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Abstract: In this study, we utilize the potent generalized Kudryashov method to address the in-
tricate obstacles presented by fractional differential equations in the field of mathematical physics.
Specifically, our focus centers on obtaining novel exact solutions for three pivotal equations: the time-
fractional seventh-order Sawada-Kotera-Ito equation, the time-fractional Caudrey-Dodd-Gibbon-
Sawada-Kotera equation, and the time-fractional seventh-order Kaup–Kupershmidt equation. The
generalized Kudryashov method, celebrated for its versatility and efficacy in addressing intricate
nonlinear problems, plays a central role in our research. This method not only simplifies the equa-
tions but also unveils their inner dynamics, rendering them amenable to meticulous analysis. It is
worth noting that our fractional derivatives are defined in the context of the conformable fractional
derivative, providing a solid foundation for our mathematical investigations. One notable aspect
of our study is the visual representation of our findings. Graphical representations of the yielded
solutions enliven intricate mathematical structures, providing a concrete insight into the dynamics
and behaviors of said equations. This paper highlights the proficiency of the generalized Kudryashov
method in resolving complex issues presented by fractional differential equations. Our study not only
broadens the range of mathematical methods but also enhances our comprehension of the intriguing
realm of nonlinear physical phenomena.

Keywords: conformable fractional derivative; time-fractional seventh-order Sawada-Kotera-Ito
equation; time-fractional Caudrey-Dodd-Gibbon-Sawada-Kotera; time-fractional seventh-order
Kaup-Kupershmidt equation

1. Introduction

In recent decades, fractional differential equations (FDEs) have garnered significant at-
tention among scientists. FDEs are more versatile than classical differential equations, since
they represent a generalization of integer-order differential equations. These equations go
beyond traditional derivative equations, allowing for the examination of more complex
real-world problems. One of the various application areas of these equations is symmetry.
Symmetry refers to the condition where the properties of an object or system remain un-
changed. Symmetry analysis holds a substantial role in many academic disciplines, notably
within the realms of physics, chemistry, and engineering. These disciplines collectively
rely on symmetry considerations to elucidate various phenomena. FDEs are instrumental
in a multitude of academic fields, spanning disciplines such as acoustics, control theory,
viscoelasticity, electrochemistry, fluid dynamics, rheology, and system identification, among
others. Furthermore, nonlinear FDEs offer exact solutions that describe a wide spectrum of
intricate nonlinear physical phenomena, enhancing our understanding of complex systems
and their behaviors. When fractional differential equations are coupled with symmetry
analysis, they enable a better understanding of complex systems and more precise pre-
dictions of their behaviors. Hence, fractional differential equations and symmetry form a
significant area of research and application in the scientific world. The exact solutions to
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nonlinear FDEs describe a wide range of nonlinear physical phenomena. These phenomena
intricately depend on both temporal and spatial variables. In order to achieve a comprehen-
sive understanding of the physical implications of FDEs, it is essential to develop effective
and robust methods for their solution. Many scientists have explored exact solutions for
nonlinear fractional differential equations using various methodologies. Some of these
methods include the Adomian decomposition method [1,2], the differential transformation
method [3,4], the finite difference method [5], the homogeneous balance method [6], the
(G′/G)-expansion method [7–9], the trial function method [10], Jacobi elliptic function
expansion [11], the sub-ODE method [12,13], the homotopy analysis method [14], the tanh-
function expansion method [15], the sinc-collocation method [16], the exponential function
method [17,18], the fractional sub-equation method [19], the generalized Kudryashov
method [20], etc.

Within the scope of this research, we undertook a comprehensive analysis encompass-
ing three distinct time-fractional differential equations: specifically, the time-fractional (2+1)-
Caudrey–Dodd–Gibbon–Sawada–Kotera (CDGSK) equation, the seventh-order Sawada–
Kotera–Ito (SKI) equation, and the seventh-order Kaup–Kupershmidt (KK) equation. No-
tably, the CDGSK equation holds a significant position as a constituent within the B-type
Kadomtsev–Petviashvili (BKP) integrable hierarchy, further underscoring its importance
in the context of our study [21]. This research endeavor aims to elucidate the intricate dy-
namics and behaviors inherent in these time-fractional differential equations, contributing
to a deeper understanding of their mathematical properties and potential applications in
diverse scientific domains [22]. In recent years, a significant cohort of researchers have
turned their focus towards the investigation of the CDGSK equation, employing a myriad
of approaches for its solution. One notable example is the work by Geng et al. [23], wherein
they demonstrate the invariance of the transformation of the independent variables per-
taining to the CDGSK equation through the strategic application of the Riccati equation.
Furthermore, they successfully derive the CDGSK equation by employing the Darboux
transformation on the (2+1)-dimensional CDGSK equation. These research endeavors col-
lectively contribute to the expanding body of knowledge surrounding the CDGSK equation,
shedding light on its mathematical properties and solution methodologies.

The SKI equation serves as a pivotal model utilized to elucidate the dynamics of long
waves in the presence of gravitational effects in shallow water, as well as within the realm
of nonlinear optical modeling. To further expound upon this, Koonprasert et al. [24] made
notable contributions by successfully solving the seventh-order fractional Sawada–Kotera
equation, employing a combination of the Riccati equation and the mapping method.
Additionally, Naher et al. [25] significantly advanced our understanding by deriving
traveling wave solutions for the seventh-order Sawada–Kotera equation, applying the
exp-function method. These collective research endeavors have played a crucial role in
enhancing our comprehension of the mathematical properties and practical applications of
the seventh-order time-fractional SKI equation [26–28].

The time-fractional CDGSK equation is given by

36Dα
t u + u5x + 15(uuxx)x + 45uxu2 − 5uxxy − 15uuy − 15ux∂−1

x uy − 5∂−1
x uyy = 0, (1)

where α is the fractional derivative in the sense of conformable derivative.
We can give a seventh-order time-fractional KdV equation as follows [27,29]:

Dα
t u + 252 u3ux+63 u3

x+378 uxuxx+126 u2u3x+63 u2xu3x
+42 uxu4x+21 u u5x+u7x= 0,

(2)

where α denotes the fractional derivative and is taken into account in the sense of con-
formable fractional derivative. Here, we exploit the generalized Kudryashov method for
finding the exact traveling wave solution of Equations (1) and (2).

This study can be succinctly summarized as follows: In Section 2, we provide a concise
exposition of the conformable fractional derivative and its associated properties. Section 3
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is dedicated to elucidating the generalized Kudryashov method, a pivotal technique em-
ployed for tackling fractional partial differential equations, which constitutes the central
focus of this paper. In Section 4, we leverage the power of the generalized Kudryashov
method to obtain precise solutions for select fractional partial differential equations. Finally,
we present a comprehensive discussion of our findings and offer insights into potential
avenues for future research. In particular, we include graphical representations in the
continuation of the solutions, showing the solutions to the final problem set, which also
increases the depth of our analysis and adds a visual dimension to our contributions.

2. Brief Idea of the Conformable Fractional Derivative

Here, we provide a succinct introduction to the conformable fractional derivative and
highlight some of its key properties.

Definition 1. Let α ∈ (0, 1] and v : R+ ∪ {0} → R be given. The conformable fractional
derivative of v of order α is defined as follows:

(Tαv)(t) = lim
ε→0

v(t + εt1−α)−v(t)
ε

(t > 0).

Theorem 1. Let α ∈ (0, 1], t > 0 and v, ψ be α-differentiable. Then, we can write the following
properties:

• Tα(kv + sψ) = k(Tαv) + s(Tαψ), for all k, s ∈ R;
• Tα(tm) = mtm−α for all m ∈ R;
• Tα(λ) = 0, for all constant functions v(t) = λ;
• Tα(vψ) = v(Tαψ) + ψ(Tαv);

• Tα(
v
ψ ) =

ψ(Tαv)−v(Tαψ)
ψ2 ;

• If, in addition, v is differentiable, then (Tαv)(t) = t1−α dv
dt .

The derivative of order α for a constant is zero [30].

3. The Generalized Kudryashov Method

The generalized Kudryashov method represents a powerful approach in the realm of
mathematical physics and is particularly renowned for its applicability in solving nonlinear
fractional differential equations. One of its prominent advantages lies in its effectiveness in
obtaining analytical solutions to complex and nonlinear equations. What sets it apart is
its versatility and adaptability, making it a valuable tool for researchers seeking to obtain
analytical solutions, even in cases involving fractional derivative equations.

In this study, we present the generalized Kudryashov method, which establishes stable
and explicit soliton solutions to FDEs and considers a general form for nonlinear evolution
equations as follows:

P(u, Dα
t u, ux, uy, D2α

t u, Dα
t ux, Dα

t uy, . . . ) = 0, (3)

where α denotes the conformable fractional derivative and P is a polynomial in a u(x, y, t)
unknown function, with its various derivatives. The generalized Kudryashov method
is designed to generate characteristic and broad-spectral soliton solutions for nonlinear
FDEs with respect to time variables [31]. The generalized Kudryashov method can be
summarized in the following steps:

Step 1: We introduce a new wave variable, ξ, and apply the following transformation:

u(x, y, t) = q(ξ) , ξ = x + y +
k

Γ(1 + α)
tα, (4)
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where k is a parameter. The transformation in Equation (4) reduces Equation (3) into the
following nonlinear ordinary differential equation (NODE):

F
(

q, kq′, q′, q′, k2q′′, k(q′)2, k
(
q′
)2, . . .

)
= 0, (5)

where F is a polynomial of q, with its derivatives in terms of ξ. Equation (5) is integrated
one or more times, and the integral constants are set to zero.

Step 2: We assume the following expression as the solution of Equation (5):

q(ξ) =
a0 +

m
∑

i=1
aiUi(ξ)

b0 +
n
∑

j=1
bjU j(ξ)

, (6)

where ai(i = 0, 1, 2, 3, · · · , m) and bj(j = 0, 1, 2, 3, · · · , n) are the constants to be determined
later, with am 6= 0 and bn 6= 0, and

U(ξ) =
1

1 + λ exp(ξ)
,

is the general solution of the following Riccati equation:

U′(ξ) = U2(ξ)−U(ξ), (7)

where λ is the integration constant of the solution and the prime denotes the ordinary
derivative in terms of ξ.

Step 3: The values of m and n are to be determined using homogeneous balancing,
which involves considering the terms with the highest-order derivatives and the highest-
order nonlinear term in Equation (5). Substituting the expression in Equation (6) into
Equation (5) along with Equation (7) and setting each coefficient, including the powers of
U(ξ), to zero yield a system of algebraic equations.

Step 4: When we solve these algebraic equations using mathematical software pro-
grams such as Maple, we determine the values of the unknown constants ai(i = 0, 1, . . . , n),
bj(j = 0, 1, . . . , m), k, and λ. Subsequently, by substituting the values of ai, bj, and λ into
Equation (6), we effectively finalize the solution for the nonlinear evolution equation
represented in Equation (5).

4. Application of the Method

This research endeavor encompasses the application of the generalized Kudryashov
method to tackle the solution of three notable equations. Specifically, we focus on solving
the (2+1) conformable time-fractional CDGSK equation, the seventh-order conformable
time-fractional SKI equation, and the seventh-order conformable time-fractional KK equa-
tion. By applying this method to these intricate equations, we aim to unveil insightful
solutions and gain a deeper understanding of the underlying dynamics and behaviors
described by these conformable time-fractional differential equations.

4.1. The Time-Fractional Caudrey–Dodd–Gibbon–Sawada–Kotera Equation

We investigate the precise traveling wave solutions to the (2+1) conformable time-
fractional CDGSK equation employing the generalized Kudryashov method. The CDGSK
equation, originally discovered independently by Sawada and Kotera [32], as well as by
Caudrey, Dodd, and Gibbon [33,34], constitutes the equation of interest in this work. The
CDGSK equation is

36Dα
t u + u5x + 15(uuxx)x + 45uxu2 − 5uxxy − 15uuy − 15ux∂−1

x uy − 5∂−1
x uyy = 0, (8)
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where α is fractional derivative for interval of [0, 1], u(x, y, t) is a differentiable function,
and ∂−1

x shows the integration in terms of x.
Equation (8) stands as one of the most pivotal integrable equations within the realm of

nonlinear dynamics. This equation finds its significance in describing a broad spectrum
of nonlinear dispersive physical phenomena and holds many applications in the field of
nonlinear sciences. For instance, it plays a critical role in modeling the conservative flow of
the Liouville equation, the two-dimensional gauge field theory of quantum gravity, and
the theory of conformal field, among others.

When uy = 0, Equation (8) reduces it to the following time-fractional SK equation [32]:

36Dα
t u + u5x + 15(uuxx)x + 45uxu2 = 0. (9)

Now, we apply the generalized Kudryashov method to Equation (8). Substituting
Equation (4) into Equation (8) reduces it to the nonlinear ODE

(36k− 5)q + q(4) + 15qq′′ + 15q3 − 5q′′ − 15q2 = 0, (10)

where q′ = dq
dξ . Using the homogeneous balance method, that is, balancing the q(4) term

and the q3 term in Equation (10), we find n = 3, m = 1. Hence, from Equation (6), we have

q(ξ) =
a0 + a1U(ξ) + a2U2(ξ) + a3U3(ξ)

b0 + b1U(ξ)
. (11)

Next, we substitute Equation (11) into Equation (10) and organize all the terms so that
all coefficients of Ui(ξ) (i = 0, 1, . . . , 11) to zero acquire a set of equations. By solving these
equations with the help of a mathematical software program, we deduce a set of solutions
for k, b0, b1, ai(i = 0, 1, 2, 3).

Case 1:

a0 = ∓
√

30
15

b0, a1 = 2b0, a2 = −2b0, a3 = 0, b1 = 0, k =
∓
√

30 + 3
36

.

By substituting these values into Equation (11), we obtain the solution to Equation (10):

q(ξ) =
2λ[sinh(ξ) + cosh(ξ)]

[1 + λ sinh(ξ) + λ cosh(ξ)]2
∓
√

30
15

, (12)

where ξ = x + y +
(
∓
√

30+3
36

)
tα

Γ(1+α)
. If we substitute ξ in Equation (12),

u(x, y, t) =
2λex+y+

(√
30+3
36

)
tα

Γ(1+α)(
1 + λex+y+

(√
30+3
36

)
tα

Γ(1+α)

)2 +

√
30

15
. (13)

The graphical representation of the Equation (13) is as shown in Figure 1.
Case 2:

a0 = 0, a1 = 4b0, a2 = −4b0 + 4b1, a3 = −4b1, k =
1
4

.

By substituting these values into Equation (11), we obtain the solution to Equation (10):

q(ξ) =
4λ[sinh(ξ) + cosh(ξ)]

[1 + λ sinh(ξ) + λ cosh(ξ)]2
, (14)

where ξ = x + y + tα

4 Γ(1+α)
. The graphical representation of Equation (14) is similar to that

in Figure 1.
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Figure 1. Three-dimensional plots of time-fractional Caudrey-Dodd-Gibbon-Sawada-Kotera Equation (13)
with α = 0.5 for λ = 1.

Case 3:

a0 = −2b0

15

[(
∓2
√

30− 15
)

a1 +
(

30±
√

30
)

b0

]
[(
∓
√

30− 4
)

a1 +
(

2± 2
√

30
)

b0

] ,

a2 = ∓
√

30a1 −
(
∓2
√

30 + 2
)

b0, a3 = ∓
√

30(2b0 − a1),

b1 = ∓
√

30
2

(a1 − 2b0),

k = − 1
36

[(
∓11
√

30− 51
)

a2
1 +

(
∓50
√

30 + 66
)

b2
0 +

(
96± 38

√
30
)

a1b0

]
[(
∓4
√

30− 23
)

a2
1 +

(
∓4
√

30− 62
)

b2
0 +

(
68± 10

√
30
)

a1b0

] .

By substituting these values into Equation (11), we obtain the solution to Equation (10):

q(ξ) =
− 2b0

15
[(∓2

√
30−15)a1+(30±

√
30)b0]

[(∓
√

30−4)a1+(2±2
√

30)b0]
∓
√

30a1U2(ξ)

b0 ∓
√

30
2 (a1 − 2b0)U(ξ)

(15)

−

(
∓2
√

30 + 2
)

b0U2(ξ)∓
√

30(2b0 − a1)U3(ξ)

b0 ∓
√

30
2 (a1 − 2b0)U(ξ)

,

where U(ξ) = 1
1+λ exp(ξ) and ξ = x + y + ktα

Γ(1+α)
. The graphical representation of the

Equation (15) is as shown in Figure 2.
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Figure 2. Three-dimensional plots of time-fractional Caudrey-Dodd-Gibbon-Sawada-Kotera
Equation (15) with α = 0.5 for λ = 1, a1 = 1, b0 = 1.

Case 4:

a0 =

(
∓
√

30− 4
)

b1

45
, a1 =

2
3

b1 ±
√

30
45

b1, a2 =
4
3

b1 ∓
4
√

30
45

b1, a3 = −2b1,

b0 =
1
3

b1 ±
2
√

30
45

b1, k =
1

36

(
51± 11

√
30

23± 4
√

30

)
.

By substituting these values into Equation (11), we obtain the solution to Equation (10):

q(ξ) =

(∓
√

30−4)
45 +

(
2
3 ±

√
30

45

)
U(ξ) +

(
4
3 ∓

4
√

30
45

)
U2(ξ)− 2U3(ξ)(

1
3 ±

2
√

30
45

)
+ U(ξ)

, (16)

where U(ξ) = 1
1+λ exp(ξ) and ξ = x + y + 1

36

(
51±11

√
30

23±4
√

30

)
tα

Γ(1+α)
. The graphical representa-

tion of Equation (16) is similar to that in Figure 2.

4.2. The Time-Fractional Seventh Order Sawada–Kotera–Ito Equation

Pomeau et al. [35] conducted a study on the seventh-order Korteweg–de Vries (KdV)
equation to investigate the structural stability of the KdV equation under singular perturba-
tions. The generalization of the seventh-order conformable time-fractional modified KdV
equation is as follows [29]:

Dα
t u + a u3ux + b u3

x + c uxuxx + d u2u3x + e uxxu3x + f uxu4x + g u u5x + u7x = 0. (17)

If we choose special values for the constants in Equation (17), we obtain the seventh-
order conformable time-fractional SKI equation

Dα
t u + 252 u3ux + 63 u3

x + 378 uxuxx + 126 u2u3x + 63 u2xu3x + 42 uxu4x
+21 u u5x + u7x = 0.

(18)
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Now, we apply the generalized Kudryashov method to Equation (18). Suppose that
u(x, t) = q(ξ).

ξ = x +
ktα

Γ(1 + α)
, (19)

where k is wave velocity. If we apply Equation (19) to Equation (18), Equation (18) reduces
it to the following nonlinear ODE:

kq′ + 252q3q′ + 63(q′)3 + 378q′q′′ + 126q2q′′′

+63q′′q′′′ + 42q′q(4) + 21qq(5) + q(7) = 0,
(20)

where q′ = dq
dξ . Using the homogeneous balance method, that is, balancing the q(7) term and

the q3q′ term in Equation (20), we find n = 3, m = 1. Hence, from Equation (6), we have

q(ξ) =
a0 + a1U(ξ) + a2U2(ξ) + a3U3(ξ)

b0 + b1U(ξ)
. (21)

Next, we substitute Equation (21) into Equation (20) and organize all terms so that
all coefficients of Ui(ξ) (i = 0, 1, . . . , 17) to zero acquire a set of equations. Solving these
equations with the help of a mathematical software program, we deduce a set of solutions
for k, b0, b1, ai(i = 0, 1, 2, 3).

Case 1:

a0 = −1
3

b0, a1 = 4b0 −
1
3

b1, a2 = −4b0 + 4b1, a3 = −4b1, b1 = 0, k =
4
3

.

By substituting these values into Equation (21), we obtain the solution to Equation (20):

q(ξ) =
− 1

3 b0 +
(

4b0 − 1
3 b1

)
U(ξ) + (−4b0 + 4b1)U2(ξ)− 4b1U3(ξ)

b0 + b1U(ξ)
, (22)

where U(ξ) = 1
1+λ exp(ξ) and ξ = x +

(
4
3

)
tα

Γ(1+α)
. The graphical representation of the

Equation (22) is as shown in Figure 3.

Figure 3. Three-dimensional plots of time-fractional seventh-order Sawada–Kotera–Ito Equation (22)
with α = 0.5 for λ = 1, b0 = 1.
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Case 2:

a1 = 2b0, a2 = −2b0, a3 = 0, b1 = 0,

k = −
(
b3

0 + 21a0b2
0 + 126a2

0b0 + 252a3
0
)

b3
0

.

By substituting these values into Equation (21), we obtain the solution to Equation (20):

q(ξ) =
2λ[sinh(ξ) + cosh(ξ)]

[1 + λ sinh(ξ) + λ cosh(ξ)]2
+

a0

b0
, (23)

where ξ = x−
(

b3
0+21a0b2

0+126a2
0b0+252a3

0
b3

0

)
tα

Γ(1+α)
. The graphical representation of Equation (23)

is similar to that in Figure 3.
Case 3:

a0 = − b0(2b0 − a1)

b1
, a2 = −2b0 + 2b1, a3 = −2b1,

k = s

(
2016b3

0 + 1512a2
1b0 − 252a3

1 − 3024a1b2
0

b3
1

)

+

(
504a1b0 − 126a2

1 − 504b2
0

b2
1

)
−
(

21a1 − 42sb0

b1

)
.

By substituting these values into Equation (21), we obtain the solution to Equation (20):

q(ξ) =
− b0(2b0−a1)

b1
+ (−2b0 + 2b1)U2(ξ)− 2b1U3(ξ)

b0 + b1U(ξ)
, (24)

where U(ξ) = 1
1+λ exp(ξ) and ξ = x + ktα

Γ(1+α)
. The graphical representation of Equation (24)

is similar to that in Figure 3.

4.3. The Seventh-Order Time-Fractional Kaup–Kupershmidt Equation

Similarly, if we select distinct special values for the constants in Equation (17), we
obtain the conformable time-fractional seventh-order Kaup–Kupershmidt equation

Dα
t u + 2016 u3ux + 630 u3

x + 2268 uxuxx + 504 u2u3x
+252 u2xu3x + 147 uxu4x + 42 u u5x + u7x = 0.

(25)

Now, we use the generalized Kudryashov method to solve Equation (25). Substituting
Equation (19) into Equation (25) reduces it to following nonlinear ODE:

kq′ + 2016q3q′ + 630(q′)3 + 2268q′q′′ + 504q2q′′′

+252q′′q′′′ + 147q′q(4) + 42qq(5) + q(7) = 0,
(26)

where q′ = dq
dξ . Using the homogeneous balance method, that is, balancing the q(7) term and

the q3q′ term in Equation (26), we find n = 3, m = 1. Hence, from Equation (6), we have

q(ξ) =
a0 + a1U(ξ) + a2U2(ξ) + a3U3(ξ)

b0 + b1U(ξ)
. (27)

Next, we substitute Equation (27) into Equation (26) and organize all terms so that
all coefficients of Ui(ξ) (i = 0, 1, . . . , 17) to zero acquire a set of equations. Solving these
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equations with the help of a mathematical software program, we deduce a set of solutions
for k, b0, b1, ai(i = 0, 1, 2, 3):

a0 = − 1
24

b0, a1 =
1
2

b0 −
1

24
b1, a2 = −1

2
b0 +

1
2

b1, a3 = −1
2

b1, k =
1

48
.

We plug these values into Equation (27); hence, the solution to Equation (26) is

q(ξ) =
− 1

24 b0 +
(

1
2 b0 − 1

24 b1

)
U(ξ) +

(
− 1

2 b0 +
1
2 b1

)
U2(ξ)− 1

2 b1U3(ξ)

b0 + b1U(ξ)
, (28)

where U(ξ) = 1
1+λ exp(ξ) and ξ = x +

(
1

48

)
tα

Γ(1+α)
. The graphical representation of

Equation (28) is similar to that in Figure 4.

Figure 4. Three-dimensional plots of seventh-order time-fractional Kaup–Kupershmidt Equation (28)
with λ = 1 for α = 0.5, b0 = 1, b1 = 1.

5. Conclusions

In the realm of mathematical physics, the pursuit of analytical solutions to nonlinear
differential equations represents a central challenge and a milestone in advancing our un-
derstanding of complex physical phenomena. Our research endeavors have culminated in
a significant accomplishment, as we have successfully derived analytical solutions for three
intricate and demanding equations: the seventh-order (2+1) conformable time-fractional
CDGSK equation, the seventh-order conformable time-fractional SKI equation, and the
seventh-order conformable time-fractional KK equation. Our achievement underscores the
effectiveness of analytical methodologies in unveiling the hidden dynamics of nonlinear
time-fractional equations, shedding light on their intrinsic behaviors, and offering valuable
insights into the underlying mathematical structures. The analytical solutions we present
not only expand the boundaries of mathematical physics but also invite further exploration
and application within the scientific community. By presenting these findings, we urge
our colleagues to embark on a path of continued examination to progress our scientific
knowledge. One of the crowning achievements of our study was the prolific discovery of
numerous exact solutions, complemented by the unveiling of fresh hyperbolic solutions.
These findings, standing as testament to the efficacy of the Kudryashov method, promise
to enrich our understanding of nonlinear physical phenomena, casting a bright light on
their underlying intricacies.
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We navigated the treacherous waters of nonlinear fractional partial differential equa-
tions with the aid of the powerful nonlinear fractional transformation, also known as
the fractional complex transformation. This approach smoothly translated the complex
domain of fractional partial differential equations into more manageable ordinary differ-
ential equations with integer orders. Consequently, we were able to express solutions for
time-fractional nonlinear evolution equations in the elegant form of polynomials in U(ξ).
Our research also provides visual representations of our results through graphs. These
graphical depictions illustrate the precise solutions obtained and offer a tangible glimpse
into the dynamics of the equations under scrutiny.

In summation, this study underscores the generalized Kudryashov method’s role
as a potent tool for unraveling the complexities of fractional differential equations. Our
findings not only expand the repertoire of mathematical techniques but also deepen our
understanding of the world of nonlinear physical phenomena.

Moving forward, we propose the exploration of more intricate fractional differential
equations and the application of advanced mathematical methodologies. Our proposed
methodology has demonstrated its ease of use, efficiency, and effectiveness, establishing
itself as a valuable and potent approach for addressing systems of fractional differential
equations. Through our research, we aim to not only expand the toolbox of mathematical
methods but also shed light on the intricate dynamics of nonlinear systems.
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