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Abstract: A self-organized geometric model is proposed for data dimension reduction to improve
the robustness of manifold learning. In the model, a novel mechanism for dimension reduction is
presented by the autonomous deforming of data manifolds. The autonomous deforming vector field
is proposed to guide the deformation of the data manifold. The flattening of the data manifold is
achieved as an emergent behavior under the virtual elastic and repulsive interaction between the
data points. The manifold’s topological structure is preserved when it evolves to the shape of lower
dimension. The soft neighborhood is proposed to overcome the uneven sampling and neighbor point
misjudging problems. The simulation experiment results of data sets prove its effectiveness and
also indicate that implicit features of data sets can be revealed. In the comparison experiments, the
proposed method shows its advantage in robustness.

Keywords: dimension reduction; manifold learning; manifold deformation; emergent behavior;
feature extraction

1. Introduction

Dimension reduction (DR) is an indispensable technique to face the challenge of
dramatically increasing data amounts in data analysis [1–6]. Non-linear DR is a current
research focus, where manifold learning is one of the main research topics [5,6]. In addition
to the ability of unsupervised non-linear dimension reduction and feature extraction,
manifold learning provides a geometric viewpoint for modern data analysis, where the
data set contains the samples from the data manifold. Moreover, research has proved
that the visual information represented in the neural system can also be modeled in a
manifold-based way [7–9]. Therefore, the manifold-based model has attracted extensive
research attention since the publication of isometric mapping (Isomap) and local linear
embedding (LLE). Other methods have been proposed such as Laplacian eigenmaps (LE)
and Hessian Laplacian eigenmaps, maximum variance unfolding (MVU) and landmark
maximum variance unfolding, Riemannian manifold learning, locally linear coordination,
stochastic neighbor embedding and t-distributed stochastic neighbor embedding (t-SNE),
local tangent space alignment (LTSA), locality preserving projection (LPP), etc. [10–20].
Some methods have several variations. Moreover, some frameworks of manifold learning
have also been proposed to classify manifold learning methods, such as graph embedding
framework, patch alignment framework, and kernel framework [17–20].

Although impressive experimental results have been achieved by manifold learning,
some common problems still exist, such as uneven data sampling, small sample size, and
out-of-sample problem [20–25]. It has also been proposed that current manifold learning
models may fail on those data manifolds with extremely high dimension or high local
curvature [20–23]. The goal of manifold learning is to generate a meaningful, smooth,
and consistent mapping from the original data set to a low-dimensional representation.
Manifold learning usually builds the mapping by some mathematical optimization method
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in which the preservation of a local neighborhood structure is the main constraint. For
example, multi-dimensional scaling is used in Isomap, semi-definite programming is
used in MVU, a gradient descent algorithm is used in t-SNE, etc. The accuracy of local
neighborhood constraint is one key determining the effectiveness of the optimization result.
The learning significantly depends on the selection of neighborhood points as the first step
in the learning algorithm. In practical applications, the difficulty of neighbor point selection
as well as intrinsic dimension estimation are commonly encountered [20–25]. The learning
may be made invalid because the practical data sets usually do not satisfy the requirement
of dense and uniform sampling on the manifold, which becomes the bottleneck for the
practical application of manifold learning methods.

To overcome these, for this paper, topological deformation learning was proposed
to improve the robustness by overcoming the uneven sampling and neighbor point mis-
judging. Inspired by a self-evolutionary and self-adaptive natural mechanism, the method
implements the DR process as the geometric flattening of the manifold in Rn. The natural
intelligent mechanism is usually self-organized with an emergent behavior of a swarm
with simple individuals (such as ant colony, bee colony, neuron systems, etc.) [26–28].
The proposed method implemented an emergent behavior mechanism in which the data
manifold (in a discrete form) deformed autonomously by the virtual interaction between
the data points. The DR result could be naturally derived from the flattened manifold. And
the intrinsic dimension of the manifold was naturally indicated in the deforming result.
Moreover, a “soft neighborhood” of the data point was presented to overcome the diffi-
culties caused by neighbor point misjudging and non-uniform sampling. Compared with
typical and improved approaches, the experimental results proved the effectiveness and
robustness of the proposed model, which presented a new category of manifold learning
method.

2. Dimension Reduction by Autonomous Deformation of Data Manifolds

Current learning methods for DR usually build a mapping from the original data into
a low-dimensional space while keeping local properties as unchanged as possible (i.e.,
the distance or angles between neighbor data points). Such local constraints within the
neighbor area are sensitive to perturbation such as noise in data or computation errors.
This may greatly affect the validity of the DR result [21–23].

Geometrically, the data points are distributed on (or close to) the ideal data manifold,
which facilitates the application of topology tools. Topological deformation is continuous
and preserves the basic geometric properties (i.e., topological properties). A new DR
model is inspired by analyzing the inverse process of flattening, i.e., how a flat manifold is
changed to a geometry of a more complex shape in the embedded space Rn. For intuitive
comprehension, consider the following cases. Folding or curling a piece of paper will
make the points on the paper leave the initial plane and move to another position in R3. In
another case, making a flat elastic film uneven or cratering can also cause some points to
move to their new position in R3. In the first case, in the folding or curling process, points
that were originally far away may come close. To restore the original shape, the distance
between such points should be increased as large as possible while preserving the distance
between those neighbor points that are close enough (otherwise the paper will be torn).
For the second case, because the geometric structure in the convex or concave parts was
already non-linear, optimal DR results may be obtained by proper “stretching”. Overall
consideration of these cases inspires a reasonable way of DR by “flattening”, in which the
distances between points are increased as much as possible, while properly preserving the
distance between those points that were originally close enough. A similar idea appeared
in the maximum variance unfolding (MVU) method, in which the DR is achieved in a
traditional optimization framework.

The proposed model is based on a geometric interpretation of dimension reduction as
flattening the data manifold. In topological deformation learning, the manifold geometry
flattens autonomously as a deforming geometric object in the embedded space, which is
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guided by an intrinsic deforming vector field defined on the manifold. The deforming
vector field is based on two different virtual interactions between data points. By the
proper balance between the virtual elastic and repulsive interactions, the manifold can
flatten autonomously as an emergence effect. Especially, the soft neighborhood is proposed
to overcome the problem of non-even sampling on the manifold, which may invalidate
traditional methods including MVU. By the emergent behavior of the interacting manifold
points, the manifold can autonomously deform (or self-evolve) and the DR results can
naturally be achieved by the deforming result.

2.1. The Soft Neighborhood of Data Points

Useful information and intrinsic features are implicitly contained in the data mani-
fold’s topological structure. Preserving the topological structure is a basic constraint for DR
methods. The discrete data points are considered samplings from the data manifold, and
the data manifold’s topological structure is expressed by the neighborhood relationship
between data points. In manifold learning, it is usually the first step to search the neighbors
for each data point. Current methods include fixed neighborhood radius or fixed number
of neighbor points, which are suitable for the uniform and dense sampling of the manifold.
However, practical data sets may have a limited number of data points, and the sampling
is often non-uniform. This will cause some misjudgment of neighbor points, which may
invalidate the learning. For the k nearest neighbor points, if k is large, some non-neighbor
points will be included, which will cause a “short-circuit edge”. To overcome this problem,
the “soft neighborhood” method was proposed.

Suppose the data point set is {p1, p2, . . ., pn} where n is the number of total data points.
For each point pi on the initial manifold (i.e., the one before deforming), find the m nearest
points as its neighbor set Ni = {q1, q2, . . ., qm}. The value of m can be properly large so
that no true neighbor point is missed. To overcome the “short-circuit edge” problem, the
neighbor degree is defined. Let dij denote the distance between pi and qj. Let dmini denote
the minimum value in {dij}, j = 1, 2, . . ., m. The neighbor degree for pi’s neighbor set is:

NDij =
dmini

dij
j = 1, 2, . . . , m; i = 1, 2, . . . , n (1)

where NDij is the neighbor degree of qj to pi. There is 0 < NDij ≤ 1.0, which is similar to
the degree of membership in a fuzzy set [29]. If qj is a non-neighbor point (a misjudged one),
the NDij value will be very small. Therefore, NDij quantitatively expresses to what degree
qj is a true neighbor point of pi. The proper use of NDij in the DR technique can eliminate
the severe interference of the “short-circuit edge”. In the proposed model, NDij has a key
role in the definition of interactions between data points. A more precise expression of pi’s
soft neighborhood is:

SNi =
{(

qj, NDij
)}

j = 1, 2, . . . , m; i = 1, 2, . . . , n (2)

where qj belongs to the m nearest points and NDij is the neighbor degree of qj to pi.

2.2. Intrinsic Deforming Vector Field with Flattening Effect

To achieve dimension reduction by manifold deformation, two virtual interactions
between data points were proposed to guide the autonomous deforming process: the
repulsive interaction and the elastic interaction.

The repulsive interaction vector from the data point pj to pi was proposed as:

→
V

r

ij =


(1.0−NDij)·

(→
p i−

→
p j

)
dij

pj ∈ Ni
→
p i−

→
p j

dij
otherwise

(3)
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where
→
p i and

→
p j are the position vectors in Rn for the data points pi and pj, dij is the distance

between pi and pj, and NDij is the neighboring degree of pj to pi. If pi moves along the

direction of the vector
(→

p i −
→
p j

)
in Rn, it will move away from pj. Therefore, the vector

defined in Equation (3) has a repulsive effect between pi and pj.
On the other hand, the elastic interaction vector between pi and pj was proposed as:

→
V

e

ij =

 NDij ·
(

d0
ij−dij

)
·
(→

p i−
→
p j

)
dij

pj ∈ Ni

0 otherwise
(4)

where d0
ij is the Euclidean distance between pi and pj on the original manifold (before

deforming) and dij is the distance between pi and pj in the deforming process, which
changes dynamically according to the shape of the deforming manifold. Correspondingly,
the interaction vector defined in Equation (4) will also alter according to the manifold shape.
For each point pi, this elastic interaction only exists for the points in its soft neighborhood
NSi. For a point pj in NSi, if pj goes away from pi in the deforming manifold (i.e., the current
distance dij is larger than the original value d0

ij), it will attract pi; otherwise, it will repel pi.
This is an elastic effect preserving the distance between the neighbor points (i.e., keeping
the neighborhood structure in the deforming process).

In Equations (3) and (4), NDij properly weights the two different interactions between
the data points in a soft neighborhood. In case there is a “short-circuit edge”, the actual
non-neighbor point pj will have a very small NDij value (i.e., close to zero). And the
interaction between pj and pi is mainly repulsive, just similar to those non-neighbor points.
Therefore, the problem caused by the “short-circuit edge” can be solved adaptively.

The total interaction effect on pi from all the other data points is defined as the weighted
sum of the above two kinds of interactions:

→
V i = α1·∑N

j = 1
j 6= i

→
V

r

ij + α2·∑N
j = 1
j 6= i

→
V

e

ij (α 1 > 0, α2 > 0, α1 + α2 = 1.0) (5)

where N is the number of data points; α1 and α2 are two weight coefficients that balance

the two kinds of interactions, which satisfy α1 > 0, α2 > 0, and α1 + α2 = 1; and
→
V i is defined

as the deforming vector on pi, according to which each point on the manifold changes its

location in the deforming process. Because
→
V i is completely determined by the current

shape of the manifold itself, this vector field is intrinsic. If each pi moves according to
→
V i

(i.e., takes
→
V i as the moving direction), one step of manifold deforming will take place. If

such a step repeats, the deformation of the data manifold will proceed step by step. Due to
the intrinsic nature of the deforming vector field, the deformation is a kind of self-evolution
of the manifold. Moreover, the deforming process will converge to a result of a flattened
shape in Rn, based on which the dimension reduction result can be naturally derived.

2.3. The Manifold Deformation Learning Algorithm

Based on the definition of deforming vector field, the manifold deformation learning
algorithm was proposed as follows.

Step 1: Compute the Euclidean distance dij between each pair of data points in the original
data set.

Step 2: For each data point pi, find the k nearest neighbor points as the members of its soft
neighborhood point set.

Step 3: For each data point pi, compute the neighbor degree NDij of each point in its soft
neighborhood set.

Step 4: The counter of the deforming steps C is initialized to zero.
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Step 5: For each data point pi, compute the displacement vector
→
V i according to Equation (5)

(
→
V i is determined by p′is current position and the current manifold shape in Rn).

Step 6: For each data point pi, update p′is position according to
→
V i.

Step 7: Increase C by 1.

Step 8: Check the termination condition. If the sum of
∣∣∣∣→V i

∣∣∣∣ for all the points is smaller than

a threshold ε or C reaches a given value Cmax, go to Step 9. Otherwise, return to
Step 5.

Step 9: Carry out principal component analysis (PCA) on the deformed manifold to obtain
the final dimension reduction result (the number of principal components is taken
as the estimated intrinsic dimension of the manifold, and the low-dimension co-
ordinates of each data point pi are computed by the projection onto the principal
component vectors).

In the above algorithm, the data manifold first flattens in Rn. Then, the manifold
intrinsic dimension is estimated by PCA. Simultaneously, the DR result is obtained after
the manifold has already been fairly flattened. The proposed model belongs to global

learning considering the definition of
→
V

r

ij and the progressive (or stepwise) spread of local
deformation to distant areas on the manifold. Although the elastic interaction is defined
within a soft neighborhood of a point, based on the connectivity of neighboring points in
the manifold topology, this local interaction will gradually affect the points far away. The
local–global interaction of data points results in the autonomous deforming of the manifold,
or its self-evolution. Although PCA is used in the last step of the algorithm, the method is
non-linear due to the deforming process.

3. Simulation Study on Data Sets

The proposed model was implemented by a programming simulation. In the prelimi-
nary experiments, it was discovered that the values of α1 and α2 had an obvious impact on
the results. If α1 was much larger, the repulsion between data points would be very strong.
The manifold would be rapidly flattened and also stretched, but the distance between
neighbor points could hardly be preserved. (Interestingly, in this case, the deforming still
reached a balanced state, in which the elastic interaction between neighbor points became
a strong attraction to counteract the repulsion between points.) On the contrary, if α2 was
much larger, the elastic interaction between neighbor points would be strong, which could
preserve the neighbor distances well, but the deforming of the manifold would become
very slow. The dynamic alternation of α1 and α2 was proposed to overcome this. In the
deforming process, we let α1 rise and fall periodically, but kept α2 constant. In this way,
the repulsion prevailed over the elastic interaction for some time, and then the elastic
interaction in turn became dominant. Correspondingly, the deforming process alternated
periodically between the two stages of “flattening” and “restoring neighbor distance”. The
updating of α1 and α2 was implemented in Step 5 before the calculation of the displacement
vector.

3.1. Simulation Study on Test Data Sets

Experiments were performed on typical surfaces in R3. Some of the results are shown
for the S-surface and the Gaussian surface (corresponding to the cases of curling and convex
or concave shapes, respectively).

Figure 1 shows the mesh of the S-surface, which had 360 data points. The edges repre-
sent the neighboring relationship between the data points. Figure 2 shows the displacement
vectors on the initial data mesh in 3D, which were calculated according to Equation (5). It
is clear that these vector directions represented by the arrows had the effect of stretching
the surface in a flattening tendency. Intermediate results were recorded in the experiment,
which are shown in Figure 3 as a demonstration of the deformation process.
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The experimental results for the Gaussian surfaces are shown in Figures 4–7.
Figures 4a and 6a show two Gaussian surfaces with different variance values, which had
120 data points, respectively. Figure 6a has a smaller variance value; therefore, the shape
appears much sharper. Figures 4 and 6b are the deforming results in R3, respectively.
Figures 5 and 7 show the final DR results. The intrinsic dimension of the data sets was
revealed as 2. The topology structure of the data set was based on the neighborhood
relationship of data points. The DR results consisted of the nodes representing data points
and the edges representing the neighborhood relationship. Each node is labeled with the
number of its corresponding data point. Due to the non-linear property of the Gaussian
surface, the dimension reduction results were not evenly distributed. However, the distance
between neighbor points was as relatively preserved as possible.
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3.2. Simulation Study on Practical Data Sets

Figures 8 and 9 show the DR result of the auto fuse image set from the “Object Pose
Estimation Database” [30,31]. This image set was captured under the viewpoints with
horizontal and vertical changes. Figure 8 shows the data set with a number assigned to
each image. The dimension reduction result is shown in Figure 9 with several nodes and
edges. In the DR result, the intrinsic dimension was estimated as 2. Each node in Figure 9
corresponds to an image with the same number in Figure 8. The pairs of neighbor data
points in the original data set are represented by the pairs of nodes connected by the edges
in Figure 9. The two different dimensions in Figure 9 have meaningful interpretations,
respectively. The x-axis corresponds to the change in the horizontal viewpoint. The y-axis
corresponds to the change in the vertical viewpoint. The nodes at the lower right area of
the grid in Figure 9 are much closer because the method preserved the distance between
neighbor points in manifold deformation, and those distances were relatively small in the
original data set.
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Figure 10 shows a group of image sequences from the “Columbia Object Image Library
(COIL-20)”, which is captured for rotating and simultaneously resizing objects [32,33]. In
Figure 10, the toy rotates 360 degrees, together with a simultaneous size variation. The
result of the dimension reduction is shown in Figure 11, where each node is labeled with a
corresponding image number. The toy images are also displayed near their corresponding
nodes. Figure 11 shows a closed curve representing the rotating angle variation from 0 to
360 degrees. The x-axis corresponds to the left–right rotating angle. The y-axis is related
to the size factor. In Figure 11, the points are very close at the top, lower left, and lower
right areas on the curve (indicated as areas A, B, and C in the figure). These three areas
are shown in Figures 12–14 in more detail. The variation in the images along the curve
in Figure 11 is consistent with the rotating process and also consistent with the resizing
process. Therefore, the topology structure of this data set can be seen in Figure 11.
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Moreover, to investigate the intrinsic dimension estimation, in the experiment, the 
intermediate result after each deforming step was analyzed by PCA and the relative ratios 
of the primary components were recorded. The variation in such ratios for the six most 
significant components is shown in Figure 15. The six curves in Figure 15 are labeled with 
the numbers of component order. Figure 15 indicates that the most significant and second-
most significant components had increasing proportion rates. But the ratios of the other 
four components decreased obviously with the deformation going on. This clearly re-
vealed the data set had two main latent variables, which were just in accord with the ro-
tating angle and size factors. The fluctuation of the curves in Figure 15 was due to the 
dynamic periodic adjustment of α1 and α2 described in Section 3. 
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groups of face images captured for different people [34]. The person and the camera keep 
motionless, but the illumination intensity and angle change. The image data set is from 
the Internet [35]. Figure 16 shows one group of images for a person. Figure 17 shows the 
final result of dimension reduction. The node points in Figure17 represent the images, 
which are labeled with their corresponding numbers. The face images are also displayed 
near the corresponding nodes. The edges connect the neighbor points. In the result, the x-
axis in Figure 17 can be interpreted as the illumination intensity factor and the y-axis rep-
resents the illumination angle. For quantitative analysis, the sum of pixel intensity was 
calculated for each image as the representation of illumination intensity. And the intensity 
difference between the left and right half of each image was also calculated as the repre-
sentation of the illumination angle factor. Figure 18 shows the distribution of intensity 
summation along the x-axis in Figure 17, which indicates that the illumination intensity 
has an increasing tendency along the x-axis in Figure 17. Figure 19 shows the left–right 
difference in intensity for each image, which indicates that the illumination angle changes 
from right to left along the y-axis in Figure 17. Therefore, the DR result revealed the two 
factors underlying these face images. 
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Moreover, to investigate the intrinsic dimension estimation, in the experiment, the
intermediate result after each deforming step was analyzed by PCA and the relative ratios
of the primary components were recorded. The variation in such ratios for the six most
significant components is shown in Figure 15. The six curves in Figure 15 are labeled
with the numbers of component order. Figure 15 indicates that the most significant and
second-most significant components had increasing proportion rates. But the ratios of the
other four components decreased obviously with the deformation going on. This clearly
revealed the data set had two main latent variables, which were just in accord with the
rotating angle and size factors. The fluctuation of the curves in Figure 15 was due to the
dynamic periodic adjustment of α1 and α2 described in Section 3.
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Experiments were performed on the “Extended Yale Face Database B”, which is
groups of face images captured for different people [34]. The person and the camera keep
motionless, but the illumination intensity and angle change. The image data set is from the
Internet [35]. Figure 16 shows one group of images for a person. Figure 17 shows the final
result of dimension reduction. The node points in Figure 17 represent the images, which
are labeled with their corresponding numbers. The face images are also displayed near the
corresponding nodes. The edges connect the neighbor points. In the result, the x-axis in
Figure 17 can be interpreted as the illumination intensity factor and the y-axis represents
the illumination angle. For quantitative analysis, the sum of pixel intensity was calculated
for each image as the representation of illumination intensity. And the intensity difference
between the left and right half of each image was also calculated as the representation of the
illumination angle factor. Figure 18 shows the distribution of intensity summation along
the x-axis in Figure 17, which indicates that the illumination intensity has an increasing
tendency along the x-axis in Figure 17. Figure 19 shows the left–right difference in intensity
for each image, which indicates that the illumination angle changes from right to left along
the y-axis in Figure 17. Therefore, the DR result revealed the two factors underlying these
face images.
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Experiments were performed for the cropped images of the “UMIST Face Database”, 
which includes image sequences captured when people turn their heads [36]. The image 
data set is from the Internet [37]. Figure 20 shows one group of images. Figure 21 shows 
the final DR result, where the nodes are labeled with numbers. The corresponding images 
are also displayed. The x-axis represents the major dimension, which reflects the angle 
between the head’s orientation and the posteroanterior direction. Interestingly, there ex-
isted a non-negligible second dimension in the result, which reflected the angle between 
the head’s orientation and the 45-degree direction of the face. In Figure 21, this dimension 
reaches its minimum at node point 17 (i.e., the 17th image in the sequence), which is the 
one closest to the visual angle of 45 degrees. On the other hand, long-term practice and 
experience in photography indicate that the most suitable angle of view to demonstrate 
the 3D effect of faces or objects is 45 degrees. The experiment indicated that the proposed 
model had the potential to reveal implicit features of the data sets. 
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Experiments were performed for the cropped images of the “UMIST Face Database”,
which includes image sequences captured when people turn their heads [36]. The image
data set is from the Internet [37]. Figure 20 shows one group of images. Figure 21 shows the
final DR result, where the nodes are labeled with numbers. The corresponding images are
also displayed. The x-axis represents the major dimension, which reflects the angle between
the head’s orientation and the posteroanterior direction. Interestingly, there existed a non-
negligible second dimension in the result, which reflected the angle between the head’s
orientation and the 45-degree direction of the face. In Figure 21, this dimension reaches its
minimum at node point 17 (i.e., the 17th image in the sequence), which is the one closest to
the visual angle of 45 degrees. On the other hand, long-term practice and experience in
photography indicate that the most suitable angle of view to demonstrate the 3D effect of
faces or objects is 45 degrees. The experiment indicated that the proposed model had the
potential to reveal implicit features of the data sets.
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3.3. Comparison with Typical Manifold Learning Methods 
Manifold learning methods can be divided into two categories: global preserving em-

bedding and local preserving embedding. Isomap and LLE are two representative meth-
ods of the two categories, respectively. In the experiments, the proposed method demon-
strated its robustness on various data sets compared to Isomap and LLE. 

Figures 22 and 23 show the 2D embedding results of the toy image sequence in Figure 10 
by Isomap and LLE, respectively. The image sequence in Figure 10 has a smooth change 
in viewing angle and size, but the embedding result by LLE had several obviously sharp 
bends on the curve of embedded points, which deviated from the characteristics of the 
data itself. On the other hand, the DR results of the proposed method and the Isomap 
method accorded with the data characteristics well. 
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3.3. Comparison with Typical Manifold Learning Methods

Manifold learning methods can be divided into two categories: global preserving
embedding and local preserving embedding. Isomap and LLE are two representative
methods of the two categories, respectively. In the experiments, the proposed method
demonstrated its robustness on various data sets compared to Isomap and LLE.

Figures 22 and 23 show the 2D embedding results of the toy image sequence in
Figure 10 by Isomap and LLE, respectively. The image sequence in Figure 10 has a smooth
change in viewing angle and size, but the embedding result by LLE had several obviously
sharp bends on the curve of embedded points, which deviated from the characteristics of
the data itself. On the other hand, the DR results of the proposed method and the Isomap
method accorded with the data characteristics well.
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Figures 24 and 25 show the 2D embedding results of the image sequence in Figure 20 
by Isomap and LLE, respectively. It is obvious that, in the embedding result by Isomap, 
the embedded data points almost formed a line rather than a 2D curve. On the other hand, 
the DR results of the proposed method and the LLE method clearly indicated the 2D struc-
ture underlying the original image data. 
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Figures 24 and 25 show the 2D embedding results of the image sequence in Figure 20
by Isomap and LLE, respectively. It is obvious that, in the embedding result by Isomap, the
embedded data points almost formed a line rather than a 2D curve. On the other hand, the
DR results of the proposed method and the LLE method clearly indicated the 2D structure
underlying the original image data.
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In addition to the two kinds of typical manifold learning methods, the proposed 
model was also compared with improved or new types of learning approaches including 
t-distributed stochastic neighbor embedding (t-SNE), local tangent space alignment 
(LTSA), and locality preserving projection (LPP). Figures 26–28 are the DR results for the 
toy image sequence in Figure 10 by t-SNE, LTSA, and LPP, respectively. In Figures 26 and 
27, although local parts of the results may reflect the local neighborhood structure of the 
data points, the whole 2D structure of the mapping result can not represent the original 
data topology structure. Figure 28 shows that the LPP method had a similar reasonable 
DR result. 
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Figure 25. The two-dimensional mapping of the face image set by LLE.

In addition to the two kinds of typical manifold learning methods, the proposed
model was also compared with improved or new types of learning approaches including
t-distributed stochastic neighbor embedding (t-SNE), local tangent space alignment (LTSA),
and locality preserving projection (LPP). Figures 26–28 are the DR results for the toy image
sequence in Figure 10 by t-SNE, LTSA, and LPP, respectively. In Figures 26 and 27, although
local parts of the results may reflect the local neighborhood structure of the data points,
the whole 2D structure of the mapping result can not represent the original data topology
structure. Figure 28 shows that the LPP method had a similar reasonable DR result.
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Figures 29–31 are the DR results for the image sequence in Figure 20 by t-SNE, LTSA,
and LPP, respectively. In Figure 29, the data point with No. 33 was obviously misplaced by
the 2D mapping of t-SNE. In Figure 30, the local neighborhood structure and the global
topology structure of the data points are not reflected in the 2D mapping result of LTSA.
Figure 30 shows that the LPP method had a similar reasonable DR result compared to the
proposed model, although the data points with No. 22 and No. 23 were misplaced in the
DR result by LPP.

The comparison experiments clearly indicated the advantage of the robustness and
self-adaption of the proposed model. The model’s robustness derives mainly from the
soft neighborhood defined by Equations (1) and (2), which eliminate the interference of
misjudging neighbor points. However, most manifold learning approaches greatly depend
on the parameter of neighborhood size (i.e., the number of neighbor points), which may
lead to unsatisfactory DR results due to the misjudgment of neighbor points. The model’s
self-adaption derives mainly from the self-evolutionary mechanism of the deformation,
which is guided by an intrinsic vector field defined completely by the current manifold
shape. However, the mathematical frameworks in most manifold learning approaches are
fixed, which may be suitable for only limited kinds of data sets.
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With analogy to the attractor in differential dynamic systems, the flattening effect of 
the proposed deforming vector field can be interpreted as the evolution of the data mani-
fold to an “attracting state”. If all the data points are in the same low-dimensional hyper-
plane in Rn, the attracting or repulsive vectors between any two of them are all in the same 
hyperplane. Moreover, the displacement vectors of the data points under such attracting 
and repulsive interactions are also within the same hyperplane, and no point will move 
out of this low-dimensional hyperplane. Thus, it can be regarded as an “attracting state”. 
The evolution of the data manifold under the proposed deforming field will approach 
such an attractive state (i.e., the manifold will be flattened). 

To overcome the problem caused by non-uniform sampling (or “short-circuit edge”) 
and neighbor point misjudging, which are common in practical learning tasks, the soft 
neighborhood is proposed as an adaptive way to determine the interactions between 
neighbor points. This improvement guarantees a sufficient number of neighboring points, 
meanwhile eliminating the interference of fake neighboring points, which may make the 
learning result meaningless. It guarantees the robustness of the proposed model, which 
outperformed other typical methods in the comparison experiments. 

The experiments on test data manifolds such as S-surface and Gaussian surfaces 
prove that the proposed method can effectively flatten the two typical surfaces of the 
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4. Conclusions and Discussion

In this paper, to improve the robustness of manifold learning, a self-evolution model
for dimension reduction is proposed based on the autonomous flattening deformation
of data manifolds. Two different kinds of virtual interactions between data points are
defined. The repulsion interaction is defined to make the manifold flattened, while the
elastic interaction is defined to preserve the manifold’s topological structure in the flattening
process. The deformation of data manifold is guided by the two interactions, and dimension
reduction is achieved as an emergent result of the autonomous deformation. The proposed
topological deformation learning provides a new self-organized model to understand and
interpret dimension reduction and feature extraction in learning.

With analogy to the attractor in differential dynamic systems, the flattening effect of
the proposed deforming vector field can be interpreted as the evolution of the data manifold
to an “attracting state”. If all the data points are in the same low-dimensional hyperplane
in Rn, the attracting or repulsive vectors between any two of them are all in the same
hyperplane. Moreover, the displacement vectors of the data points under such attracting
and repulsive interactions are also within the same hyperplane, and no point will move
out of this low-dimensional hyperplane. Thus, it can be regarded as an “attracting state”.
The evolution of the data manifold under the proposed deforming field will approach such
an attractive state (i.e., the manifold will be flattened).

To overcome the problem caused by non-uniform sampling (or “short-circuit edge”)
and neighbor point misjudging, which are common in practical learning tasks, the soft
neighborhood is proposed as an adaptive way to determine the interactions between
neighbor points. This improvement guarantees a sufficient number of neighboring points,
meanwhile eliminating the interference of fake neighboring points, which may make the
learning result meaningless. It guarantees the robustness of the proposed model, which
outperformed other typical methods in the comparison experiments.

The experiments on test data manifolds such as S-surface and Gaussian surfaces prove
that the proposed method can effectively flatten the two typical surfaces of the bending
or concave–convex case. Other experiments were carried out on real-world data sets,
including object images with changing size and angle of view, face images with changing
illumination angle and intensity, and also face image sequences captured when the subjects
turn their heads. The experimental results prove that effective dimension reduction can
be achieved by the proposed method. The intrinsic dimensions can be revealed, and each
dimension has a meaningful interpretation. It also has the potential to reveal implicit
features in the data set. Moreover, compared to the typical and new types of manifold
learning methods, the proposed method provides more robust results. Further study will
investigate detailed characteristics of the final stable shape of the deforming manifold and
its relationship between the algorithm parameters (i.e., weight coefficients), which may
provide inspirations for a new design of method in dimension reduction.
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