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Abstract: There are several goals of the two-dimensional data analysis: one may be interested in
searching for groups of similar objects (clustering), another one may be focused on searching for
some dependencies between a specified one and other variables (classification, regression, associate
rules induction), and finally, some may be interested in serching for well-defined patterns in the
data called biclusters. It was already proved that there exists a mathematically proven symmetry
between some patterns in the matrix and implicants of data-defined Boolean function. This paper
provides the new look for a specific pattern search—the pattern named the δ-shifting pattern. The
shifting pattern is interesting, as it accounts for constant fluctuations in data, i.e., it captures situations
in which all the values in the pattern move up or down for one dimension, maintaining the range
amplitude for all the dimensions. Such a behavior is very common in real data, e.g., in the analysis
of gene expression data. In such a domain, a subset of genes might go up or down for a subset
of patients or experimental conditions, identifying functionally coherent categories. A δ-shifting
pattern meets the necessity of shifting pattern induction together with the bias of the real values
acquisition where the original shifts may be disturbed with some outer conditions. Experiments
with a real dataset show the potential of our approach at finding biclusters with δ-shifting patterns,
providing excellent performance. It was possible to find the 12× 9 pattern in the 112× 9 input data
with MSR = 0.00653. The experiments also revealed that δ-shifting patterns are quite difficult to be
found by some well-known methods of biclustering, as these are not designed to focus on shifting
patterns—results comparable due to MSR had much more variability (in terms of δ) than patterns
found with Boolean reasoning.

Keywords: biclustering; shifting patterns; Boolean reasoning

1. Introduction

Biclustering is a two-dimensional clustering technique considered first by Morgan
and Sonquist [1], and subsequently by Hartigan [2] and by Mirkin [3], although it was
popularized by Cheng and Church [4] in the context of gene expression data analysis. It
has an interesting property that is not fulfilled by clustering techniques: a value from the
matrix (dataset) could belong to zero, one or more biclusters. In other words, the join of
all the biclusters might not be the original dataset, and the intersection of two biclusters
might not be empty. In many contexts, biclustering results are more appropriate, as they
focus on more specific patterns (subsets of rows and columns, simultaneously) than those
provided by clustering (row or column segmentation, independently). Apart from the fact
that the computational complexity is higher than that of clustering (exponential), becoming
a NP-hard problem [5], biclustering has captured the attention of the scientific community
because it is able to search for more specific patterns in data (medical [6], environmental [7],
biological [8], text mining [9,10], and many others [11]), discarding naturally what is not
relevant for the goals [12].
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In general, the extraction of biclusters from data is organized in two processes: the
search for biclusters in the high-dimensional search space (exploration), and the selection
of good biclusters by means of a quality function (exploitation). The goal is to find a
sub-matrix that shows a behavioral pattern for rows and columns simultaneously. Patterns
can adopt different structures, depending on the definition of behavior associated to the
values within the bicluster [13]. However, there are two types of patterns that show special
interest in nature: shifting and scaling patterns [14]. Most of the approaches for shifting
pattern induction are based on a measure named Mean Square Residue (MSR) [4] and its
variants [15–18], or on graph theory [19–21].

During the last two decades, different heuristics have been developed that provide
sets of biclusters: based on graphs [5,22,23], uncovering structures by eigenvectors [24],
based on evolutionary computation [25], ensemble methods [26], or scatter search [27],
which are evaluated with some measure of quality [28–31]. However, they mainly focused
on the type of bicluster (as defined in [13]) rather than on the type of pattern [14].

The process of searching for biclusters in data can be addressed with different paradigms.
In the formal concept analysis realm [32], the extraction of the concept lattice is equivalent to
finding inclusion-maximal biclusters in binary data. Similarly, the bicluster of ones in binary
data, which refers to market basket analysis [33] (a special case of affinity analysis [34]),
may be easily interpreted as frequent item sets. Also from the graph theory point of view, it
may be interesting to detect such patterns in different graph describing matrices [35].

This work presents a new approach for pattern extraction based on a symmetry
between searching for patterns in the data and Boolean reasoning [36]. Its novelty consists
of two aspects: it extends both the general biclustering approach started in [37] for binary
and discrete data and the later extended for continuous data, and it also provides the
definition of a new type of bicluster named the δ-shifting pattern. The rationale behind the
approach is based on the possibility of representing data differences as Boolean formulas,
whose implicants (and prime implicants) encode the biclusters (such correspondence
between biclusters and implicants is mathematically proven). In fact, shifting pattern
induction is possible since Boolean reasoning provides the skills for finding all inclusion-
maximal δ-shifting patterns.

The paper is organized as follows: firstly, a short introduction of the most important
concepts and of several types of patterns, which might be the goal of the search; next, a brief
presentation of the Boolean reasoning paradigm application to biclustering of continuous
data; later, Section 4 provides the necessary definitions and theorems for finding constant
and δ-shifting patterns; the experimental analysis of the approach on real data is provided
next together with the description of the obtained results; finally, discussion and further
work in the area of Boolean reasoning-based pattern induction are also presented.

2. Theoretical Background
2.1. Biclustering

Clustering is a technique of unsupervised data analysis, where the goal is to find simi-
lar groups of multidimensional objects, which are described by heterogeneous attributes.
Considering the set of objects O, the result of clustering is the partition—in terms of mathe-
matical definition—of O into a family of disjoint, nonempty subsets of O, whose union of
all of them is O.

On the other hand, biclustering tries to find patterns in a two-dimensional matrix of
scalars (homogeneous values from the same domain), whose patterns satisfy a well-defined
criterion [38]. Therefore, biclustering results are not necessarily disjoint, and the union
might not cover the original matrix.

Definition 1 (Matrix). A matrix (referring to the dataset) is defined as a tuple M = (R,C) where
R,C are two finite sets referred to as the set of rows and the set of columns, respectively.
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A matrix M = (R,C), is therefore defined by R = {r1, . . . , rn}, n ≥ 1, C = {c1, . . . , cm},
m ≥ 1, where each position (i, j) ∈ R× C contains a value from the same domain (a real value, in
general):

(
vi,j
)
=

 v1,1 · · · v1,m
...

. . .
...

vn,1 · · · vn,m


Commonly, the indexes of R and C are natural numbers. However, in this paper,

those natural indexes will be interpreted as nominal labels, so as the inclusion relation of
row/column indexes is implicit. In other words, we do not keep the order of rows/columns
but just use natural numbers as a row/column symbolic identifier.

Definition 2 (Bicluster). A bicluster is a 2-tuple B = (I, J)=
(
wi,j
)
, where I ⊆ R, J ⊆ C and

∀i ∈ I, and ∀j ∈ J it satisfies wi,j = vi,j.

Hereafter, for simplicity, the bicluster B will be represented as a matrix of values(
wi,j
)

or enumerating the subset of rows and columns as (I, J), and generically, with the
expression IJ. As I and J are subsets of R and C, respectively, empty biclusters will be
identified when any of those subsets are empty.

Considering some criterion H, it is possible to define the inclusion-maximal bicluster
as follows:

Definition 3 (Inclusion-Maximal Bicluster). Let B = (I, J) be a bicluster of the matrix M

whose elements satisfy the criterion H. The bicluster B is inclusion-maximal if there is neither
i ∈ R \ I nor j ∈ C \ J such that any extended biclusters Bi = (I ∪ {i}, J) or Bj = (I, J ∪ {j})
still satisfy the criterion H. In other words, subsets I and J are maximal subsets (in the sense of
inclusion) of sets R and C, respectively.

The above definition is very important in the following because of the possibilities of
the Boolean reasoning approach to find biclusters satisfying the stated criterion.

2.2. Bicluster Typology

The previous subsection has provided general definitions for biclustering, since they
only address structure but not properties. Henceforth, depending on the type of input data
domain, as well as the expectations of the data owner, it is possible to qualify the properties
it must fulfill. For instance, for discrete data, the intuitive requirement is to contain constant
values; and for binary matrices, the interest resides on biclusters of only ones. However,
continuous-valued matrices are more complex and offer a number of patterns, among them:

• Tolerance bicluster
|wi,j − wk,l | ≤ σ, ∀i, k ∈ I, ∀j, l ∈ J

• Center-based bicluster
σ− µ ≤ wi,j ≤ σ + µ, ∀i ∈ I, ∀j ∈ J

• Perfect bicluster, satisfying one of the following (the +× symbol represents addition or

multiplication):

– All the values are equal (equivalent to considering continuous data as discrete);

– wi,j = π +× αi where π is a typical value within the bicluster and αi is the adjust-

ment for row i ∈ I;
– wi,j = π +× β j where π is a typical value within the bicluster and β j is the adjust-

ment for column j ∈ J;

– wi,j = π +× αi
+× β j, which is a combination of the above two.
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A special case of a perfect bicluster is called a shifting pattern (wi,j = πj + βi, ∀i ∈ I,
∀j ∈ J). Given its importance, an illustrative example of the shifting pattern is intro-
duced next.

Let a matrix have seven rows (X axis values) and six columns (color lines), as depicted
in Figure 1. Each column c of the data is presented as the line going through rows indicated
in the X axis.

r1 r2 r3 r4 r5 r6 r7
0
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60

70

80

90

 

 

c1 c2 c3 c4 c5 c6

Figure 1. Matrix presented as the set of column series.

It is not so intuitive to discover hidden shifting patterns in Figure 1. However, at least
one such pattern exists—({r1, r3, r5, r7}, {c1, c3, c6})—and it is highlighted in Figure 2 with
solid lines over the dashed ones.
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c1 c2 c3 c4 c5 c6 pattern  

Figure 2. Shifting pattern within the data.

Due to the nature of data, which very frequently includes noise, perfect biclusters are
not common in real-world data. Only an infinitesimal variation of a matrix value would
cause the row and column where it is placed to not be both selected for a bicluster. Thus, a
δ-shifting pattern emerges as an effective alternative to detect shifting patterns with small
noise presence (a definition will be provided in Section 4.2).

3. Boolean Reasoning and Biclustering

The first applications of the Boolean reasoning paradigm in the domain of biclustering
were published by Michalak and Ślȩzak [37], in which mathematical foundations were
provided for discrete value matrices [39]. The intuitive generalization of such an approach
for continuous data was also presented. However, both previous approaches did not deal
with shifting patterns, as those addressed the search for global patterns, which fluctuate
within a range (a global bandwidth). This work, instead, introduces a Boolean reasoning-
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based approach to search for δ-shifting patterns, which are much more interesting due to
their usefulness in many domains (e.g., gene expression data analysis [14]).

Biclustering based on Boolean reasoning moves the search for biclusters to the aim of
finding some Boolean formula implicants or prime implicants. The formal definition of the
formula depends on the input data domain and the objective of the analysis (requirements
of the searched pattern). However, the most important part of encoding data (construction
of formula) and decoding results (interpretation of implicants) concerns the row/column
and Boolean variable correspondence.

Definition 4 (Row/column corresponding Boolean variable). Let M be a matrix of n rows
(R = {r1, . . . , rn}) and m columns (C = {c1, . . . , cm}). Let i ∈ R be a row of M; then, i′ is
its corresponding row Boolean variable. Similarly, let j ∈ C be a column in M; then, j′ is its
corresponding column Boolean variable.

For the sake of simplicity, apostrophes (′) will be removed from row/column Boolean
variables, and the meaning will depend on the context (row/column or Boolean variable
associated to the row/column, respectively).

Definition 5 (Bicluster and implicant correspondence). Let M be a given matrix of n rows
({r1, . . . , rn}) and m columns ({c1, . . . , cm}). Let B = (I, J) be a bicluster of M. The implicant
P(B) is called the IJ corresponding bicluster if it contains only the Boolean variables that correspond
to rows r ∈ R such that r /∈ I and columns c ∈ C such that c /∈ J.

In order to illustrate how the Boolean reasoning can help finding biclusters, a simple
example will be shown. The maximal absolute difference between any two cells in matrix
M1 (Figure 3) is equal to 4. The greatest absolute difference smaller than 4 is 3. The Boolean
function, encoding the data, is a conjunction of clauses whose variables correspond to
rows and columns of two cells that differ by more than 3. The only pair of cells whose
difference exceeds 3 is v1,1 = 1 and v2,3 = 5. The Conjunctive Normal Form (CNF) clause
that encodes these cells with the row and column’s corresponding Boolean variables is
(r1 ∨ c1 ∨ r2 ∨ c3). This clause is already in Disjunctive Normal Form (DNF) and consists of
four prime implicants.

c1 c2 c3
r1 1 2 3
r2 2 3 5

Figure 3. A sample matrix M1.

It was proven that biclusters associated with prime implicants are defined by variables
that are not present in the prime implicants. From matrix M1 and the function f = (r1 ∨
c1 ∨ r2 ∨ c3) (pairs exceeding the value 3), several biclusters can be provided, as shown in
Figure 4.

For example, the first implicant is r1, which corresponds to the bicluster formed by
all the columns, and only the row r2. Also, there is neither a column nor a row that can
be added to the bicluster without violating the defined property on the maximal absolute
difference. The example reveals that it is possible to express global properties of biclusters
in terms of Boolean reasoning. However, it becomes interesting to analyze only in-row
absolute differences instead of global ones, as it implicitly considers the order of rows,
what has important consequences for the analysis of data in several domains (e.g., venereal
tumors [40], time-lagged data [41]).

The previous approach was successfully developed for finding constant biclusters in
discrete and binary data [37] so as for finding biclusters of similar values in continuous
data [42]. This work extends the research to address the search for biclusters in continuous
data that include more sophisticated patterns (not only constant real values), and it requires
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new definitions, proofs and the methodology to validate the approach in the context of
real-world problems.

c1 c2 c3
r1 1 2 3
r2 2 3 5

c1 c2 c3

r1 1 2 3
r2 2 3 5

r1 : ({r2}, {c1, c2, c3}) c1 : ({r1, r2}, {c2, c3})

c1 c2 c3

r1 1 2 3
r2 2 3 5

c1 c2 c3

r1 1 2 3
r2 2 3 5

r2 : ({r1}, {c1, c2, c3}) c3 : ({r1, r2}, {c1, c2})

Figure 4. Biclusters identified by the prime implicants and the corresponding bicluster representation
IJ for matrix M1.

4. Pattern Induction with Boolean Reasoning

The definitions to support the procedure of extracting biclusters in real-valued do-
mains by means of Boolean reasoning will be presented next.

4.1. Constant Patterns

Definition 6. (Constant pattern) The IJ bicluster is a constant pattern of matrix M if ∀i ∈ I

and ∀j, k ∈ J it satisfies vi,j = vi,k.

Figure 5 presents the matrix M2 of continuous values, containing the constant pattern
({r1, r2, r4, r5}, {c1, c2}), which has the same value for a subset of columns. Moreover,
there are neither rows nor columns that can be added without violating the condition of
inclusion-maximality (see Definition 3).

c1 c2 c3

r1 1 1 2
r2 2 2 4
r3 3 1 5
r4 4 4 5
r5 5 5 1
r6 2 1 5

Figure 5. A sample matrix M2 with a constant pattern.

Boolean reasoning can help with finding all the patterns by defining the function that
encodes all the pairs of cells (at each row independently) with different values.

Definition 7 (Boolean function that encodes all in-row absolute differences). Let M be a
matrix of rows R and columns C. The Boolean function f that encodes all in-row pairs with different
values is defined as follows:

f(M) =
∧
(i ∨ j ∨ k)

where
i ∈ R, j, k ∈ C

such that
vi,j 6= vi,k

For the matrix M2 in Figure 5, the Boolean function f is:

f(M2) = (r1 ∨ c1 ∨ c3) ∧ (r1 ∨ c2 ∨ c3) ∧ (r2 ∨ c1 ∨ c3) ∧ (r2 ∨ c2 ∨ c3)∧
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∧(r3 ∨ c1 ∨ c2) ∧ (r3 ∨ c1 ∨ c3) ∧ (r3 ∨ c2 ∨ c3) ∧ (r4 ∨ c1 ∨ c3)∧

∧(r4 ∨ c2 ∨ c3) ∧ (r5 ∨ c1 ∨ c3) ∧ (r5 ∨ c2 ∨ c3) ∧ (r6 ∨ c1 ∨ c2)∧

∧(r6 ∨ c1 ∨ c3) ∧ (r6 ∨ c2 ∨ c3)

and simplifying, in DNF:

f(M2) = (c1 ∧ c2) ∨ (r1 ∧ r2 ∧ r3 ∧ r4 ∧ r5 ∧ r6)∨

∨(r3 ∧ r6 ∧ c3) ∨ (c1 ∧ c3) ∨ (c2 ∧ c3)

The final form of f(M2) has additionally introduced brackets for the better presentation of
its prime implicants.

Prime implicants of the f(M2) function encode the patterns in such a way that the
pattern consists of both rows and columns whose corresponding Boolean variables are not
present in the prime implicant.

The constant pattern shown in Figure 5 is easily identified by means of its prime
implicant (r3 ∧ r6 ∧ c3), which is associated to the bicluster ({r1, r2, r4, r5}, {c1, c2}), in
accordance to Definition 5. The first implicant (c1 ∧ c2) and the last two (c1 ∧ c3) and
(c2 ∧ c3) refer to single-column patterns. It might not be so intuitive that each column
represents a pattern that only contains one column with all rows—although formally correct.
Finally, the second implicant (r1 ∧ r2 ∧ r3 ∧ r4 ∧ r5 ∧ r6) refers to the empty pattern, which
is still consistent with Definition 3.

The theorems that establish the relationship between implicants and constant patterns,
and between prime implicants and inclusion-maximal constant patterns, respectively, are
stated below.

Theorem 1 (Implicants and constant patterns). I′J′ is an implicant of f(M) if IJ is a constant
pattern in M.

Theorem 2 (Prime implicants and inclusion-maximal constant patterns). I′J′ is a prime
implicant of f(M) if IJ is an inclusion-maximal constant pattern in M.

The proofs of above theorems can be found in Appendix A (A.1).

4.2. δ-Shifting Patterns

The shifting pattern is presented in Figure 2 as an analogy of shifting pattern in
Figure 2. Each line of the pattern may be interpreted as the up–down shift of any of them.
However, even a small change of any of the pattern series may cause the pattern to no
longer be a shifting one. However, such a hidden pattern may be still of interest to the
data owner. That leads us to the idea of the δ-shifting pattern that contains series that do
not exceed a given threshold (δ) of the difference between rows. A simple visualization is
provided in Figure 6. The overall fluctuation of the pattern, containing three: red, green
and blue lines, is ∆, although it is more relevant to focus on the local fluctuation for each
experimental condition illustrated by the blue shaded band whose difference is δ.

The concept of shifting pattern was introduced in Section 2.2, and it can be formally
generalized in order to consider that the maximal absolute in-row difference between pairs
of cells will not exceed a given threshold δ.
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Figure 6. The δ-shifting pattern example.

Definition 8 (δ-Shifting Pattern). A bicluster IJ shows a δ-shifting pattern when:

∀i ∈ I, ∀j, k ∈ J
∣∣vi,j − vi,k

∣∣ ≤ δ (1)

It becomes intuitive (from the relationship between Definitions 6 and 7) that proper
Boolean functions should be based on the negation of the condition in Equation (1)—the
encoding of all in-row pairs that violate this condition.

Definition 9 (Boolean function that encodes all in-row absolute differences greater than
δ). Let M be a matrix of rows R and columns C. The Boolean function fδ that encodes all in-row
pairs whose difference is not greater than δ is defined as follows:

fδ(M) =
∧
(i ∨ j ∨ k)

where
i ∈ R, j, k ∈ C

such that
|vi,j − vi,k| > δ

Figure 7 shows the matrix M3 with three rows and three columns. To build the fδ=2
formula (to find inclusion-maximal δ-shifting patterns), all the pairs of cells whose absolute
difference exceeds the value 2 should be found (at each row separately). The first row does
not contain such pairs, so it does not generate any clause. There is one pair in the second
row v2,1 and v2,3 whose absolute difference is 3. Such a pair is encoded with a disjunction
of three Boolean variables that correspond to the row (2) and to the columns (1 and 3), so
the clause has the following form: r2 ∨ c1 ∨ c3. All clauses are logically multiplied, so the
final CNF expression looks as follows:

fδ=2(M3) = (r2 ∨ c1 ∨ c3) ∧ (r3 ∨ c1 ∨ c3) ∧ (r3 ∨ c2 ∨ c3)

c1 c2 c3
r1 1 3 2
r2 1 3 4
r3 2 1 5

Figure 7. A sample matrix M3.
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Transforming the CNF function into DNF would discover the presence of interesting
prime implicants encoding δ-shifting patterns:

fδ=2(M3) = (r2 ∨ c1 ∨ c3) ∧ (r3 ∨ c1 ∨ c3) ∧ (r3 ∨ c2 ∨ c3) =

= (r2 ∧ r3 ∨ c1 ∨ c3) ∧ (r3 ∨ c2 ∨ c3) =

= (r2 ∧ r3) ∨ (r3 ∧ c1) ∨ (c1 ∧ c2) ∨����c1 ∧ c3 ∨����r3 ∧ c3 ∨����c2 ∧ c3 ∨ c3

Finally, four prime implicants were found (Figure 8) associated with biclusters that
are inclusion-maximal δ-shifting patterns and whose row differences do not exceed 2.

c1 c2 c3

r1 1 3 2
r2 1 3 4
r3 2 1 5

c1 c2 c3

r1 1 3 2
r2 1 3 4
r3 2 1 5

r2 ∧ r3 : ({r1}, {c1, c2, c3}) r3 ∧ c1 : ({r1, r2}, {c2, c3})

c1 c2 c3

r1 1 3 2
r2 1 3 4
r3 2 1 5

c1 c2 c3

r1 1 3 2
r2 1 3 4
r3 2 1 5

c1 ∧ c2 : ({r1, r2, r3}, {c3}) c3 : ({r1, r2, r3}, {c1, c2})

Figure 8. Prime implicants of function fδ=2(M3).

In short, it is possible to express the δ-shifting pattern induction in terms of Boolean
reasoning-based functions, which is demonstrated in Theorems 3 and 4.

Theorem 3 (Implicants and δ-shifting patterns). I′J′ is an implicant of fδ(M) if IJ is a
δ-shifting pattern in M.

Theorem 4 (Prime implicants and inclusion-maximal δ-shifting patterns). I′J′ is a prime
implicant of fδ(M) if IJ is an inclusion-maximal δ-shifting pattern in M.

The proofs of the above theorems can be found in Appendix A (A.2).
The presented approach limits the search for patterns, since it depends on the choice

of the δ value. The next subsection will provide strategies that avoid such a constraint.

5. Experimental Analysis

In order to show the quality of results, we have selected a well-known dataset related
to central nervous system development, which consists of 9 conditions and 112 genes [43].
Genes were clustered into related expression patterns to infer regulatory origins and
interactions between families across the transition of the rat cervical spinal cord from a
primary to a highly differentiate state, which is determined by embryonic days 11 through
21 (E11–E21), postnatal days 0–14 (P0–P14), and adult (A) at 90 days. This work was one of
the first to suggest that similarities in expression patterns might point to the existence of
common regulatory structures, which is useful in defining roles for genes with unknown
functions. The choice of the dataset is justified by its features to show empirically the
validity of the proposed methodology, focusing on the quality of the results from the
analytical perspective without elaborating on their biological interpretation.

The core experiments were performed as a Boolean reasoning-based constant and
δ-shifting pattern induction. To emphasize the advantages of such an approach, the results
of other biclustering techniques are also presented.

It is noteworthy that for such an exhaustive approach based on Theorems 2 and 4,
there is no need to know the ground true position of patterns (which is very common in
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other approaches like [44] or [45]). An artificially inserted δ-shifting pattern into random
data will always be found, or even better, an extension of the original pattern.

5.1. Boolean Reasoning-Based Experiments

A first analysis was conducted to visualize the distribution of all in-row absolute
differences. Figure 9 shows the distribution (histogram) for all the 55,944 pairs, which
provide 2667 unique differences, ranging from 0 (minimum) to 27.69 (maximum) with a
mean of 0.88. About 8% of differences are not greater than 0.1, while 15% are greater than
0.2, 22% are greater than 0.3, and almost 55% do not exceed 1.0. This suggests that the
range [0,0.4] for δ is very reasonable for further evaluation, as it is covering more than 25%
of the pairs.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

2000

4000

6000

8000

10,000

12,000

Figure 9. Histogram of all in-row absolute differences from data.

For δ = 0, a total of 257 constant patterns were discovered, including one empty
pattern and 112 single-column ones (each one of them containing all the rows). These two
special cases (empty and single-column) are always discovered—when they exist—by the
methodology, as Boolean reasoning also considers these patterns as biclusters (theoretically
they are indeed). From this point, these patterns will be omitted for greater values of δ, and
we will focus on patterns with at least two rows and two columns, as they seem to be the
smallest patterns that generalize interesting properties in both dimensions. Taking this into
account, there are 27 constant patterns in data.

For δ = 0.1, we discovered 1027 patterns, and these can fluctuate within that difference,
behaving as shifting patterns. For δ = 0.2, the number of patterns increases up to 2487,
for δ = 0.3, it increases up to 4027, and for δ = 0.4, it increases up to 6943. The quality
of biclusters was measured to ensure that an increase in size does not necessarily lead to
a decrease in quality. As a balanced measure of size, we will use the harmonic diameter
(d), defined as d(r, c) = 2

r−1+c−1 , where r and c are the number of rows and columns of the
bicluster, respectively. This measure reflects partially the shape of the pattern. Patterns
with similar (or comparable) areas may have quite different harmonic diameters. For
instance, three patterns with an area equal to 20 (1× 20, 2× 10 and 4× 5) will have their
d values equal to 1.9, 3.33, and 4.44, respectively. However, the third one has the highest
generalization ability.

The Mean Squared Residue (MSR) has been chosen as a measure of quality for biclus-
ters because it is able to identify correctly constant and shifting patterns in data [4,14]. A
low value (close to 0) means that the shifting pattern has no noise, and a high value means
that either the shifting pattern has much noise or it is involved in a more complex pattern
(e.g., a scaling pattern).

Table 1 summarizes the results of biclusters containing shifting patterns obtained by
varying the value of δ. The maximum values of the Mean Squared Residue and harmonic
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diameter are also shown, and there is no significant loss of quality measured by the MSR
while the value of δ increases.

Table 1. Summary of δ-shifting patterns (not smaller than 2× 2) provided for several values of δ,
including the highest value for the mean squared residue (worst case) and for the harmonic diameter.

δ Number of Patterns Max (MSR) Max (d)

0.0 27 0.00000 4.20

0.1 1027 0.00226 5.45

0.2 2487 0.00951 7.00

0.3 4027 0.02102 9.26

0.4 6943 0.02976 10.29

As only 27 meaningful patterns were found for δ = 0 (constant patterns), we have
further limited the number of comparisons for the next values of δ with the goal of illustrat-
ing the good performance of the methodology regarding the size of biclusters (Figure 10).
However, this increase in size has no negative effect on the quality of patterns, since the
values of MSR oscillate very little when the harmonic diameter increases (Figure 11), which
remains very close to zero. Moreover, the level of MSR of these 27 patterns is several times
less than the maximal values presented in Table 1. In Figures 10 and 11, the biclusters were
decreasingly ordered by the harmonic diameter, so the X-axis represents the position of the
bicluster in the ranking.

There exists a stable relationship between MSR and d, since the variations in d do not
necessarily lead to the same behavior in MSR for δ = 0.1 (Figure 12). Thus, higher values
of MSR do not correspond to higher values of d, which suggests that larger patterns still
have consistent in-row values, and this also occurs for greater values of δ.

Examples of results for each value of δ will be shown in Figures 13 and 14. Solid lines
represent the behavior of each gene through the conditions. Additionally, the upper and
lower bound of the pattern is marked with thicker dotted lines. The title of each subfigure
indicates the maximal in-row difference of the pattern, which must be less than or equal
to the δ value. A table is associated with each figure, in which details for each bicluster
are presented.
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Figure 10. Harmonic diameter of the 27 patterns ranked with highest d for every value of δ.
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Figure 11. MSR of the 27 patterns ranked with the highest d for every value of δ.
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Figure 12. Relationship between the mean squared residue (MSR) and the harmonic diameter d for
0.1-shifting patterns.

  E11 E13 E15 E18 E21 P0 P7 P14 A

0

0.02

0.04

0.06

0.08
maximal pattern in-row difference = 0.07

  E11 E13 E15 E18 E21 P0 P7 P14 A

0

0.05

0.1

0.15

maximal pattern in-row difference = 0.16

  E11 E13 E15 E18 E21 P0 P7 P14 A

0

0.1

0.2

0.3
maximal pattern in-row difference = 0.3

  E11 E13 E15 E18 E21 P0 P7 P14 A

0

0.1

0.2

0.3

0.4
maximal pattern in-row difference = 0.39

Figure 13. Best δ-shifting patterns (in terms of harmonic diameter) found for several levels of δ:
δ = 0.1 (upper left), δ = 0.2 (upper right), δ = 0.3 (bottom left) and δ = 0.4 (bottom right).
Upper and lower bound of the pattern is marked with thick dotted lines, while gene values through
conditions are represented with thin solid lines.
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Figure 14. Additional δ-shifting patterns found for several levels of δ: δ = 0.1 (upper left), δ = 0.2
(upper right), δ = 0.3 (bottom left) and δ = 0.4 (bottom right). Solid lines represent the real pattern
series while the dashed ones are boundaries of patterns.

The first group (Figure 13) shows the best bicluster (in terms of MSR) for each value
of δ 6= 0. Complementary information on each bicluster is presented in Table 2. The sizes of
biclusters are slightly bigger as the value of δ increases, although with no significant impact
on its quality, as the MSR remains very close to zero. In this case, all the values within
biclusters are very low, so it is not possible to appreciate great oscillations in behavior.

The approach does not only find biclusters whose lower bounds of the conditions are
close to 0. The second group (Figure 14) shows four other biclusters with high fluctuations
across the experimental conditions, which reveals important aspects related to gene regu-
lation. The quality of biclusters (Table 3), measured by the MSR, still remains very close
to 0.

It is important to highlight that the lowest MSR score indicates that the values fluctuate
in unison with constant or shifting patterns. The values of MSR calculated for the patterns
presented in the previous tables are extremely low, taking into account that for a bicluster
with values randomly and uniformly generated in the range of [l, u], the expected variance
is (l − u)2/12. The ranges for the conditions vary from [0, 5.59] (E13) up to [0 27.69] (A),
all of them starting from zero, so the expected MSR is much higher than those depicted in
Table 1 and thereby in Tables 2 and 3.

Table 2. Description of best δ-shifting patterns (in terms of harmonic diameter) for several levels of δ.

δ N. of Genes N. of Cond. Area MSR d

0.1 6 5 30 0.00013 5.45

0.2 7 7 49 0.00130 7.00

0.3 11 8 88 0.00487 9.26

0.4 12 9 108 0.00653 10.29

Table 3. Description of other four δ-shifting patterns for several levels of δ.

δ N. of Genes N. of Cond. Area MSR d

0.1 5 5 25 0.00055 5.00

0.2 4 4 16 0.00151 4.00

0.3 4 7 28 0.00137 5.09

0.4 4 9 36 0.00695 5.54

There exist common rows and columns for two patterns, so their intersection is not
an empty set (patterns overlap each other partially). Biclusters only focus on patterns
(locally) and not on partitions (globally) as clusters. This is also noticed in the solutions: the
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eight biclusters displayed in both Figures 13 and 14 use 61 rows (genes) in total; however,
they only contain 27 unique rows. Irrelevant rows or columns would never appear in the
solutions, satisfying the second property.

Finally, although it is out of the scope of this work to biologically analyze the quality
of patterns, it is a general feature—extendable to other domains—that the behavior of genes
(lines in the figures) presents fluctuations, which might reveal up- or down-regulation.
This characteristic can be measured by the range coverage in terms of percentage, as this
aspect is not usually illustrated in figures. For example, the bicluster displayed in Figure 14
for δ = 0.3 (bottom left) contains seven genes (lines), representing the behavior of those
genes for four experimental conditions. Each gene has an original range of values, and it is
desirable that the pattern contains a great part of that range, as it would include fluctuations
instead of a flat behavior. The range coverage of that bicluster is, for each gene, 24.2%,
23.5%, 40%, 31.7%, 17.1%, 30.7%, and 10.1%, respectively, which indicates that when only
using four out of nine experimental conditions, the pattern is substantially varying across
the original range.

5.2. Biological Interpretation

Originally, the 112 genes were grouped into four functional categories: Neuro-Grial
Markers, Neurotransmitter Receptors, Peptide Signaling, and Diverse. A further inspection
of data pointed out relationships between signaling gene families, providing six groups
according to the averaged behavior across all the conditions (from E11 to A): four waves
(W1–W4) characterizing distinct phases of development, a constant pattern, and the last
group named other (six genes with no common behavior and not related to the other
groups). In short, two types of clustering were taken into account by Wen et al. [43]: signal-
ing gene families (without analyzing data) and pattern-based gene families (only observing
the data for all the conditions). Genes fluctuating in parallel for specific temporal conditions
could help understand the nature of complex developmental and degenerative disorders.

In order to highlight the usefulness of our approach, the solution provided in Figure 14
for δ = 0.1 (upper left) reveals that it is possible to group genes with no signaling relation-
ships and, above all, that were not grouped into any of the waves. Therefore, some genes
from different functional categories could follow a pattern from a subset of experimental
conditions (E15–P7) that were not identified in previous research because they do not share
the same global pattern, i.e., waves depicted in Figure 15 (left). The bicluster illustrated
in Figure 15 (right) suggests that there is a close correspondence in terms of coexpression
of metabotropic glutamate and nicotinic acetylcholine receptors as well as glial-derived
neurotrophic and nerve growth factors. This aspect motivates further biological research
on why these functionally different genes, not present together in the same wave, are
coexpressing within a certain time interval.

Our approach is able to find all existing δ-shifting patterns in the data. For instance, as
shown in Table 1, the number of patterns extracted from data for δ equal to 0.4 is 6943, each
of which must be biologically validated (via public web services) to identify the most rele-
vant ones related to biological mechanisms (common regulatory structures and pathways).
On the other hand, most biclustering techniques do not provide all possible biclusters or,
on the contrary, they are limited to a certain number of results. This situation would lead to
a loss of potentially meaningful patterns from a biological validation perspective.
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Figure 15. Four relevant waves identified by Wen et al. [43] (left); 0.1-shifting pattern provided by
our approach (right).

5.3. Comparative Analysis

Methods provided by the biclust package [46] for the R environment [47] were chosen.
According to [4], we tried to find one pattern corresponding to the MSR value from Table 2.
That meant that for each search, a corresponding limit (MSR) should be used separately.
The summary of results is presented in Table 4.

Table 4. Results of Cheng and Church algorithm based on MSR of widest results of Boolean reasoning-
based approach and corresponding level of δ for a δ-shifting pattern.

MSR N. of Genes N. of Cond. Area δ d

0.00013 3 5 15 0.02 3.75

0.00130 7 6 42 0.19 6.46

0.00487 14 8 112 0.36 10.18

0.00653 16 9 144 0.44 11.52

Taking into consideration the MSR for the largest (in terms of d measure) results from
Table 2, it must be stated that for the MSR = 0.00013, the found pattern is much smaller
(3× 5) than the one found by the Boolean reasoning-based approach (6× 5). Moreover,
there was still much space for pattern extension as its δ was equal to 0.02 and the limitation
was 0.1. In the case of the second search, the patterns were comparable (δ = 0.20 vs.
δ = 0.19). However, the pattern found by the Boolean reasoning strategy had one more
condition. For the next two cases, we observe that larger patterns do not follow the required
δ constrain: 0.36 instead of 0.30 and 0.44 instead of 0.40. Concluding, searching for the
δ-shifting pattern with the Cheng and Church strategy is not a suitable tool for such a
purpose: the found patterns are smaller or its values exceed the required level for δ.

Another comparison was carried out with the Plaid Model biclustering [48] (the
improved version of the approach presented in [49]). The pattern found with default
parameters has only four genes and three conditions and δ = 6.23. Changing the values
of several method parameters such that max.layers as well as background, iter.startup, and
iter.layer did not provide any better results as mentioned above. Concluding, finding δ-
shifting patterns with this tool is even much more difficult than with the Cheng and Church
approach.

Finally, the approach presented in [50], with the parameter setting proposed in [46],
only provided a constant pattern of zeros (three genes and seven conditions), which is
easily found by the Boolean reasoning approach. Many different parameter settings were
not able to improve this result or even provided none bicluster.
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6. Conclusions and Further Works

In this work, the problem of biclustering on real-valued data from the Boolean reason-
ing perspective is addressed. A new definition of pattern in continuous data is provided as
well as how to search for them in terms of Boolean reasoning. Mathematical foundations
are provided to support the use of Boolean concepts, in particular, the maximal-inclusion
patterns, in the search for biclusters that include δ-shifting patterns.

While most algorithms use heuristic strategies to cope with the complexity of the
biclustering problem and find biclusters that represent good (though not all) solutions, the
presented approach always finds all the inclusion-maximal solutions for the δ threshold
set for the δ-shifting pattern. Moreover, the presented theorems open the gates to some
heuristic strategies for non-prime-implicant search, as the corresponding patterns will still
have some of the desired properties but might not be inclusion-maximal, as it has already
been pointed out [51,52].

Experiments on central nervous system development data suggest that the approach
has excellent performance (measured by the mean squared residue) at finding large fluc-
tuations of rows across columns (or vice versa) while maintaining small fluctuations of
columns (or rows).

Finally, future research directions will tackle the search for scaling patterns, for which
it has been already proven that the mean squared residue is not an appropriate measure to
score the quality of patterns, especially when combined with shifting patterns.
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Appendix A. Theorems and Proofs

Appendix A.1. Proofs of Theorems for Constant Pattern Induction

Proof of Theorem 1. (Implicants and constant patterns) I′J′ is an implicant of f(M) if IJ
is a constant pattern in M.

⇒ Let I′J′ be an implicant of f(M) and IJ be not a constant pattern in M. That means
that there exists at least one pair of different columns c, d ∈ J and a row r ∈ I such that:

vr,c 6= vr,d

This in turn means that the clause (r ∨ c ∨ d) is not satisfied by I′J′, which introduces the
contradiction with the assumption.

⇐ Let IJ be a constant pattern in M and I′J′ be not an implicant in f(M). That means
that there exists r ∈ I and c, d ∈ J such that

vr,c 6= vr,d

which makes the contradiction.
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Proof of Theorem 2. (Prime implicants and inclusion-maximal constant patterns) I′J′ is
a prime implicant of f(M) if IJ is an inclusion-maximal constant pattern in M.

⇒ Let I′J′ be a prime implicant of f(M) and IJ be not an inclusion-maximal constant
pattern in M. That means that there exists at least one column c ∈ C \ J or row r ∈ R \ I such
that (I∪ {r})J or I(J∪ {c}) is also a constant pattern. However, on the basis of Theorem 1,
(I′ \ {r})J or I′(J′ \ {c}) is also an implicant of f(M), so I′J′ cannot be the prime implicant,
and it is in contradiction to the assumptions.

⇐ Let IJ be an inclusion-maximal constant pattern in M and I′J′ be not a prime
implicant in f(M). That would mean that there exists r ∈ I′ or c ∈ J′ such that (I′ \ {r})J or
I′(J′ \ {c}) is also an implicant of f(M). This in turn means (Theorem 1) that (I∪ {r})J or
I(J∪ {c}) will be an inclusion-maximal constant pattern in M, which makes a contradiction.

Appendix A.2. Proofs of Theorems for δ-Shifting Pattern Induction

Proof of Theorem 3. (Implicants and δ-shifting patterns) I′J′ is an implicant of fδ(M) if
IJ is a δ-shifting pattern in M.

⇒ Let I′J′ be an implicant of fδ(M) and IJ be not a δ-shifting pattern in M. That means
that there exists at least one pair of different columns c, d and a row r such that:

|vr,c − vr,d| > δ

This in turns means that the clause (r ∨ c ∨ d) is not satisfied by I′J′, which introduces the
contradiction with the assumption.

⇐ Let IJ be a δ-shifting pattern in M and I′J′ be not an implicant in fδ(M). That means
that there exists r ∈ I and c, d ∈ J such that

|vr,c − vr,d| > δ

which makes the contradiction.
Having proved the Theorem 3, it is possible to prove Theorem 4.

Proof of Theorem 4. (Prime implicants and inclusion-maximal δ-shifting patterns) I′J′

is a prime implicant of fδ(M) if IJ is an inclusion-maximal δ-shifting pattern in M.

⇒ Let I′J′ be a prime implicant of fδ(M) and IJ be not an inclusion-maximal δ-shifting
pattern in M. That means that there exists at least one column c ∈ C \ J or row r ∈ R \ I
such that (I ∪ {r})J or I(J ∪ {c}) is also a δ-shifting pattern. However, on the basis of
Theorem 3, (I′ \ {r})J′ or I′(J′ \ {c}) is also an implicant of fδ(M), so I′J′ cannot be the
prime implicant, and it is in contradiction to the assumptions.

⇐ Let IJ be an inclusion-maximal δ-shifting pattern in M and I′J′ be not a prime
implicant in fδ(M). That would mean that there exists r ∈ I′ or c ∈ CJ′ such that (I′ \ {r})J
or I′(J′ \ {c}) is also an implicant of fδ(M). This in turn means (Theorem 3) that (I∪ {c})J
or I(J∪ {c}) will be a δ-shifting pattern bicluster in M, which makes a contradiction.
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