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Abstract: We propose a deep learning-based cross-layer power allocation method for asymmetric
cell-free massive MIMO video communication systems. The proposed cross-layer approach considers
physical layer channel state information (CSI) and the application layer rate distortion (RD) function,
and it aims to enhance video quality in terms of peak signal-to-noise ratio (PSNR). Our study
develops a decentralized deep neural network (DNN) model to capture intricate system patterns,
enabling accurate and efficient power allocation decisions. The proposed cross-layer approach
includes unsupervised and hybrid (supervised/unsupervised) learning models. The numerical
results show that the hybrid method achieves convergence with just 50% of the iterations required by
the unsupervised learning model and that it achieves a 1 dB gain in PSNR over the baseline physical
layer scheme.

Keywords: cell-free; massive MIMO; power allocation; deep neural network; peak signal-to-noise
ratio (PSNR); video quality; rate distortion (RD) function; source encoder rate control

1. Introduction

Cell-free technology [1–3] enables the deployment of large-scale MIMO systems with-
out cell boundaries, leading to enhanced network coverage, increased capacity, and reduced
interference levels. This approach enables more flexible and efficient power allocation,
leading to improved overall network performance.

The utilization of a cross-layer design [4–7] brings forth the benefits of effective
collaboration between different layers of the wireless communication system. By integrating
insights from the physical layer characteristics and user multimedia demands, we can
optimize the power/resource allocation to reduce interference levels, resulting in improved
user experience.

Deep learning [8–11] plays a crucial role in developing a learning-based power allo-
cation model. By leveraging deep learning techniques, we can effectively capture com-
plex patterns and correlations within the system, leading to more accurate and efficient
power/resource allocation decisions [12–15].

By harnessing the advantages of cell-free technology, cross-layer design, and deep
learning, this research aims to enhance the performance and applicability of cell-free
massive MIMO (CFMM) systems. This should contribute to improved network coverage,
increased capacity, and overall network performance in practical deployment scenarios.

The remaining part of this article is organized as follows. Section 2 presents previous
related works. Section 3 outlines the contribution/novelty of this article. Section 4 intro-
duces the system model. Section 5 presents the proposed solution. Section 6 discusses the
proposed DNN model. Section 7 contains the simulation results. Section 8 presents our
conclusions.
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2. Related Works

In the field of CFMM systems, network coverage and feasibility have been challenging
issues. The term “CFMM” was first introduced in [16]. Recent research, such as [2], has
focused on the concept of a cell-free network and related technologies, providing essential
information for designing and constructing next-generation mobile networks. Additionally,
ref. [17] has proposed a scalable system framework to address these challenges.

Refs. [18,19] survey machine learning schemes for massive MIMO systems, including
CFMM systems, in all practical implementations, such as precoding, power allocation, and
channel estimation.

Building upon [20], another recent study, [21], introduced a fully distributed archi-
tecture that enhances the scalability and feasibility of cell-free networks. It also leverages
deep neural networks (DNNs) to effectively reduce the overall system complexity. The
experimental results demonstrated that its performance sacrifice is acceptable compared
with those required for traditional optimal solutions.

Ref. [22] extends [21] and proposes a cooperative learning structure which is scalable
to the number of APs in a CFMM network. Ref. [23] proposes a machine learning approach
for power allocation in an underlay CFMM network.

However, these studies have focused on the physical layer only and have not con-
sidered both physical layer channel state information (CSI) and application layer rate
distortion (RD) function. In this regard, the cross-layer solutions proposed in [4,5,24] have
addressed this issue, providing better simulations of real-world usage scenarios.

3. Contributions

The contributions of this paper are outlined in this section. Ref. [21] developed a
deep learning-based approach for computing downlink power allocation coefficients for
a fully decentralized CFMM system using supervised learning. However, it considered
the physical layer only. Unlike the physical layer baseline scheme presented in [21], we
take a cross-layer approach and change the objective function to peak signal-to-noise
ratio (PSNR), improving the video quality of CFMM video communication systems to
improve user experience. We propose two schemes: unsupervised learning and hybrid
(supervised/unsupervised) learning. For comparison, the baseline scheme of [21] applies
supervised learning only and does not use hybrid (supervised/unsupervised) learning.

Both the proposed unsupervised learning method and the hybrid (supervised/
unsupervised) learning method exhibit performance gains in cross-layer applications com-
pared with the baseline scheme of [21]. The proposed hybrid learning method only needs
50% of the iterations required by the proposed unsupervised learning method to achieve
convergence, and the resulting performance improvement is a 1 dB gain in video quality in
terms of peak signal-to-noise ratio (PSNR) over the baseline physical layer scheme of [21].

4. System Model

The cell-free network can be centralized, as in Figure 1, or distributed, as in Figure 2.
Here, we consider a distributed cell-free network like the baseline scheme outlined in [21].
We consider a distributed cell-free network that has K single-antenna user equipment (UE)
distributed randomly over a wide service area. These UE devices are served simultane-
ously by L access points (APs), each of which is equipped with N antennas. The channel
model used assumes a standard block-fading approach, where the time-varying wideband
channels are divided into coherence blocks to ensure that the channel time response remain
stationary and the channel frequency response remains flat within each block [21]. Each
coherence block comprises τc symbols, and within each block, the channels experience
independent random variations. The communication channel connecting UE k and AP l is
described as hkl∈CN×1 and adheres to a correlated Rayleigh fading model, where hkl∼Nc(0,
Rkl). In this context, Rkl∈CN×N represents the spatial correlation matrix. The normalized
trace βkl = 1

N * tr(Rkl) describes the average channel gain from a specific antenna at AP l to
UE k [21].
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Figure 1. The layout of the centralized cell-free network, where black arrows establish connections
between the access points (APs) and CPU.

Figure 2. The layout of the distributed cell-free network, where all tasks, except data encoding, are
performed by the AP.

Fronthaul links establish connections between APs and a central processing unit (CPU),
facilitating the transmission of uplink (UL) and downlink (DL) data, along with other essen-
tial signals [19,25]. In the context of massive MIMO cell-free systems, precoding techniques
are employed, involving the application of specific weightings to signals transmitted by
different APs based on channel state information. This optimization reduces interference
and enhances system performance [21]. This paper focuses on cross-layer power control in
CFMM video transmission systems, ultimately boosting video quality performance [18,23].

Figure 3 displays a block diagram depicting the CFMM video transmission system
with cross-layer power allocation. It is similar to the cellular network video transmission
system with cross-layer resource allocation described in [4,5,20], but it utilizes CFMM
instead of cellular network communication and incorporates power allocation instead of
resource allocation.

Cross-layer means a change of power allocation objective to PSNR. PSNR is a measure
of video quality in the application layer. The proposed power allocation considers both
PSNR (or the rate-distortion function) in the application layer and CSI in the physical layer
and is thus a cross-layer approached as [4–6,20,24].
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Figure 3. Architecture of the CFMM video transmission system with cross-layer power allocation
and an adaptive source encoder rate.

In addition, an adaptive source encoding rate (indicated by the arrow pointing to the
video source encoder block in Figure 3) is employed to enhance video quality [4,5,20].

Downlink Data Transmission

In this scenario, we assume that all user equipment (UE) is served simultaneously
by all access points (APs) using the same time–frequency resources. Consequently, the
downlink (DL) signal received by UE k can be expressed as follows [21]:

ydl
k =

L

∑
l=1

hH
kl

K

∑
i=1

√
ρilwilsi + nk (1)

Within the system framework, the channel between UE k and AP l is represented
by hkl ∈ CN×1; ρil ≥ 0 indicates the allocated downlink (DL) power from access point
(AP) l to user equipment (UE) i. The normalized precoding vector wil∈CN×1 is utilized to
ensure its normalization, satisfying the condition ‖wil‖2 = 1. Additionally, si represents the
zero-mean signal directed towards user equipment i, while nk∼Nc

(
0, σ2) denotes complex

Gaussian noise.
Based on the derivation presented in [25], the achievable spectral efficiency (SE) for

user equipment (UE) k can be lower bounded by the following expression:

SEk =
τd
τc
(1 + SINRk) (2)

where τd represents the duration of the downlink occupancy, while τc represents the
duration of the entire coherence block. Since we are considering the downlink channel, we
calculate the time ratio for the downlink portion.

5. Proposed Solution

In this section, our primary emphasis lies in the pursuit of maximizing the average
peak signal-to-noise ratio (PSNR) by optimizing power allocation across the complete
network. Our main goal is to identify the power allocation coefficients {ρkl :∀k,l} for the
downlink links that lead to the highest average PSNR, a measure of video quality. For AP,
the power constraint is formulated:

K

∑
k=1

ρkl ≤ Pdl
max (3)
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The power limitation for each AP is specified by the maximum permissible transmit
power, denoted as Pdl

max.

5.1. Video Distortion MSE Model (RD Function) and PSNR

To simulate realistic usage scenarios, we adopted the video distortion MSE model
in [4,5,20,24,26]. For each group of pictures (GOPs), representing a sequence of video
frames, the video distortion MSE (or rate-distortion function, RD function) for the user k is
approximated as:

video distortion MSEk = ak +
bk

∑L
l=1 Rl,k + ck

(4)

where the constants al , bl and cl are specific to the content of the video and will vary accord-
ingly. Among them, al represents the distortion introduced by video data compression. The
term bk

∑L
l=1 Rl,k+ck

represents the residual error and the error between video frames, where

Rl,k is the information rate (in bits/s) between the AP l and the user k. For higher video
complexity such as fast motion, bk is larger. The video source encoder (H.264 baseline
profile) has seventeen discrete rates. These operation points corresponding to specific video
encoding rates, were used to nonlinearly fit the video distortion MSE model/RD function
in (4) [4,20,24,26].

The common user video quality peak signal-to-noise ratio (PSNR) is the reciprocal of
the video distortion MSE [4,5,20,24,26]. The PSNR for user k is:

PSNRk = 10log10

(
2552

video distortion MSEk

)
(5)

where 255 is the peak signal because one pixel is of 8 bits (0–255) in H.264 source encoding.
The average PSNR (averaging over the users’ PSNR/video quality), which will be

used in the loss function in the unsupervised learning in (15), is:

avg_PSNR =
1
K

K

∑
k=1

PSNRk (6)

5.2. Baseline Scheme: Physical Layer

Ref. [21] proposes a fully distributed DNN learning framework in a massive MIMO
cell-free system. The model is trained to maximize the system’s total spectral efficiency, the
objective function, using SINR. This model incorporates a supervised learning approach by
generating labels through WMMSE. The labels are then utilized in the training process to
optimize the performance of the deep neural network. The spectral efficiency is computed
using (2) to determine the achievable rate in the system.

maximize
{µkl : ∀k,l}

log2(1 + SINRk) (7)

SINRk =

(
aT

k µk)
2

K
∑

i=1
µT

i Bkiµi −
(
aT

k µk)2 + σ2
(8)

where
µk =

[
µk1 . . . µkL]

T ∈ RL×1, µkl =
√

ρil (9)

ak =
[

ak1 . . . akL]
T ∈ RL×1, akl = E

{
hH

kl wkl

}
(10)

Bki ∈ RL×L, blm
ki = R

(
E
{

hH
kl wilwH

imhkm

})
(11)
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Equation (7) represents the objective function, which is maximized to enhance the
system’s total spectral efficiency using the signal-to-interference-plus-noise ratio (SINR).

Transmit power limit per AP:

Subjet to
K

∑
k=1

µ2
kl ≤ Pdl

max, l = 1, . . . , L (12)

Figure 4 illustrates the training process of the baseline physical layer scheme [21] for
supervised learning. Initially, labels for the power allocation coefficients are generated
through WMMSE, and the weights are updated at each iteration.

Figure 4. Deep neural network (DNN) supervised training process flowchart.

Figure 5 depicts the testing process of the baseline physical layer scheme [21] for
supervised learning. The most significant difference between testing and training is that the
weights are not updated; instead, they are used to directly produce corresponding outputs
based on the respective inputs.

Figure 5. Deep neural network (DNN) supervised testing process flowchart.

In order to gain a deeper understanding of the fundamental problem structure, ref. [21]
introduces variables {µkl} in (12), which are related to the square roots of the power alloca-
tion coefficients {ρil}. In this research, the optimization problems under consideration do
not enforce constraints on µkl ≥ 0, following a similar approach as discussed in [25]. This
relaxed formulation facilitates the derivation of analytical update formulas in the ensuing
algorithms. Importantly, this relaxation does not lead to any complications since, upon
completion of the optimization algorithms, any negative values of µkl can be seamlessly
substituted with their positive counterparts without violating any other constraints.
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5.3. Problem Formulation: Average-PSNR Maximization

When transmitting videos in a cell-free system, it becomes crucial to consider not only
the theoretical communication capacity but also factors like video content and channel
conditions for propagation. This comprehensive approach goes beyond considering only
the data and channel statistics at the physical layer, as it also incorporates considerations of
RD function/video distortion MSE in (4) at the application layer.

The problem is formulated as to maximized the average video quality, PSNR, as
follows:

maximize
{µkl : ∀k,l}

avg_PSNR =
∑K

k=1 PSNRk

K
(13)

Subjet to
K

∑
k=1

µ2
kl ≤ Pdl

max, l = 1, . . . , L (14)

6. Proposed DNN Model

Building upon the concept presented in [21], we have developed a fully distributed
power allocation model for each access point (AP) using a deep neural network (DNN).
This model relies solely on statistical information obtained from the local channels between
the AP and various user equipment (UE), making it easily accessible at the AP. To enhance
the system’s performance for users consuming diverse video and audio content, we have
modified the loss function of this model to maximize the overall system’s average peak
signal-to-noise ratio (PSNR). In response to this requirement, we have introduced both
unsupervised and hybrid (supervised/unsupervised) learning approaches.

6.1. Proposed Scheme: Cross-Layer UL

For the unsupervised learning approach, we developed a model that does not rely
on labeled data and instead utilizes the available statistical information from the local
channels. This approach allows for autonomous learning and adaptation based on the
observed patterns and characteristics of the system. The model was designed to address
the objective of maximizing the overall system’s average PSNR, thereby enhancing the
system’s performance for various video and audio content.

Similar to common approaches in maximizing problems, we can handle our objective
function, defined as (13) and (14), by introducing a negative sign to it:

Loss = −avg_PSNR = −∑K
k=1 PSNRk

K
(15)

To optimize the training process and focus on learning unknown variables, prepro-
cessing the input data using domain knowledge is crucial. Instead of directly using the
raw large-scale fading (LSF) coefficients as DNN inputs, to generate inputs, a heuristic
approach is employed, utilizing the LSF coefficients to devise a power allocation scheme.
This heuristic power allocation scheme is designed to optimize the distribution of inputs
for the system. Our numerical experiments demonstrate that this heuristic method yields
inputs with improved dynamic range and distribution, ultimately leading to the enhanced
performance of the distributed DNN. The coefficients obtained through this heuristic
approach are computed in a similar manner to the methodology outlined in [19].

ρ′ il =
√

Pdl
max

(β kl)
v

∑K
i=1 (β il)

v , k = 1, . . . , K (16)

In the heuristic approach described in (16), we introduce the constant exponent v to
transform the large-scale fading (LSF) coefficients. An interesting aspect of this heuristic is
its direct provision of the ratio between the LSF coefficients, which significantly influences
power allocation decisions. By incorporating this heuristic input, we enhance the dynamic
range and distribution of the dataset while retaining all pertinent information. In order
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to standardize the dataset, we use a robust scaler to normalize the logarithm (in dB scale)
of the heuristic coefficients {ρ′kl : ∀k}. This scaler employs the interquartile range, which
measures the range between the first and third quartiles, to rescale the data. This method
efficiently reduces the influence of outliers present in the dataset, caused by substantial
variations in LSF coefficients among different user equipment (UE) for a given access point
(AP), especially in larger coverage areas.

Figure 6 illustrates the training process of our proposed UL (unsupervised learning)
approach. The dataset is fed into the DNN, and after each output, the result is transformed
into the PSNR. This PSNR value is then negated and used as the loss function to update
the model’s parameter weights due to the necessity of the PSNR transformation involving
calculations from (4) to (6).

Figure 6. Deep neural network (DNN) unsupervised training process flowchart.

Figure 7 depicts the testing process of our proposed UL approach. The primary
distinction between testing and training lies in the fact that the weights are not updated
in reverse. Instead, they are utilized to transform the corresponding input into the PSNR,
which serves as the corresponding output for evaluating the model’s performance.

Figure 7. Deep neural network (DNN) unsupervised testing process flowchart.

Table 1 illustrates the configuration of a fully distributed DNN. For an AP involves a set
of parameters that need to undergo training. Specifically, there are 5524 parameters that will
be fine-tuned during the training process. These parameters play a crucial role in the DNN’s
ability to adapt and optimize power allocation based on the local channel characteristics.
Through iterative updates and optimization, the DNN learns to make informed decisions
about power allocation, aiming to maximize the system’s overall average PSNR. The
training procedure enables the DNN to effectively leverage the available data and optimize
its parameter values for improved performance.
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Table 1. Fully distributed DNN architecture: 5524 trainable parameters.

Dimension Parameters Activation Method

Input K - -
Layer1 32 672 Linear
Layer2 64 2112 Tanh
Layer3 32 2080 Tanh
Layer4 K 660 Relu

6.2. Proposed Scheme: Cross-Layer Hybrid (SL/UL)

In our hybrid (supervised/unsupervised) learning approach, we have adopted a
methodology similar to the one used in [20], with supervised learning in the first stage and
unsupervised learning in the second stage for fine-tuning. This hybrid method combines
labeled and unlabeled data to harness the strengths of both approaches. By leveraging the
labeled information and incorporating a larger pool of training data, our goal is to enhance
the model’s performance and generalization ability. The model’s architecture adheres to
the approach outlined in UL, with the layout designed as per Table 1.

The model is divided into two stages. In the initial stage, we persist with the method-
ology proposed in [21], where the objective function aims to maximize the supervised deep
neural network (DNN) learning of sum-SE. Convergence is typically attained within around
50 epochs. In this stage, our loss function is designed using mean squared error (MSE);
during the training process, the DNN for access point (AP) l is optimized to minimize the
following loss function:

Loss =
∥∥∥µ∗l − µDNN

l

∥∥∥ (17)

The vector µ∗l =
[
µ∗1l , . . .µ∗Kl

]T represents the concatenation of the optimal normalized
powers (obtained using the WMMSE approach) to disseminate the total power allocated by
the access point (AP) to all user equipment (UE) across the network.

Following the initial 50 epochs, where the model was updated based on supervised
learning (SL), despite the objective not directly focusing on the PSNR, the model’s pa-
rameters can still benefit from the labels generated through the weighted minimum mean
squared error (WMMSE) approach. In the subsequent second stage of training, we will
continue updating the model’s parameters using unsupervised learning. The loss function
used will remain the same as (15).

7. Simulation Result

The simulation parameters, extracted from [21], are succinctly presented in Table 2.
We investigated a cell-free network encompassing 16 access points (APs) denoted by L,
strategically deployed in an expansive area measuring 1000 m × 1000 m. Each AP is
equipped with four antennas (N = 4). To create a realistic simulation, we employed a
wrap-around topology to eliminate artificial boundaries. Moreover, we randomly and
uniformly distributed 20 user equipment (UE) devices (K = 20) within the coverage area.
To ensure the reliability and consistency of the findings, the performance outcomes were
averaged over an extensive and diverse test dataset that consists of 6000 different user
equipment (UE) distributions. It is essential to note that this test dataset is entirely distinct
and separate from the training dataset, which greatly contributes to the model’s ability to
generalize effectively to unseen scenarios.

Communication is conducted over a 20 MHz channel, and the total power of the
receiver noise is −94 dBm. Each access point (AP) is capable of transmitting a maximum
downlink power of Pdl

max = 1 W, while each user equipment (UE) device employs an uplink
power of pi = 100 mW during the pilot transmission phase. The system follows the approach
presented in [25], wherein the entire bandwidth is shared among all APs, resulting in an
average bandwidth of 1.25 MHz per AP under normal conditions. The LSF coefficients are
generated using the pathloss model based on the methodology described in [27,28].
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Table 2. Parameters for the simulation CFMM networks, similar to those in [21].

Coverage Area 1000 m × 1000 m
Bandwidth 20 MHz
AP Count L = 16
UE Count K = 20

Antenna Count per AP N = 4
Pathloss Factor α = 3.76

DL Transmit Power Limit per AP Pdl
max = 1 W

Uplink Transmit Power pi = 100 mW
Noise Power (UL/DL) −94 dBm

The parameters of the dataset are provided in Table 3. For the baseline methods [21,22],
the dataset of 200,000 samples is divided into training and testing sets, with the training set
containing 190,000 samples and the testing set including 10,000 samples. For our proposed
UL method and hybrid method, we employed a larger dataset, each containing 400,000
samples. The testing dataset has the same 10,000 samples.

Table 3. Parameters of the datasets.

Algorithm Dataset Size (Samples) Features Training Testing

Baseline 1 [21] 200,000

CSI

190,000 10,000
Baseline 2 [22] 200,000

Proposed UL 400,000
390,000 10,000

Proposed Hybrid 400,000

The simulation platforms/tools we used are a desktop PC with Intel Core i7-10700 K
CPU and 24 GB of RAM and Zotac (China) RTX 3060 GPU, and Pytorch version 1.9.0.

In Section 7.1, we compare the results of different models in terms of their performance
on the test data. In Section 7.2, we extensively compare unsupervised and hybrid (super-
vised/unsupervised) learning models, focusing on the peak signal-to-noise ratio (PSNR)
during training and testing. In Section 7.3, we compare the complexity. In Section 7.4, we
compare the performance in massive MIMO cases.

7.1. Model Comparison for the Test Results

In this section, we compare the results of different models in terms of their performance
on the test data. We evaluate the models based on various metrics and analyze their
effectiveness in solving the given problem. The models under consideration include:

• Baseline 1 [21]: This model serves as the reference or baseline model. It represents a
supervised learning approach with the objective function of minimizing the sum of
squared errors (sum-SE).

• Baseline 2 [22]: Another physical layer scheme has improved spectrum efficiency over
physical layer scheme Baseline 1 [21]

• Proposed UL-cross: This model utilizes an unsupervised learning approach and aims
to maximize the average PSNR (peak signal-to-noise ratio) of the entire network.

• Proposed Hybrid (SL/UL)-cross: This model adopts a hybrid approach combining
both supervised and unsupervised learning methods. It integrates elements of both
supervised and unsupervised learning, utilizing labeled data borrowed from Model
SL-phy to update the model parameters, and further incorporating unsupervised
learning similar to Model UL-cross. The objective function of the model is to maximize
the average PSNR of the network. It follows a two-stage training approach.

We evaluated and compared these models based on their respective objective functions
and their performance in terms of average PSNR. The results, as shown in Figure 8, indicate
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that both Model UL-cross and Model Hybrid (SL/UL)-cross outperform Model SL-phy in
maximizing the average PSNR of the network.

Figure 8. Model comparison for the test results. Baseline 1 is [21] and Baseline 2 is [22].

Therefore, Model UL-cross and Model Hybrid (SL/UL)-cross demonstrate better
effectiveness in addressing the objective of maximizing the average PSNR compared to the
reference Model SL-phy.

7.2. Model UL vs. Model Hybrid (SL/UL)

In this section, we extensively compared unsupervised and hybrid (supervised/
unsupervised) learning models, focusing on the peak signal-to-noise ratio (PSNR) during
training and testing. The hybrid model consistently outperformed the unsupervised model,
showing higher PSNR values throughout. This showcases the effectiveness of combining
supervised and unsupervised learning.

During testing, both models experienced a slight performance decrease, which is
common in deep learning. The hybrid model stood out with impressive generalization,
maintaining results close to its training performance. This indicates its robustness and
reliability in real-world scenarios.

Figure 9 shows the loss function evolution during training, while Figure 10 displays
changes in the loss function during testing. Our analysis focuses on evaluating the model’s
performance based on the testing results.

According to the observations from Figure 10, the hybrid learning (supervised+ un-
supervised two stage) method shows a significant improvement in PSNR compared to
pure unsupervised learning. This finding is further supported by the fact that during the
initial training phase of hybrid methods, the goal is to maximize the sum SE of the system.
Surprisingly, this goal also gradually improves the overall PSNR of the system. Hence,
hybrid learning methods are proven to be very effective in achieving better performance.

Pure unsupervised learning usually takes about 150 iterations to converge, and the
hybrid method has a clear advantage in training time. It only requires about 25 iterations
of supervised learning, followed by 50 iterations of unsupervised learning. The hybrid
learning method saves about 75 iterations compared to the unsupervised learning method,
thus greatly reducing the training time. Remarkably, this hybrid approach requires only
50% of the iterations of unsupervised learning, while still achieving superior performance.
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Figure 9. UL model (epoch = 150) and hybrid (SL/UL) model (epoch = 25 + 50) training result.

Figure 10. UL model (epoch = 150) and hybrid (SL/UL) model (epoch = 25 + 50) test result.

7.3. Complexity and Performance Comparison

In Table 4, we present performance and execution time comparisons between our pro-
posed cross-layer UL and hybrid methods against the baseline physical layer schemes [21,22].
It can be observed that after model training is completed, there is actually little difference
in execution time among the various models at the testing stage. This is because the sizes
of the DNNs of the proposed schemes and baseline schemes are similar, falling within the
range of approximately 9 to 10 ms. Therefore, in terms of complexity, our two proposed
methods do not exhibit significantly higher complexity compared to [21,22].

Comparing Figures 4 and 5 and Figures 6 and 7, respectively, the cross-layer approach
has additional PSNR calculation, so the computational burden is slightly higher, as also
verified in the execution time in Table 3.

Furthermore, in terms of video quality, PSNR values, it can also be observed that
both of our proposed methods outperform other methods [21,22]. This improvement is
attributed to the fact that our models are optimized specifically with the PSNR as the
objective function.



Symmetry 2023, 15, 1968 13 of 15

Table 4. Comparison of complexity and PSNR values.

Schemes Average Computational
Time (ms) at Testing Stage PSNR (dB)

Baseline physical layer [21] 9.134 26.2498

Baseline physical layer [22] 9.173 26.3632

Proposed cross-layer UL 9.168 26.8227

Proposed cross-layer hybrid 10.189 27.2528

7.4. Performance Comparison in Massive MIMO Cases

In this subsection, we compare the baseline scheme [21] and the proposed cross-layer
hybrid in massive MIMO cases, where the number of antennas is 64 or higher. As shown in
Table 5, the proposed cross-layer hybrid outperforms the baseline scheme [21] by 1.2515 dB
when the number of antennas N = 256. The performance gain is larger than 1.0030 dB when
the number of antennas N = 4

Table 5. PSNR performance comparison with larger number of antennas, N = 4,32,256. Baseline 1
is [21], a physical layer scheme.

Schemes Number of AP Antennas PSNR (dB)

Baseline 1 4 26.2498

Baseline 1 32 26.2589

Baseline 1 256 26.2723

Proposed cross-layer hybrid 4 27.2528

Proposed cross-layer hybrid 32 27.3373

Proposed cross-layer hybrid 256 27.5238

8. Conclusions

This study focused on addressing the power allocation problem in the downlink (DL)
for CFMM systems. We adopted MR (maximum ratio) precoding for the task. Initially,
we formulated the objective of maximizing the average PSNR (peak signal-to-noise ratio)
across the network, as it provided the most suitable means to generate labels for learning.
Consequently, we developed a DNN (deep neural network) architecture that combines
unsupervised and hybrid (supervised/unsupervised) learning. This DNN architecture
allowed us to approximate the power coefficients by solely utilizing locally available LSF
(line spectral frequency) coefficients at the AP/EP (access point/edge point), effectively
reducing the need for forward/backward transmissions.

Our proposed architecture outperforms the control group in maximizing the average
PSNR across the network. Hybrid learning combines labeled and unlabeled data to improve
model performance and generalization. The final experimental results indicate that the
proposed approach also outperforms unsupervised learning.
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