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Abstract: In recent years, the research on complex networks has created a boom. The objective of
the present paper is to study a random cyclooctatetraene chain whose graph-theoretic mathematical
properties arose scientists’ interests. By applying the concept of symmetry and probability theory, we
obtain the explicit analytical expressions for the variances of Schultz index, multiplicative degree-
Kirchhoff index Gutman index, and additive degree-Kirchhoff index of a random cyclooctatetraene
chain with n octagons, which plays a crucial role in the research and application of topological indices.

Keywords: random cyclooctatetraene chain; Schultz index; multiplicative degree-Kirchhoff index;
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1. Introduction

In this paper, we just take finite and simple connected graphs into consideration,
referring to [1] and the references cited therein. Chemistry is strongly linked to graph
theory, and graph theory has been widely used in chemistry. In chemical graph theory,
there are some alternatives between atoms that vertices represent the atoms and edges
represent the covalent bonds. They are used to depict chemical compounds.

The molecular formula of a compound can represent different molecular structures
and characteristics, but theoretical chemists are concerned with the physical and chemical
properties of a compound and its relationship with the molecular formula of a compound.
The physical and chemical properties of compounds are key areas of concern for theoretical
chemists [2,3]. Polygonal chemicals have a wide diversity of molecular structures and their
physical and chemical properties are becoming increasingly significant, which is referenced
in [4–7].

There is no octagon in octagonal chains that has more than two cut-vertices, and such
a octagonal chain is called a cyclooctatetraene chain. Cyclooctatetraene is the poster child
for nonaromatic molecules. Cyclooctatetraene and its derivatives have fascinated chemists
for a long time and have a wide range of applications in industry. Cyclooctatetraene
differs from benzene in that it is not an aromatic hydrocarbon. It is chemically close to an
unsaturated hydrocarbon. Not only can it be subjected to addition reactions, which is easily
hydrogenated to form cyclooctane. It also oxidises and polymerises readily. A number
of vital compounds of cyclooctatetraene can be served as substrates for the production of
scientifically and commercially valuable materials. In this paper, we consider four kinds
of indices of cyclooctatetraene chains with n octagons. We simply consider the situation
starting from a vertex of a cyclooctatetraene chain, connecting an edge to another octagon.
For more information about the cyclooctylene chain, we can refer to [8–11].

We give some basic notations. Set G = (VG, EG) be a graph with vertices denoted VG
and edges denoted EG. The number of edges in a graph G is denoted by |E(G)|. We claim
that two vertices p and m are adjacent (or neighbours) if they are attached by an edge, which
we will write as p ∼ m. In G, the shortest length p, m-path among the paths between two
vertices p and m is denoted as dG(p, m) (or simply d(p, m)). The Wiener index of G refers
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to the aggregate of distances between all the vertex pairs of G. It was created by H. Wiener
in 1947 [12], that is

W(G) = ∑
{p,m}⊆VG

d(p, m). (1)

The Wiener index is among the best studied, most understood, and most widely used
molecular shape descriptors, and is based on graph theory, see [13–16].

A graph G = (VG, EG) together with the weight function ω:VG → N+ is known
as a weighted graph [17] (G, ω). Let ⊕ denote one of the four arithmetic operations
+,−,×,÷ [18]. Consequently, the weighted Wiener index W(G, ω) is determined as

W(G, ω) =
1
2 ∑

p∈VG

∑
m∈VG

(ω(p)⊕ω(m))d(p, m). (2)

Obviously, if ω ≡ 1 and ⊕ denotes the operation ×, then W(G, ω) = W(G).
In case ⊕ represents the operation × and ω(·) ≡ dG(·), then (2) is equivalent to [19]

Gut(G) =
1
2 ∑

p∈VG

∑
m∈VG

(dG(p)dG(m))d(p, m) = ∑
{p.m}⊆VG

(dG(p)dG(m))d(p, m). (3)

This is just the Gutman index. Research on possible chemical applications of the
Gutman index and similar quantities and their theoretical study, for which polycyclic
molecules are more difficult cases, see [20].

In case ⊕ represents the operation + and ω(·) ≡ dG(·), then (2) is equivalent to

S(G) =
1
2 ∑

p∈VG

∑
m∈VG

(dG(p) + dG(m))d(p, m) = ∑
{p.m}⊆VG

(dG(p) + dG(m))d(p, m). (4)

That’s what the Schultz Index is all about. For additional articles on developing aspects
of the topology indexes for [21–24], including mathematical properties, discrimination and
applications, refer to [25].

In case of a, b ∈ V(G), the resistance distance between a and b in G, is defined as
the effective resistance between nodes a and b in the electrical network, where the nodes
correspond to vertices of G and each edge of G is replaced by a resistor of unit resistance.
The resistance distance between vertices a and b in G [26] is denoted as r(a, b). For more
detailed information, see [27–30]. It is the Kirchhoff index when the Wiener index is for
non-trees, and this distance function is proposed by Klein and Randić [31], defined as

K f (G) = ∑
{a,b}⊆VG

r(a, b). (5)

For a description of the sum of eccentricity distances and the sum of eccentricity
resistance-distances, refer to [32–36].

K f ∗(G) was introduced by Chen and Zhang in 2007 [37] (see [38] for details), which is
defined as

K f ∗(G) = ∑
{a,b}⊆VG

d(a)d(b)r(a, b), (6)

Thus, the invariance of this graph is represented as

K f ∗(G) = 2|EG|
n

∑
i=2

1
λi

, (7)

from which 0 = λ1 < λ2 ≤ · · · ≤ λn are the eigenvalues of `(G). Moreover, `(G)
is the normalized Laplacian matrix of G, as proposed by Chung [39]. The normalized
Laplacian index and multiplicative degree-Kirchhoff index play an essential application in
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mathematical chemistry and statistics. Research on these topics has attracted a wide range
of attention from researchers.

K f+(G) was introduced by Gutman, Feng and Yu in 2012 [40], which is defined as

K f+(G) = ∑
{a,b}⊆VG

(d(a) + d(b))r(a, b). (8)

Probability properties are an important component of chemical graphs, which can
more broadly describe the topological properties and structures of chemical graphs. In
this paper, we focus on the cyclooctatetraene chain Gn with n octagons, which is formed
as follows.

Firstly, G1 is an octagon and G2 is the graph with two octagons, as shown in Figure 1.
Secondly, by appending a new terminal octagon Hn+1 to Gn, the random cyclooc-

tatetraene chain Gn+1 with n octagons can be constructed. We illustrates this process in
Figure 2. As demonstrated in Figure 3, we can append the terminal octagon Hn+1 to Gn
with four methods and indicate the generated figures with G1

n+1, G2
n+1, G3

n+1, and G4
n+1,

respectively.
At each step, randomly pick one of the following possible outcomes:

• p1 is the probability that Gn → G1
n+1;

• p2 is the probability that Gn → G2
n+1

• p3 is the probability that Gn → G3
n+1

• p4 = 1− p1 − p2 − p3 is the probability that Gn → G4
n+1.

Figure 1. Graph G2

Figure 2. The construction of Gn+1 from Gn and Hn+1.

We consider four random variables Z1
n, Z2

n, Z3
n, and Z4

n for our choice. When i = 1, 2, 3, 4,
in case our selection is Gi

n+1, we have Zi
n = 1; otherwise, Zi

n = 0, and we can easily
derive that

P(Zi
n = 1) = pi, P(Zi

n = 0) + P(Zi
n = 1) = 1 (9)

and Z1
n + Z2

n + Z3
n + Z4

n = 1.
Through the above process, we get a random cyclooctatetraene chain Gn(p1, p2, p3, p4).

We always abbreviate Gn(p1, p2, p3, p4) to Gn. All of S(Gn), K f ∗(Gn), Gut(Gn)and K f+(Gn)
are random variables in probability by noting that Gn is a random graph. From a proba-
bilistic point of view, a natural question arises: when n is big enough, will the distribution
of S(Gn), K f ∗(Gn), Gut(Gn) and K f+(Gn) look like a probability distribution or not.

In this paper, we make researches on S(Gn), K f ∗(Gn), Gut(Gn) and K f+(Gn). There
is a huge amount of relevant literature. For random polyphenylene chain, J.I. Zhang,
X.H. Peng, H.I. Chen [18] established the limiting behaviours of S(Gn), K f ∗(Gn), Gut(Gn)
and K f+(Gn). Here it is natural and interesting to consider limiting behaviours of S(Gn),
K f ∗(Gn), Gut(Gn) and K f+(Gn) for random cyclooctatetraene chain. In this paper, by ap-
plying the concept of symmetry and probability theory, we derive definite analytical expres-
sions for the variance of the Schultz index, multiplicative degree-Kirchhoff index, Gutman
index and additive degree-Kirchhoff index of a random cyclooctatetraene chain with n
octagons, which plays a crucial role in the research and application of topological indices.
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In this paper, in order to better describe the probability properties of cyclooctylene
chain, we propose the following hypothesis.

Hypothesis 1. We choose to attach the new terminal octagon Hn+1 to Gn, where n = 2, 3, ..., and
it is random and independent. More precisely, a range of random variables Z1

n, Z2
n, Z3

n, Z4
n

∞
n=2 is

independent and has the same law (9). With regard to some i ∈ 1, 2, 3, 0 < pi < 1 is obvious. Based
on Hypothesis 1, we present analytical expressions for the variances of S(Gn), K f ∗(Gn), Gut(Gn)
and K f+(Gn).

Figure 3. Four ways to attach the new terminal octagon Hn+1 to Gn.

2. The Variances for the Gutman Index and Schultz Index of a Random
Cyclooctatetraene Chain

For all Gn, the Gutman index and Schultz index of a random cyclooctatetraene chain
are random variables. We are going to take the variances of Gut(Gn) and S(Gn) into
consideration in this section. Actually, Gn+1 is Gn connected by an edge to a new terminal
octagon Hn+1, where Hn+1 is extended by vertices x1, x2, x3, x4, x5, x6, x7, and x8, and pnx1
is the new edge; see Figure 2. On the one hand, for all m ∈ VGn ,

d(x1, m) = d(pn, m) + 1, d(x2, m) = d(pn, m) + 2, d(x3, m) = d(pn, m) + 3, d(x4, m) = d(pn, m) + 4, (10)

d(x5, m) = d(pn, m) + 5, d(x6, m) = d(pn, m) + 4, d(x7, m) = d(pn, m) + 3, d(x2, m) = d(pn, m) + 2, (11)

∑
m∈VGn

dGn+1(m) = 18n− 1. (12)

on the other hand, for all t ∈ {1, 2, 3, 4, 5, 6, 7, 8}

8

∑
t=1

d(xt)d(x1, xt) = 32,
8

∑
t=1

d(xt)d(x2, xt) = 33,
8

∑
t=1

d(xt)d(x3, xt) = 34,
8

∑
t=1

d(xt)d(x4, xt) = 35, (13)

8

∑
t=1

d(xt)d(x5, xt) = 36,
8

∑
t=1

d(xt)d(x6, xt) = 35,
8

∑
t=1

d(xt)d(x7, xt) = 34,
8

∑
t=1

d(xt)d(x8, xt) = 33. (14)

In [41] Theorem 1, the author proves that

E(Gut(Gn)) =(270− 162p1 − 108p2 − 54p3)n3 + (486p1 + 324p2 + 162p3 − 90)n2

+ (77− 324p1 − 216p2 − 108p3)n− 1.

where E(Gut(Gn) is the mathematical expectations of Gut(Gn).
We now present the first main result of this section.



Symmetry 2023, 15, 1971 5 of 16

Theorem 1. The results are as follows, if Hypothesis 1 holds. As to the random cyclooctatetraene
chain Gn, the variance of Gutman index Gut(Gn), computed as

Var(Gut(Gn)) =
1

30
(σ2n5 − 5rn4 + 10σ̃2n3 + (65r− 30σ2 − 45σ̃2)n2

+ (−120r + 59σ2 + 65σ̃2)n + (60r− 30σ2 − 30σ̃2)).

where

σ2 =6482 p1 + 9722 p2 + 12962 p3 + 16202 p4 − (648p1 + 972p2 + 1296p3 + 1620p4)
2

σ̃2 =902 p1 + 4142 p2 + 7382 p3 + 10622 p4 − (90p1 + 414p2 + 738p3 + 1062p4)
2

r =648 · 90 · p1 + 972 · 414 · p2 + 1296 · 738 · p3 + 1620 · 1062 · p4

− (648p1 + 972p2 + 1296p3 + 1620p4) · (90p1 + 414p2 + 738p3 + 1062p4)

Proof. Let

An := 18 ∑
m∈VGn

d(m)d(pn, m).

then, by (5.1) of [41], we obtain

Gut(Gn+1) = Gut(Gn) + An + 882n + 239. (15)

Recalling from Section 1 that Z1
n, Z2

n, Z3
n, and Z4

n are random variables, this indicates
our option in constructing Gn+1 from Gn. We have four equalities as follows:
Equality 1.

AnZ1
n = (An−1 + 648n− 90)Z1

n.

If Z1
n = 0, the equality mentioned above is evident. Thus, we only have to regard the

case Z1
n = 1, which means that Gn −→ G1

n+1. In this view, pn (of Gn) is coincident with the
vertex labeled x2 or x8 (of Hn), see Figure 4. In this scenario, An turns into

18 ∑
m∈VGn

d(m)d(x2, m) = 18 ∑
m∈VGn−1

d(m)d(x2, m) + 18 ∑
m∈VHn

d(m)d(x2, m)

= 18 ∑
m∈VGn−1

d(m)(d(m, pn−1) + d(x2, pn−1)) + 18× 33

= 18 ∑
m∈VGn−1

d(m)(d(m, pn−1) + 2) + 18× 33

= An−1 + 36 ∑
m∈VGn−1

d(m) + 594

= An−1 + 36(18n− 19) + 594

= An−1 + 648n− 90,

In the foregoing, we utilised (10)–(12). As a result, we arrive at the required equivalence
conclusion.
Equality 2.

AnZ2
n = (An−1 + 972n− 414)Z2

n.

As in the proof of Equality 1, we only have to regard the case Z2
n = 1, which is

Gn −→ G2
n+1. The proof process is analogous, and we leave out the details.
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Equality 3.

AnZ3
n = (An−1 + 1296n− 738)Z3

n

We have to regard the case Z3
n = 1, which is Gn −→ G3

n+1. The proof is the same as
Equality 1 and we omit the details.
Equality 4.

AnZ4
n = (An−1 + 1620n− 1062)Z4

n

We have to regard the case Z4
n = 1, which is Gn −→ G4

n+1. The proof process is also
analogous, and we leave out the details.

Recalling that Z1
n + Z2

n + Z3
n + Z4

n = 1, according to the above discussion, it holds that

An = An(Z1
n + Z2

n + Z3
n + Z4

n)

= (An−1 + 648n− 90)Z1
n + (An−1 + 972n− 414)Z2

n + (An−1 + 1296n− 738)Z3
n + (An−1 + 1620n− 1062)Z4

n

= An−1 + (648Z1
n + 972Z2

n + 1296Z3
n + 1620Z4

n)n− (90Z1
n + 414Z2

n + 738Z3
n + 1062Z4

n)

= An−1 + n ·Un −Vn.

For each n, it indicates that Un = 648Z1
n + 972Z2

n + 1296Z3
n + 1620Z4

n, Vn = 90Z1
n +

414Z2
n + 738Z3

n + 1062Z4
n.

Therefore, by (15) we obtain

Gut(Gn) = Gut(G1) +
n−1

∑
t=1

At +
n−1

∑
t=1

(882t + 239)

= Gut(G1) +
n−1

∑
t=1

(
t−1

∑
q=1

(Aq+1 − Aq) + A1) +
n−1

∑
t=1

(882t + 239)

= Gut(G1) +
n−1

∑
t=1

t−1

∑
q=1

(Aq+1 − Aq) + (n− 1)A1 +
n−1

∑
t=1

(882t + 239)

= Gut(G1) +
n−1

∑
t=1

t−1

∑
q=1

((q + 1)Uq+1 −Vq+1) + (n− 1)A1 +
n−1

∑
t=1

(882t + 239)

= Gut(G1) +
n−1

∑
t=1

t−1

∑
q=1

((q + 1)Uq+1 −Vq+1) + O(n2)

where O(n2) representing high-order infinitesimal of n2.
By direct calculation, one sees that Var(Uq) = σ2, Var(Vq) = σ̃2, and Cov(Uq, Vq) = r,

where for any two random variables X and Y, Cov(X, Y) = E(XY)− E(X) · E(Y). Based
on the nature of the variance and the order in which the sums are exchanged, it can be
concluded that
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Var(Gut(Gn)) = Var(
n−1

∑
t=1

t−1

∑
q=1

((q + 1)Uq+1 −Vq+1))

= Var(
n−2

∑
q=1

n−1

∑
t=q+1

((q + 1)Uq+1 −Vq+1))

= Var(
n−2

∑
q=1

((q + 1)Uq+1 −Vq+1)(n− q− 1))

=
n−2

∑
q=1

(n− q− 1)2Var((q + 1)Uq+1 −Vq+1)

=
n−2

∑
q=1

(n− q− 1)2Cov((q + 1)Uq+1 −Vq+1, (q + 1)Uq+1 −Vq+1)

=
n−2

∑
q=1

(n− q− 1)2((q + 1)2Cov(Uq+1, Uq+1)− 2(q + 1)Cov(Uq+1, Vq+1) + Cov(Vq+1, Vq+1))

=
n−2

∑
q=1

(n− q− 1)2((q + 1)2σ2 − 2(q + 1)r + σ̃2).

By means of computational, ad hoc tools, the above equality gives the required results,
Var(Gut(Gn)).

Now, we discuss the variance of the Schultz index.
By Theorem 2.3 of [41], we have

E(S(Gn)) =(240− 144p1 − 96p2 − 48p3)n3 + (432p1 + 288p2 + 144p3 − 40)n2

+ (56− 288p1 − 192p2 − 96p3)n.

After that we illustrate our results.

Theorem 2. Supposing that Hypothesis 1, then the following results are true. As to the random
cyclooctatetraene chain Gn, the variance of Schultz index S(Gn), computed as

Var(S(Gn)) =
1

30
(σ2n5 − 5rn4 + 10σ̃2n3 + (65r− 30σ2 − 45σ̃2)n2

+ (−120r + 59σ2 + 65σ̃2)n + (60r− 30σ2 − 30σ̃2)).

where

σ2 =5762 p1 + 8642 p2 + 11522 p3 + 14402 p4 − (576p1 + 864p2 + 1152p3 + 1440p4)
2

σ̃2 =402 p1 + 3282 p2 + 6162 p3 + 9042 p4 − (40p1 + 328p2 + 616p3 + 904p4)
2

r =576 · 40 · p1 + 864 · 328 · p2 + 1152 · 616 · p3 + 1440 · 904 · p4

− (576p1 + 864p2 + 1152p3 + 1440p4) · (40p1 + 328p2 + 616p3 + 904p4)

Proof. By [41] (5.2), we obtain

S(Gn+1) = S(Gn) + 18 ∑
m∈VGn

d(pn, m) + 8 ∑
m∈VGn

d(m)d(pn, m) + 824n + 248. (16)

and

Bn := ∑
m∈VGn

(18 + 8d(m))d(pn, m).
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S(Gn+1) = S(Gn) + Bn + 824n + 248.

After similar discussions, we have four equalities as follows:
Equality 1.

BnZ1
n = (Bn−1 + 576n− 40)Z1

n

If Z1
n = 0, the equality mentioned above is evident, so we only have to regard the

case Z1
n = 1, which means that Gn −→ G1

n+1. In this view, pn (of Gn) is coincident with the
vertex labeled x2 or x8 (of Hn), see Figure 4. In this scenario, Bn turns into

Bn = ∑
m∈VGn

(18 + 8d(m))d(x2, m)

= ∑
m∈VGn−1

(18 + 8d(m))d(x2, m) + ∑
m∈VHn

(18 + 8d(m))d(x2, m)

= ∑
m∈VGn−1

(18 + 8d(m))(d(pn−1, m) + 2) + 18× 16 + 8× 33

= ∑
m∈VGn−1

(18 + 8d(m))d(pn−1, m) + 2 ∑
m∈VGn−1

(18 + 8d(m)) + 18× 16 + 8× 33

= ∑
m∈VGn−1

(18 + 8d(m))d(pn−1, m) + 2(18× 8(n− 1) + 8× (18(n− 1)− 1)) + 18× 16 + 8× 33

= Bn−1 + 2(288n− 296) + 552

= Bn−1 + 576n− 40

Figure 4. Gn → G1
n+1.

In the foregoing, we utilised (10)–(12). As a result, we arrive at the required equivalence
conclusion.
Equality 2.

BnZ2
n = (Bn−1 + 864n− 328)Z2

n

As in the proof of Equality 1, we only have to regard the case Z2
n = 1, which is

Gn −→ G2
n+1. The proof process is analogous, and we leave out the details.

Equality 3.

BnZ3
n = (Bn−1 + 1152n− 616)Z3

n

We have to regard the case Z3
n = 1, which is Gn −→ G3

n+1. The proof is the same as
Equality 1 and we omit the details.
Equality 4.

BnZ4
n = (Bn−1 + 1440n− 904)Z4

n
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We have to regard the case Z4
n = 1, which is Gn −→ G4

n+1. The proof process is also
analogous, and we leave out the details.

Recalling that Z1
n + Z2

n + Z3
n + Z4

n = 1, according to the above discussion, it holds that

Bn = Bn(Z1
n + Z2

n + Z3
n + Z4

n)

= Bn−1 + n ·Un −Vn

where for each n, Un = 576Z1
n + 864Z2

n + 1152Z3
n + 1440Z4

n, Vn = 40Z1
n + 328Z2

n + 616Z3
n +

904Z4
n.
Therefore, by (15)

S(Gn) = S(G1) +
n−1

∑
t=1

Bt +
n−1

∑
t=1

(824t + 248)

= S(G1) +
n−1

∑
t=1

(
t−1

∑
q=1

(Bq+1 − Bq) + B1) +
n−1

∑
t=1

(824t + 2489)

= S(G1) +
n−1

∑
t=1

t−1

∑
q=1

(Bq+1 − Bq) + (n− 1)B1 +
n−1

∑
t=1

(824t + 248)

= S(G1) +
n−1

∑
t=1

t−1

∑
q=1

((q + 1)Uq+1 −Vq+1) + (n− 1)B1 +
n−1

∑
t=1

(824t + 248)

= S(G1) +
n−1

∑
t=1

t−1

∑
q=1

((q + 1)Uq+1 −Vq+1) + O(n2).

If we replace Gut(Gn) from the proof of Theorem 1 by S(Gn), the rest of the proof of
this theorem is the same as the proof of Theorem 1, and therefore the details are omitted.

3. The Variances of Multiplicative and Additive Degree-Kirchhoff Indices of a
Random Cyclooctatetraene Chain

In the section, we talk about the variances for the multiplicative degree-Kirchhoff index
K f ∗(Gn) and the additive degree-Kirchhoff index K f+(Gn). For a random cyclooctatetraene
chain Gn, K f ∗(Gn) and K f+(Gn) are random variables.

Recall that Gn+1 is Gn connected by an edge to a new terminal octagon Hn+1, where
Hn+1 is extended by vertices x1, x2, x3, x4, x5, x6, x7, and x8, and pnx1 is the new edge; see
Figure 2. On the one hand, for all m ∈ VGn ,

r(x1, m) = r(pn, m) + 1, r(x2, m) = r(pn, m) + 1 +
7
8

, r(x3, m) = r(pn, m) + 1 +
12
8

, r(x4, m) = r(pn, m) + 1 +
15
8

, (17)

r(x5, m) = r(pn, m) + 1 +
16
8

, r(x6, m) = r(pn, m) + 1 +
15
8

, r(x7, m) = r(pn, m) + 1 +
12
8

, r(x8, m) = r(pn, m) + 1 +
7
8

. (18)

∑
m∈VGn

dGn+1(m) = 18n− 1. (19)

On the other hand, for all t ∈ {1, 2, 3, 4, 5, 6, 7, 8}

8

∑
t=1

d(xt)r(x1, xt) = 21,
8

∑
t=1

d(xt)r(x2, xt) =
175
8

,
8

∑
t=1

d(xt)r(x3, xt) =
45
2

,
8

∑
t=1

d(xt)r(x4, xt) =
183

8
, (20)

8

∑
t=1

d(xt)r(x5, xt) = 23,
8

∑
t=1

d(xt)r(x6, xt) =
183
8

,
8

∑
t=1

d(xt)r(x7, xt) =
45
2

,
8

∑
t=1

d(xt)r(x8, xt) =
175

8
. (21)
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By Theorem 3.1 of [41], we have

E(K f ∗(Gn)) =(162− 243
4

p1 − 27p2 −
27
4

p3)n3 + (36 +
729

4
p1 + 81p2 +

81
4

p3)n2

− (29 +
243
2

p1 + 54p2 +
27
2

p3)n− 1.

we now present the first main result of this section.

Theorem 3. The results are as follows, if Hypothesis 1 holds. As to the random cyclooctatetraene
chain Gn, the variance of the multiplicative degree-Kirchhoff index K f ∗(Gn), computed as

Var(K f ∗(Gn)) =
1

30
(σ2n5 − 5rn4 + 10σ̃2n3 + (65r− 30σ2 − 45σ̃2)n2

+ (−120r + 59σ2 + 65σ̃2)n + (60r− 30σ2 − 30σ̃2)).

where

σ2 =(
1215

2
)2 p1 + 8102 p2 + (

1863
2

)2 p3 + 9722 p4 − (
1215

2
p1 + 810p2 +

1863
2

p3 + 972p4)
2

σ̃2 =(
495
2

)2 p1 + 4502 p2 + (
1143

2
)2 p3 + 6122 p4 − (

495
2

p1 + 450p2 +
1143

2
p3 + 612p4)

2

r =
1215

2
· 495

2
· p1 + 810 · 450 · p2 +

1863
2
· 1143

2
· p3 + 972 · 612 · p4

− (
1215

2
p1 + 810p2 +

1863
2

p3 + 972p4) · (
495
2

p1 + 450p2 +
1143

2
p3 + 612p4)

Proof. By [41] (5.3), we have

K f ∗(Gn+1) = K f ∗(Gn) + 18 ∑
m∈VGn

d(m)r(pn, m) + 684n + 151. (22)

and
Cn := 18 ∑

m∈VGn

d(m)r(pn, m). (23)

K f ∗(Gn+1) = K f ∗(Gn) + Cn + 684n + 151. (24)

Recalling from Section 1 that Z1
n, Z2

n, Z3
n, and Z4

n are random variables, this indicates
our option in constructing Gn+1 from Gn. We have four equalities as follows:
Equality 1.

CnZ1
n = (Cn−1 +

1215
2

n− 495
2

)Z1
n
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If Z1
n = 0, the above equality is obvious, so we only need to consider the case Z1

n = 1,
which implies Gn −→ G1

n+1. In this view, pn (of Gn) is coincident with the vertex labeled x2
or x8 (of Hn), see Figure 4. In this scenario, Cn turns into

Cn = 18 ∑
m∈VGn

d(m)r(x2, m)

= 18 ∑
m∈VGn−1

d(m)r(x2, m) + 18 ∑
m∈VHn

d(m)r(x2, m)

= 18 ∑
m∈VGn−1

d(m)(1 +
7
8
+ r(pn−1, m)) +

175
8
× 18

= 18 ∑
m∈VGn−1

d(m)r(pn−1, m) +
270

8 ∑
m∈VGn−1

d(m) +
175

8
× 18

= Cn−1 +
270

8
(18n− 19) +

3150
8

= Cn−1 +
1215

2
n− 495

2

In the foregoing, we utilised (17)–(19). As a result, we arrive at the required equivalence
conclusion.
Equality 2.

CnZ2
n = (Cn−1 + 810n− 450)Z2

n

As in the proof of Equality 1, we only have to regard the case Z2
n = 1, which is

Gn −→ G2
n+1. The proof process is analogous, and we leave out the details.

Equality 3.

CnZ3
n = (Cn−1 +

1863
2

n− 1143
2

)Z3
n

We have to regard the case Z3
n = 1, which is Gn −→ G3

n+1. The proof is the same as
Equality 1 and we omit the details.
Equality 4.

CnZ4
n = (Cn−1 + 972n− 612)Z4

n

We have to regard the case Z4
n = 1, which is Gn −→ G4

n+1. The proof process is also
analogous, and we leave out the details.

Recalling that Z1
n + Z2

n + Z3
n + Z4

n = 1, according to the above discussion, it holds that

Cn = Cn(Z1
n + Z2

n + Z3
n + Z4

n)

= Cn−1 + n ·Un −Vn

where for each n, Un = 1215
2 Z1

n + 810Z2
n +

1863
2 Z3

n + 972Z4
n, Vn = 495

2 Z1
n + 450Z2

n +
1143

2 Z3
n +

612Z4
n.
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Therefore, by (22)

K f ∗(Gn) = K f ∗(G1) +
n−1

∑
t=1

Ct +
n−1

∑
t=1

(684t + 151)

= K f ∗(G1) +
n−1

∑
t=1

(
t−1

∑
q=1

(Cq+1 − Cq) + C1) +
n−1

∑
t=1

(684t + 151)

= K f ∗(G1) +
n−1

∑
t=1

t−1

∑
q=1

(Cq+1 − Cq) + (n− 1)C1 +
n−1

∑
t=1

(684t + 151)

= K f ∗(G1) +
n−1

∑
t=1

t−1

∑
q=1

((q + 1)Uq+1 −Vq+1) + (n− 1)C1 +
n−1

∑
t=1

(684t + 151)

= K f ∗(G1) +
n−1

∑
t=1

t−1

∑
q=1

((q + 1)Uq+1 −Vq+1) + O(n2)

Now, we consider K f+(Gn). By Theorem 3.3 of [41] we have

E(K f+(Gn)) =(144− 54p1 − 24p2 − 6p3)n3 + (61 + 162p1 + 72p2 + 18p3)n2

− (37 + 108p1 + 48p2 + 12p3)n.

Var(K f+(Gn)) is given by

Theorem 4.

Var(K f+(Gn)) =
1

30
(σ2n5 − 5rn4 + 10σ̃2n3 + (65r− 30σ2 − 45σ̃2)n2

+ (−120r + 59σ2 + 65σ̃2)n + (60r− 30σ2 − 30σ̃2)).

where

σ2 =5402 p1 + 7202 p2 + 8282 p3 + 8642 p4 − (540p1 + 720p2 + 828p3 + 864p4)
2

σ̃2 =1912 p1 + 3712 p2 + 4792 p3 + 5152 p4 − (191p1 + 371p2 + 479p3 + 515p4)
2

r =540 · 191 · p1 + 720 · 371 · p2 + 828 · 479 · p3 + 864 · 515 · p4

− (540p1 + 720p2 + 828p3 + 864p4) · (191p1 + 371p2 + 479p3 + 515p4)

Proof. By [41] (5.4), we see that

K f+(Gn+1) = K f+(Gn) + 18 ∑
m∈VGn

r(pn, m) + 8 ∑
m∈VGn

d(m)r(pn, m) + 637n + 160. (25)

where
Dn := ∑

m∈VGn

(18 + 8d(m))r(pn, m). (26)

K f+(Gn+1) = K f+(Gn) + Dn + 637n + 160. (27)

Recalling from Section 1 that Z1
n, Z2

n, Z3
n, and Z4

n are random variables, this indicates
our option in constructing Gn+1 from Gn. We have four equalities as follows:
Equality 1.

DnZ1
n = (Dn−1 + 540n− 191)Z1

n
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If Z1
n = 0, the equality mentioned above is evident, so we only have to regard the

case Z1
n = 1, which means that Gn −→ G1

n+1. In this view, pn (of Gn) is coincident with the
vertex labeled x2 or x8 (of Hn), see Figure 4. In this scenario, Dn turns into

∑
m∈VGn

(18 + 8d(m))r(x2, m) = 18 ∑
m∈VGn

d(m)r(x2, m)

= ∑
m∈VGn−1

(18 + 8d(m))r(x2, m) + ∑
m∈VHn

(18 + 8d(m))r(x2, m)

= ∑
m∈VGn−1

(18 + 8d(m))(r(pn−1, m) + 1 +
7
8
) + 18 ∑

m∈VHn

r(x2, xi) + 8 ∑
m∈VHn

d(xi)r(x2, xi)

= ∑
m∈VGn−1

(18 + 8d(m))r(pn−1, m) +
15
8 ∑

m∈VGn−1

(18 + 8d(m)) + 364

= Dn−1 +
15
8
(288n− 296) + 364

= Dn−1 + 540n− 191

In the foregoing, we utilised (17)–(19). As a result, we arrive at the required equivalence
conclusion.
Equality 2.

DnZ2
n = (Dn−1 + 720n− 371)Z2

n

As in the proof of Equality 1, we only have to regard the case Z2
n = 1, which is

Gn −→ G2
n+1. The proof process is analogous, and we leave out the details.

Equality 3.

DnZ3
n = (Dn−1 + 828n− 479)Z3

n

We have to regard the case Z3
n = 1, which is Gn −→ G3

n+1. The proof is the same as
Equality 1 and we omit the details.
Equality 4.

DnZ4
n = (Dn−1 + 864n− 515)Z4

n

We have to regard the case Z4
n = 1, which is Gn −→ G4

n+1. The proof process is also
analogous, and we leave out the details.

Recalling that Z1
n + Z2

n + Z3
n + Z4

n = 1, according to the above discussion, it holds that

Dn = Dn(Z1
n + Z2

n + Z3
n + Z4

n)

= Dn−1 + n ·Un −Vn

where for each n, Un = 540Z1
n + 720Z2

n + 828Z3
n + 864Z4

n, Vn = 191Z1
n + 371Z2

n + 479Z3
n +

515Z4
n.
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Therefore, by (25)

K f+(Gn) = K f+(G1) +
n−1

∑
t=1

Dt +
n−1

∑
t=1

(637t + 160)

= K f+(G1) +
n−1

∑
t=1

(
t−1

∑
q=1

(Dq+1 − Dq) + D1) +
n−1

∑
t=1

(637t + 160)

= K f+(G1) +
n−1

∑
t=1

t−1

∑
q=1

(Dq+1 − Dq) + (n− 1)D1 +
n−1

∑
t=1

(637t + 160)

= K f+(G1) +
n−1

∑
t=1

t−1

∑
q=1

((q + 1)Uq+1 −Vq+1) + (n− 1)D1 +
n−1

∑
t=1

(637t + 160)

= K f+(G1) +
n−1

∑
t=1

t−1

∑
q=1

((q + 1)Uq+1 −Vq+1) + O(n2)

If we replace Gut(Gn) with K f+(Gn) in the proof of Theorem 1, the rest of the proof
of this theorem is the same as that in the proof of Theorem 1; we thus omit the details.

4. Concluding Remarks

In this paper, we obtain explicit analytical expressions for the variances of Schultz
index, multiplicative degree-Kirchhoff index, Gutman index and additive degree-Kirchhoff
index of a random cyclooctatetraene chain with n octagons. All of these results will
contribute to the study of Schultz index, multiplicative degree-Kirchhoff index, Gutman
index and additive degree-Kirchhoff index of graphs. With the continuous development
and progress of science, more and more molecules are being discovered and created.

The polygonal chain problem in chemical graph theory has been extensively studied
and discussed by researchers. For the variance of some certain indices of a random polygon
chain that has n regular polygons, it is feasible to establish exact formulas.

Not only that, through these studies, we can hopefully obtain the variance of the n
sided chain graph and some of their physicochemical properties in the near future.
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