑
j=0

d

∑
i=0

β jαi(Ai Aj)

)

=

(
d

∑
j=0

d

∑
i=0

β jαi(Aj Ai)

)

=

(
d

∑
j=0

(β j Aj)

)(
d

∑
i=0

αi Ai

)
= vu.

So, since A is a commutative algebra, the algebra A provided with the inner product
•|• defined by u|v = trace(uv) for any u and v of A becomes an RFEJA.

Indeed, since A is a commutative, associative algebra, we have the following cal-
culations. A2(AB) = (A2 A)B = (AA2)B = A(A2B) , and finally, we conclude that
(AB)|C = trace((AB)C) = trace((BA)C) = trace(B(AC)) = B|(AC). Next, noting
that dim(A) = d + 1, we will show that rank(A) = d + 1. Now, for each matrix A of
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A, we can say that the set {I, A, A2, . . . , Ad, Ad+1} is a linearly dependent set of A, then
rank(A) ≤ d + 1. Next, we will deduce that rank(A) = d + 1.

But, since {In, A1, A2, . . . , Ad} is the bais of A formed by commuting symmetric
matrices, then they are simultaneously diagonalizable, and therefore, there exists a basis of
projectors B = {E0 = J

n , E1, · · · , Ed} on the proper sub-spaces common of all the matrices
of the SAS F , of A. Now, let us consider the element

X = α0E0 + α1E1 + α2E2 + · · ·+ αdEd (6)

with all the αi’s distinct. Then, the decomposition (6) is the first spectral decomposition of
X, and B is the unique CSOI associated with X. Now, we will deduce that B is a JF of A.
But, firstly, we will show that rank(A) = d + 1. For that, we show that rank(X) = d + 1.

We have
In = E0 + E1 + E2 + · · ·+ Ed,

X = α0E0 + α1E1 + · · ·+ αdEd

X2 = α2
0E0 + α2

1E1 + · · ·+ α2
dEd

... =
...

Xd = αd
0E0 + αd

1E1 + · · ·+ αd
dEd

Since the set {In, X, X2, . . . , Xd} is linearly independent if and only if the determi-
nant (7) is a non-null determinant∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
α0 α1 . . . αd
α2

0 α2
1 . . . α2

d
...

... . . .
...

αd
0 αd

1 . . . αd
d

∣∣∣∣∣∣∣∣∣∣∣
=

d

∏
1≤i<j≤n

(αj − αi), (7)

and since the αi’s are all distinct, then the set {I, X, X2, . . . , Xd} is a free set ofA. Now, since
the set {I, X, X2, . . . , Xd} is linearly independent and the set {I, X, X2, . . . , Xd, Xd+1} is
linearly dependent set (note that dim(A) = d + 1,), then we conclude that rank(X) = d + 1,
and therefore, rank(A) = d+ 1. So, we can say that B = {E0, E1, . . . , Ed} is a JF ofA since B
has cardinality equal to d+ 1 = rank(A). And, we also must say that since dim(A) = d+ 1,
then B is the bais of A. Next, we will show that A has a unique JF, this is we will prove
that the unique JF of A is B. Indeed, if C = {F0, F1, . . . , Fr} is another JF of A, then we
would obtain

X = β0F0 + β1F1 + · · ·+ βrFr. (8)

But, since C is a CSOI, then X would have two first spectral spectral decomposition’s
if C 6= B. Therefore B = C.

In what follows, we will define the Krein parameters of A as being the coordinates of
Ei ◦ Ej relatively to the basis B = {E1 = Jn

n , E2, . . . , Ed+1} of A, where A ◦ B represents the
Schur product of the real square matrices A and B with same order, that is, as being the
real numbers qijl for i, j, l = 1, . . . , d + 1 such that

Ei ◦ Ej =
d+1

∑
l=1

qijlEl (9)

Next, we will present some inequalities involving the Krein parameters of A.
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Theorem 3. Let us consider the RFEJA A spanned by an SAS F with d classes with the unique
Jordan frame B = {P1 = Jn

n , P2, . . . , Pd+1}. Then, we have for l = 1, · · · , d + 1 that

−1 ≤
d+1

∑
i=1

qii l − 2
d+1

∑
i=2

q1jl + 2
d+1

∑
2=i<j≤d+1

qij l ≤ 1 (10)

for l = 1, · · · , d + 1.

Proof. We have that ((P1 − P2 − · · · − Pd+1)⊗ (P1 − F2 − · · · − Pd+1))
3 = P1 − P2 − · · · −

Pd+1 , where A⊗ B represents the Kronecker product of the matrices A and B. Since the
matrix Z = (P1− P2− · · ·− Pd+1)⊗ (P1− P2− · · ·− Pd+1) verifies the equality Z3−Z = O,
where O is the null matrix, then we have that if λ is an eigenvalue of Z, and we must
have −1 ≤ λ ≤ 1. Since Y = (P1 − P2 − · · · − Pd+1) ◦ (P1 − P2 − · · · − Pd+1), where A ◦ B
represent the Schur product of the matrices A and B, is a principal sub-matrix of Z, then
we conclude that if λ is an eigenvalue of Y, and we must have −1 ≤ λ ≤ 1. Since each
eigenvalue of Y, is λl = ∑d+1

i=1 qiil − 2 ∑d+1
i=2 q1jl + 2 ∑d+1

2=i<j≤d+1 qijl , then Inequality (10)
follows.

We must note on a symmetric association scheme F with 2d− 1 classes considering
the unique Jordan frame S = {E1 = Jn

n , E2, · · · , E2d} of the Euclidean Jordan algebra
spanned by A, we have that the matrix D = (E1 + E2 + · · · + Ed) ⊗ (Ed+1 + · · · + E2d)
is an idempotent. Next since G = (E1 + E2 + · · · + Ed) ◦ (Ed+1 + · · · + E2d) + (Ed+1 +
· · ·+ E2d) ◦ (E1 + E2 + · · ·+ Ed) is a principal matrix of D, by the analysis of the Krein
parameters of G and using a similar proof like the one made in Theorem 3, we obtain
Theorem 4.

Theorem 4. Let A be the RFEJA spanned by an SAS F with 2d− 1 classes, and considering the
unique JF of A, S = {P1 = J

n , P2, · · · , P2d}, the Krein parameters qi j t with 1 ≤ i ≤ d, d + 1 ≤
j ≤ 2d with t = 1, · · · , 2d verify Inequality (11).

d

∑
i=1

2d

∑
j=d+1

qijt ≤
1
2

(11)

We conclude Theorem 5 by generalizing Theorem 4.

Theorem 5. Let A be the RFEJA spanned by an SAS F with 2d − 1 classes, and considering
the unique JF of A, S = {P1 = J

n , P2, · · · , P2d}, u be a natural number such that 1 < u < 2d,,
the Krein parameters qi j t with 1 ≤ i ≤ u, u + 1 ≤ j ≤ 2d with t = 1, · · · , 2d verify the
inequality (12).

u

∑
i=1

2d

∑
j=u+1

qijt ≤
1
2

(12)

5. Some Concepts and Properties about Strongly Regular Graphs

R. C, Bose introduced strongly regular graphs in [13]. In the following, we will present
some relevant properties. For a very perceptible text about concepts and the algebraic
properties of strongly regular graphs and algebraic properties of the strongly regular
graphs, see Algebraic Graph Theory [14].

The order of a graph is the number of vertexes it has. If a graph has neither parallel
edges nor loops, it is called a simple graph.

One defines the eigenvalues of a graph G as the eigenvalues of its adjacency matrix.
If all pairs of distinct vertices of a simple graph are adjacent, then this graph is called a

complete graph.
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One defines the complement of a simple graph G, which one denotes by G, as being a
simple graph with the same set of vertexes of G and such that two any of its vertexes are
adjacent if and only if they are not adjacent vertexes of G. In the following text, we only
treat non-empty, simple, and non-complete graphs.

The degree of a vertex x of a graph G is the number of incident edges on x. A graph G
is called l−regular if all its vertexes have the same degree l.

One says that a graph G, is a (m, l; c, d)−strongly regular graph if G is l−regular graph
with order m, and if any pair of adjacent vertexes have c common neighbor vertexes and
any pair of non-adjacent vertexes have d common neighbor vertexes.

In the following, the abbreviation srg will be used to designate a strongly regu-
lar graph.

If G is a (m, l; c, d)−srg ,then the complement graph of G, G is a (m, m− l− 1; m− 2l +
d− 2, m− 2l + c) srg.

A (m, l; c, d)−srg G is primitive if and only if G and G are connected. A (m, l; c, d)−srg
is a non-primitive srg if and only if d = l or d = 0.

The adjacency matrix A of a (m, l; c, d)−strongly regular graph G satisfies
Equation (13).

A2 = l Im + cA + d(Jm − A− Im) (13)

The real numbers l, λ1 and λ2 [14], where

λ1 = (c− d +
√
(c− d)2 + 4(l − d))/2,

λ2 = (c− d−
√
(c− d)2 + 4(l − d))/2

are the eigenvalues of G. The real numbers fλ1 and fλ2 defined, respectively, by Inequalities
(14) and (15).

fλ1 =
1
2

(
m− 1 +

2l + (m− 1)(c− d)
λ2 − λ1

)
, (14)

fλ2 =
1
2

(
m− 1− 2l + (m− 1)(c− d)

λ2 − λ1

)
, (15)

are the multiplicities of the eigenvalues λ1 and λ2. Next, we present the admissibility
conditions (16–21) over the multiplicities of the eigenvalues and over the eigenvalues and
the parameters of a (m, l; c, d)− primitive srg G.

1
2

(
m− 1 +

2l + (m− 1)(c− d)
λ1 − λ2

)
∈ N, (16)

1
2

(
m− 1− 2l + (m− 1)(c− d)

λ1 − λ2

)
∈ N, (17)

(λ2 + 1)(l + λ2 + 2λ2λ1) ≤ (l + λ2)(λ1 + 1)2, (18)

(λ1 + 1)(k + λ1 + 2λ2λ1) ≤ (l + λ1)(λ2 + 1)2, (19)

m ≤ 1
2

fλ1( fλ1 + 3), (20)

m ≤ 1
2

fλ2( fλ2 + 3). (21)

The admissibility conditions (16) and (17) are known as the integrability conditions of
a strongly regular graph, and Inequalities (18) and (19) are known as the Krein conditions
of a strongly regular graph [15]. And, finally, Inequalities (20) and (21) are known as the
absolute bounds conditions of a strongly regular graph [16].
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6. Modified Krein Parameters of a Strongly Regular Graph

Let us consider the primitive strongly regular graph (m, l; c, d)− G such that 0 < d <
l − 1 and with the eigenvalues

λ1 =
c− d +

√
(c− d)2 + 4(l − d)

2
,

λ2 =
c− d−

√
(c− d)2 + 4(l − d)

2
,

and l. Next, let us consider the Euclidean Jordan sub-algebra B of the Euclidean Jordan
algebraM = Sym(m,R), equipped with the product of two matrices F as being the usual
product of matrices and the inner product of two matrices being the trace of these two
matrices, spanned by the identity matrix of order m and the natural powers of the matrix
of adjacency AG of G. Now, we consider the Jordan frame {U1, U2, U3} of B that is the bais
of B, where we have

U1 =
1
m

Im +
1
m

AG +
1
m
(Jm − AG − Im)

U2 =
λ1m + l − λ1

m(λ2 − λ1)
Im +

−m + l − λ1

m(λ2 − λ1)
AG

+
l − λ1

m(λ2 − λ1)
(Jm − AG − Im)

U3 =
|λ2|m + λ2 − l

m(λ2 − λ1)
Im +

m + λ2 − l
m(λ2 − λ1)

AG

+
λ2 − l

m(λ2 − λ1)
(Jm − AG − Im).

Now, we define the modified Krein parameters of G as being the real numbers q123;l
with l ∈ {1, 2, 3} such that

U1 ◦U2 ◦U3 =
3

∑
l=1

q123;lUl (22)

where A ◦ B represents the Schur product of the real square matrices A and B of order m.
Herein, we must say that U1 ⊗U2 ⊗U3 is an idempotent matrices, and their eigenvalues
are 0 or 1, and therefore, since U1 ◦U2 ◦U3 is a principal sub-matrix of U1 ⊗U2 ⊗U3, then
we conclude that the eigenvalues of this matrix is greater than 0 and lower than 1. But, we
must say that U = U1 ⊗U2 ⊗U3 + U1 ⊗U3 ⊗U2 + U2 ⊗U1 ⊗U3 + U2 ⊗U3 ⊗U1 + U2 ⊗
U1 ⊗U3 + U2 ⊗U3 ⊗U1 is an idempotent. Then, we conclude that the eigenvalues of the
matrix 6U1 ◦U2 ◦U3 are greater than 0 and lower than 1. And, therefore, we conclude that
the modified Krein parameters q123;l verify the inequalities 0 ≤ q123;l ≤ 1 for l = 1, 2 and
l = 3. Hence, we have established Theorem (6)

Theorem 6. Let us consider a primitive (m, l; c, d)− G strongly regular graph 0 < d < l − 1.
Then, the modified Krein parameters q123;l of G verify the inequalities:

0 ≤ q123;l ≤
1
6

.

for l = 1, 2 and l = 3.

Now, we must remember that, in our notation, the Krein parameters of a strongly
regular graph are the real numbers such that

Ui ◦Uj =
3

∑
l=1

qij;lUl (23)
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Next, we present Theorem 7, which is an application of the Theorem 3 to strongly
regular graphs.

Theorem 7. Let G be a (n, l; c, d) primitive strongly regular graph such that 0 < d < l− 1. Then,
the Krein parameters of G, qij;l for l = 1, 2 and l = 3 verify the inequality (24).

−1 ≤
3

∑
i=1

qii;l − 2q12;l − 2q13;l + 2q23;l ≤ 1. (24)

7. Conclusions

Inequalities (10) and (11) presented in Theorems 3 and 4, respectively, over the Krein
parameters of the finite-dimensional real Euclidean Jordan algebra spanned by a symmet-
ric association scheme are distinct from those that were established for any symmetric
association schemes (see [4]). We also have introduced modified Krein parameters of a
strongly regular graph and have established some inequalities over these modified Krein
parameters. Finally, we have established some new admissibility conditions over the Krein
parameters of a strongly regular graph. In future work, we will recur to other spectral
analysis methods of discrete structures to establish new inequalities over the spectrum of a
symmetric association scheme and of a strongly regular graph.
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