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Abstract: In this article, we delve into the study of fuzzy triple controlled metric spaces, investigating
their properties and presenting a range of illustrative examples. We emphasize the broader applica-
bility of this concept in comparison to fuzzy rectangular metric spaces and fuzzy rectangular b-metric
spaces. By introducing the novel concept of (α-ψ)-fuzzy contractive mappings, we derive fixed point
results specifically designed for complete fuzzy triple controlled metric spaces. Our theorems extend
and enrich previous findings in this field. Additionally, we demonstrate the practical significance of
our study by applying our findings to the solution of an integral equation and providing an example
of its application. Furthermore, we propose potential avenues for future research endeavors.
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1. Introduction

The contraction principle, introduced by Banach in 1922 [1], has become a fundamental
tool for proving fixed point results in metric spaces. This has spurred rapid growth and
excitement in the field of fixed point theory, with its wide-ranging applications across
various areas of mathematics. To extend the concept of classical metric spaces, Bakhtin [2]
introduced b-metric spaces, which was followed by the proposal of extended b-metric
spaces by Kamran et al. [3]. The notion of controlled metric type spaces was then introduced
by Mlaiki et al. [4]. Abdeljawad et al. [5] expanded upon this concept, evolving it into
double controlled metric type spaces. Building upon this foundation, Azmi [6] established
fixed point results in double controlled metric type spaces by utilizing (α-ψ)-contractive
mappings. More recently, Tasneem et al. [7] introduced triple controlled metric type spaces
and derived their own fixed point results. Related works can be found in [8,9].

Everyday life presents challenges that often involve uncertain information beyond
the scope of traditional mathematics. Two mathematical frameworks, fuzzy set theory
pioneered by Zadeh in 1965 [10] and the theory of soft sets introduced by Molodstov
in 1999 [11], offer specialized approaches for addressing such uncertainties. In the first
framework, Zadeh introduced the theory of fuzzy sets [10] as an extension of traditional
crisp sets, gaining significant interest due to its ability to address uncertainty and provide
more accurate results than traditional crisp sets. This has led to the exploration of fuzzy sets
in various mathematical disciplines, including topology, logic, analysis, algebra, and even
artificial intelligence. In 1975, Kramosil and Michalek introduced fuzzy metric spaces [12],
sparking further developments and extensions by subsequent researchers. Grabiec estab-
lished fixed point results in fuzzy metric spaces, recognizing the importance of topological
properties in metric spaces [13]. George and Veeramani then generalized and modified
the concept of fuzzy metric spaces, illustrating the connection between fuzzy metrics
and Hausdorff topologies [14]. Chugh and Kumar introduced fuzzy rectangular metric

Symmetry 2023, 15, 1943. https://doi.org/10.3390/sym15101943 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15101943
https://doi.org/10.3390/sym15101943
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-9275-0965
https://doi.org/10.3390/sym15101943
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15101943?type=check_update&version=1


Symmetry 2023, 15, 1943 2 of 14

spaces [15], while Nadaban introduced fuzzy b-metric spaces [16], with fixed point results
in fuzzy b-metric spaces provided by Kim et al. [17]. In 2017, Mehmood et al. introduced the
concept of extended fuzzy b-metric spaces [18] and laid the groundwork for the contraction
principle. Subsequently, in 2019, Mehmood et al. proceeded to introduce the concept
of fuzzy rectangular b-metric spaces [19]. Expanding upon these concepts, Saleem et al.
introduced the notion of extended rectangular fuzzy b-metric spaces and established fixed
point results in their work [20]. Additionally, in [21], Saleem et al. introduced the concept
of fuzzy double controlled metric spaces and demonstrated the application of the Banach
contraction mapping principle in this context. Furthermore, Furqan et al. introduced the
concept of fuzzy triple controlled metric spaces and established fixed point results within
this framework [22].

Regarding the second framework, which deals with the theory of soft sets, Das and
Samanta introduced the concepts of soft metric spaces, contributing significantly to this
area [23–25]. Later, Beaula and Raja innovatively combined the notions of soft metric
spaces and fuzzy metric spaces, resulting in the novel concept of a fuzzy soft metric space.
They proceeded to formulate several concepts, leveraging the foundational principles of
fuzzy soft sets [26]. Given that the Banach contraction principle is the cornerstone of fixed
point theory, Sonam et al. introduced the notion of soft fuzzy contraction mappings and
established fixed point results in soft fuzzy metric spaces [27] as well as in soft rectangular
b-metric spaces [28].

Building upon the work of Samet et al. [29], who introduced the notion of α-admissible
mappings and (α-ψ)-contractive mappings in metric spaces, Gopal and Vetro [30] extended
the concept of (α-ψ)-contractive mappings to (α-ψ)-fuzzy contractive mappings in complete
metric spaces, leading to the development of various fixed point theorems (see also [31]).
Additionally, Azmi [32] used (α-ψ)-contractive mappings to establish fixed point results in
fuzzy double controlled metric spaces.

In this article, we introduce the (α-ψ)-fuzzy contractive mappings in the context of
fuzzy triple controlled metric spaces and derive corresponding fixed point theorems. We
illustrate the effectiveness of our approach with examples and demonstrate its practical use
in solving integral equations, providing a concrete example. Lastly, we offer recommenda-
tions for potential future research directions.

2. Preliminaries

In the subsequent sections, we will revisit certain concepts and definitions that are
essential for our main results.

Definition 1 ([33]). Consider a binary operation denoted as ∗ : [0, 1]2 → [0, 1]. We designate ∗ as
a continuous t-norm when it adheres to the following criteria:

1. ∗ is commutative and associative.
2. The binary operation ∗ is continuous.
3. η ∗ 1 = η holds for all η ∈ [0, 1].
4. η1 ∗ ξ1 ≤ η2 ∗ ξ2, if η1 ≤ η2 and ξ1 ≤ ξ2, for all η1, η2, ξ1, ξ2 ∈ [0, 1].

Next, we revisit the definition of a fuzzy rectangular metric space, as originally
presented in [15].

Definition 2. Consider a nonempty set denoted as F . We define the notion of a fuzzy rectangular
metric space using the triplet notation (F ,S , ∗). Here, ∗ represents a continuous t-norm, and S is
a fuzzy set defined over F 2 × (0,+∞). This definition adheres to the following conditions, valid for
all η, ξ, x, y ∈ F :
(F1) S(η, ξ, t) = 0,
(F2) S(η, ξ, t) = 1, ∀ t > 0↔ η = ξ;
(F3) S(η, ξ, t) = S(ξ, η, t), exhibiting symmetry in η and ξ, ∀ t > 0;
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(F4) S(η, ξ, .) : (0,+∞)→ [0, 1] is left continuous, with limt→∞ S(η, ξ, t) = 1;
(F5) S(η, ξ, (t + s + w)) ≥ S(η, x, t) ∗ S(x, y, s) ∗ S(y, ξ, w).

These conditions collectively delineate the characteristics of the fuzzy rectangular metric space,
elucidating the behavior of the fuzzy set S in relation to its parameters and the continuous t-norm
operation ∗.

A broader concept within the realm of fuzzy rectangular metric spaces is the fuzzy
rectangular b-metric space, as introduced by Mehmood et al. [19].

Definition 3. Consider a nonempty set F and a real number b ≥ 1. Let ∗ denote a continuous
t-norm. A fuzzy set S defined on F 2 × (0,+∞) is referred to as a fuzzy rectangular b-metric on F
if it satisfies the following conditions for all η, ξ, x, y ∈ F and t, s, w > 0:
(F1) S(η, ξ, t) = 0;
(F2) S(η, ξ, t) = 1↔ η = ξ;
(F3) S(η, ξ, t) = S(ξ, η, t), symmetric in η and ξ for all t > 0;
(F4) S(η, ξ, b(t + s + w)) ≥ S(η, x, t) ∗ S(x, y, s) ∗ S(y, ξ, w);
(F5) S(η, ξ, .) : (0,+∞)→ [0, 1] is left continuous, and limt→∞ S(η, ξ, t) = 1.
Then, (F ,S , ∗) is termed a fuzzy rectangular b-metric space.

The two functions P and Q are referred to as noncomparable functions, which implies
that they cannot be meaningfully compared in the sense that neither of them is greater than
or equal to the other function. Next, we introduce the concept of fuzzy double controlled
metric spaces. For more information, please consult [21].

Definition 4. Let P and Q be two noncomparable functions, both mapping from F 2 to the interval
[1,+∞). Here, F represents a nonempty set. Moreover, let the symbol ∗ represent a continuous
t-norm operation. A fuzzy set denoted as S on the domain F 2 × (0,+∞) is termed a fuzzy double
controlled metric on F if it adheres to the subsequent criteria for all η, ξ, and v within the set F :
(FD1) S(η, ξ, t) > 0 ∀ l t > 0;
(FD2) S(η, ξ, t) = 1 ∀ t > 0↔ η = ξ;
(FD3) S(η, ξ, t) = S(ξ, η, t), symmetric in η and ξ, and ∀ t > 0;
(FD4) S(η, v, t + s) ≥ S(η, ξ, t

P(η,ξ) ) ∗ S(ξ, v, s
Q(ξ,v)

), for all s, t > 0;
(FD5) S(η, ξ, .) : (0,+∞)→ [0, 1] is continuous .

In that case, we refer to the triple (F ,S , ∗) as a fuzzy double controlled metric space.

In this context, we present the definition of a fuzzy triple controlled metric space as
introduced in the work by Furqan et al. [22].

Definition 5. Let P, Q, R : F 2 → [1,+∞) be three noncomparable functions defined on a
nonempty set F , and let ∗ be a continuous t-norm operation. A fuzzy set denoted as S defined on
F 2 × (0,+∞) is termed a fuzzy triple controlled metric on the set F . This definition is satisfied
when the following conditions hold for all distinct η, ξ, v, x ∈ F :
(FT1) S(η, ξ, t) > 0 ∀ t > 0;
(FT2) S(η, ξ, t) = 1 ∀ t > 0↔ η = ξ;
(FT3) S(η, ξ, t) = S(ξ, η, t), symmetric in η and ξ, and for all t > 0;
(FT4) S(η, ξ, t+ s+w) ≥ S(η, v, t

P(η,v)
) ∗ S(v, x, s

Q(v,x) ) ∗ S(x, ξ, w
R(x,ξ) ), for all s, t, w > 0;

(FT5) S(η, ξ, .) : (0,+∞)→ [0, 1] is continuous.
Therefore, we designate (F ,S , ∗) as a fuzzy triple controlled metric space.
Observe that throughout this article, fuzzy triple controlled metric spaces will be denoted as

FT CMS .

Remark 1. The class of FT CMS encompasses a broader range of structures compared to the
class of fuzzy rectangular b-metric spaces (this distinction becomes evident when we set P(η, v) =
Q(v, x) = R(x, ξ) = b ≥ 1). Furthermore, the class of fuzzy rectangular b-metric spaces is more
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extensive than the class of fuzzy rectangular metric spaces, with the latter being a specific case when
b = 1. Refer to Figure 1 for a visual representation of the relationships among these different types
of fuzzy metric spaces.

Fuzzy rectangular metric space

Fuzzy rectangular b-metric space

Fuzzy triple controlled metric space 

Figure 1. The diagram illustrates the interrelationships among various types of fuzzy metric spaces.

Our next example presents an FT CMS that is neither a fuzzy rectangular b-metric
space nor a fuzzy rectangular metric space.

Example 1. Let F = [0, 1], and P, Q, R : F 2 → [1,+∞) are defined as follows: P(η, ξ) =
2(η + ξ) + 1, Q(η, ξ) = 2(η2 + ξ2 + 1), and R(η, ξ) = max{η, ξ}+ 1. Define

S(η, ξ, t) = exp
−
(η − ξ)2

t , η, ξ ∈ F , t > 0.

Then, (F ,S , ∗) is an FT CMS with product t-norm, i.e., t1 ∗ t2 = t1t2.
Axioms (FT1) to (FT3) and (FT5) are straightforward; we will only prove (FT4). Note that

S(η, ξ,
t

P(η, ξ)
) = exp

−
(η − ξ)2

t
P(η,ξ) = exp

−
(η − ξ)2

t
2(η+ξ)+1

≤ exp
−
(η − ξ)2

t ≤ exp
−
(η − ξ)2

t + s + w .

Also,

S(ξ, x,
s

Q(ξ, x)
) = exp

−
(ξ − x)2

s
Q(ξ,x) = exp

−
(ξ − x)2

s
2(ξ2+x2+1)

≤ exp
−
(ξ − x)2

s ≤ exp
−
(ξ − x)2

t + s + w ,

and

S(x, v,
w

R(x, v)
) = exp

−
(x−v)2

w
R(x,v) = exp

−
(x−v)2

w
2(x2+v2+1)

≤ exp
−
(x−v)2

s ≤ exp
−
(x−v)2

t + s + w .
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Therefore, we obtain

S(η, v, t + s + w) = exp
−
(η −v)2

t + s + w = exp
−
(η − ξ + ξ − x + x−v)2

t + s + w ,

≥ exp−
(η−ξ)2

t exp−
(ξ−x)2

s exp−
(x−v)2

w

≥ S(η, ξ,
t

P(η, ξ)
) ∗ S(ξ, x,

s
Q(ξ, x)

) ∗ S(x, v,
w

R(x, v)
).

Thus, (F ,S , ∗) is an FT CMS , which is not a fuzzy rectangular b-metric space since P(η, ξ) =
2(η + ξ) + 1 6= Q(η, ξ) = 2(η2 + ξ2 + 1) 6= R(η, ξ) = max{η, ξ} + 1 6= b ≥ 1, and it is
evident that this does not constitute a fuzzy rectangular metric space.

Example 2. Consider the set F = [0, 1], and define the control functions P, Q, R : F 2 → [1,+∞)
as follows:
P(η, ξ) = η + ξ + 1,
Q(η, ξ) = η2 + ξ + 1,
R(η, ξ) = η2 + ξ2 + 1. We will now define the fuzzy set S using these functions as follows:

S(η, ξ, t) = exp
−|η−ξ|

t , t > 0. (1)

It can be readily demonstrated that (F ,S , ∗) constitutes an FT CMS . We will specifically confirm
the condition (FT4). It is worth noting that

S(η, ξ,
t

P(η, ξ)
) = exp

−|η−ξ|
t

P(η,ξ) = exp
−P(η,ξ)|η−ξ|

t ≤ exp
−|η−ξ|

t ≤ exp
−|η−ξ|
t+s+w , s > 0.

Similarly,

S(ξ, x,
s

Q(ξ, x)
) = exp

−|ξ−x|
s

Q(ξ,x) = exp
−Q(ξ,x)|ξ−x|

s ≤ exp
−|ξ−x|

s ≤ exp
−|ξ−x|
t+s+w , t > 0.

and

S(x, v,
w

R(x, v)
) = exp

−|x−v|
w

R(x,v) = exp
−R(x,v)|x−v|

w ≤ exp
−|x−v|

t ≤ exp
−|x−v|
t+s+w , w > 0.

Hence, for t, s, w > 0,

S(η, v, t + s + w) = exp
−|η−v|
t+s+w .

≥ exp
−|η−ξ|
t+s+w exp

−|ξ−x|
t+s+w exp

−|x−v|
t+s+w .

≥ M(η, ξ,
t

P(η, ξ)
) ∗M(ξ, x,

s
Q(ξ, x)

) ∗M(x, v,
w

R(x, v)
).

Which implies that (F ,S , ∗) is an FT CMS .

Here is another example of an FT CMS , as detailed in [22].
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Example 3. Let F = {1, 2, 3, 4}, and P, Q, R : F 2 → [1,+∞) are three noncomparable functions
defined as follows: P(η, ξ) = 1 + η + ξ, Q(η, ξ) = η2 + ξ + 1, and R(η, ξ) = η2 + ξ2 − 1.
Define

S(η, ξ, t) =
min{η, ξ}+ t
max{η, ξ}+ t

.

Then, (F ,S , ∗) forms an FT CMS employing the product t-norm, denoted as t1 ∗ t2 = t1t2. The
specific values for P, Q, and R are as outlined below:

P 1 2 3 4
1 3 4 5 6
2 4 5 6 7
3 5 6 7 8
4 6 7 8 9,

and

Q 1 2 3 4
1 3 4 5 6
2 6 7 8 9
3 11 12 13 14
4 18 19 20 21

also,

R 1 2 3 4
1 1 4 9 16
2 4 7 12 19
3 9 12 17 24
4 16 19 24 31

Axioms (FT1) to (FT3) and (FT5) are straightforward; we will only prove (FT4).

If η = 1 and ξ = 2, then either x = 3 and y = 4 or x = 4 and y = 3. We will consider the
case where x = 3 and y = 4. The proof of the other cases is similar. Observe

S(1, 2, t + s + w) =
min{1, 2}+ t + s + w
max{1, 2}+ t + s + w

=
1 + t + s + w
2 + t + s + w

. (2)

Also, we have

S(1, 3,
t

P(1, 3)
) =

min{1, 3}+ t
P(1,3)

max{1, 3}+ t
P(1,3)

=
5 + t
15 + t

,

S(3, 4,
s

Q(3, 4)
) =

min{3, 4}+ s
Q(3,4)

max{3, 4}+ s
Q(3,4)

=
42 + s
56 + s

,

and

S(4, 2,
w

R(4, 2)
) =

min{4, 2}+ w
R(4,2)

max{4, 2}+ w
R(4,2)

=
38 + w
76 + w

. (3)

Clearly, from Equations (2) and (3), we have

S(1, 2, t + s + w) ≥ S(1, 3,
t

P(1, 3)
) ∗ S(3, 4,

s
Q(3, 4)

) ∗ S(4, 2,
w

R(4, 2)
). (4)

The remaining cases can be shown similarly; hence, (F ,S , ∗) is an FT CMS .

Moving forward, we establish the definitions for open balls, sequence convergence,
and the concept of Cauchy sequences within the framework of FT CMS .

Definition 6. Let (F ,S , ∗) be an FT CMS . Then, the open ball B(η0, r, t) with center η0, radius
r ∈ (0, 1), and t > 0 is defined as follows:

B(η0, r, t) = {ξ ∈ F : S(η0, ξ, t) > 1− r}.

Definition 7. Let (F ,S , ∗) be an FT CMS . Then, we define the following concepts:
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(1) A sequence {ηn} converges to η ∈ F if, for all t > 0, the limit as n approaches infinity of
S(ηn, η, t) equals 1, expressed as:

lim
n→+∞

S(ηn, η, t) = 1.

(2) A sequence {ηn} is termed Cauchy if, for each m ∈ N and t > 0, S(ηn, ηn+m, t) = 1.
(3) The FT CMS (F ,S , ∗) is designated as a complete FT CMS if every Cauchy sequence

converges.

Moving forward, we present a lemma that plays a crucial role in demonstrating our
findings. For a more comprehensive explanation, please refer to [21].

Lemma 1. Consider a Cauchy sequence {ηn} in an FT CMS (F ,S , ∗) such that ηn 6= ηm
whenever n 6= m, and both m and n belong to the set of natural numbers N. Then, the sequence
{ηn} can converge to a maximum of one limit point.

Definition 8 ([31]). Let (F ,S , ∗) denote an FT CMS . The fuzzy triple controlled metric S is
considered triangular if the following condition is satisfied:

(
1

S(η, ξ, t)
− 1) ≤ (

1
S(η, v, t)

− 1) + (
1

S(ξ, v, t)
− 1). (5)

This condition holds true for all η, ξ, v ∈ F and for all t > 0.

3. The Main Results

Gopal and Vetro, in their work [30], introduced the notion of (α-ψ)-fuzzy contractive
mappings in the context of fuzzy metric spaces. Inspired by their work, Azmi, as reported
in [32], extended the notion of (α-ψ)-fuzzy contractive mappings to fuzzy double controlled
metric spaces, subsequently establishing results related to fixed points.

In the upcoming sections, we will introduce two key notions: (α-ψ)-fuzzy contractive
mappings and α-admissible mappings within the framework of FT CMS .

Definition 9. Consider the FT CMS (F ,S , ∗). We define a mapping T : F −→ F as α-
admissible if there exists a function α : F 2 × (0,+∞)→ [0,+∞) such that, for all t > 0:

For η, ξ ∈ F , if α(η, ξ, t) ≥ 1, then α(Tη, Tξ, t) ≥ 1. (6)

Let Ψ represent the collection of all continuous functions (from the right) ψ : [0,+∞)→
[0,+∞) such that ψ(t) < t for all t > 0.

Remark 2. It is important to observe that for any function ψ ∈ Ψ, the limit limn→+∞ ψn(t) = 0
for all t > 0, where ψn denotes the n-th iteration of ψ.

Definition 10. Let (F ,S , ∗) represent an FT CMS . We define the mapping T : F −→ F to be
an (α-ψ)-fuzzy contractive mapping if there exist two functions ψ ∈ Ψ, and α : F 2 × (0,+∞)→
[0,+∞) such that the following inequality holds for all η, ξ ∈ F and for all t > 0:

α(η, ξ, t)(
1

S(Tη, Tξ, t)
− 1) ≤ ψ(

1
S(η, ξ, t)

− 1). (7)

We will now introduce our initial major result and proceed to prove it.

Theorem 1. Consider a completeFT CMS (F ,S , ∗) with three noncomparable functions P, Q, R :
F 2 → [1, 1/τ), where τ ∈ (0, 1). Let T : F → F be an (α-ψ)-fuzzy contractive mapping, with
ψ ∈ Ψ, satisfying the following conditions:
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(1) T possesses α-admissibility;
(2) There exists η0 ∈ F such that α(η0, Tη0, t) ≥ 1 for all t > 0;
(3) T exhibits continuity;
(4) For some η0 ∈ F , the sequence {ηn} is defined as ηn = Tnη0, and for any η ∈ F , the

following limits exist and are finite:

lim
n→+∞

P(ηn, η), lim
n→+∞

Q(η, ηn), and lim
n→+∞

R(η, ηn). (8)

Then, T possesses a fixed point, meaning there exists η∗ ∈ F such that T(η∗) = η∗.

Proof. Choose an initial point η0 ∈ F such that α(η0, Tη0, t) ≥ 1 for all t > 0. We also have
a sequence {ηn} in F where Tnη0 = ηn for all n ∈ N.

Observe that if ηm = ηm+1 for a specific m ∈ N, it implies that Tmη0 serves as a fixed
point for the mapping T. Therefore, we can proceed without any loss of generality and
assume that ηn 6= ηn+1 holds for all n ∈ N.

Based on the provided assumptions, we observe that α(η0, η1, t) = α(η0, Tη0, t) ≥ 1.
Since T is α-admissible, this implies α(Tη0, Tη1, t) = α(η1, η2, t) ≥ 1. Using induction, we
can readily infer that:

α(ηn, ηn+1, t) ≥ 1, holds for all n ∈ N, and for all t > 0. (9)

Therefore, by employing Equations (7) and (9), we can deduce:

(
1

S(ηn, ηn+1, t)
− 1) = (

1
S(Tηn−1, Tηn, t)

− 1).

≤ α(ηn−1, ηn, t)(
1

S(Tηn−1, Tηn, t)
− 1).

≤ ψ(
1

S(ηn−1, ηn, t)
− 1), repeating the process

≤ ψ(ψ(
1

S(ηn−2, ηn−1, t)
− 1)) = ψ2(

1
S(ηn−2, ηn−1, t)

− 1).

≤ · · · ≤ ψn(
1

S(η0, η1, t)
− 1). (10)

Taking the limit as n approaches infinity in Equation (10) and utilizing the fact that

limn→+∞ ψn(r) = 0 with r =
1

S(η0, η1, t)
− 1, we derive:

lim
n→+∞

S(ηn−1, ηn, t) = 1 for all t > 0. (11)

For any pair of natural numbers n and m, where n < m, we have:

S(ηn, ηm, t) ≥ S(ηn, ηn+1,
t
3

P(ηn, ηn+1)
) ∗ S(ηn+1, ηn+2,

t
3

Q(ηn+1, ηn+2)
) ∗ S(ηn+2, ηm,

t
3

R(ηn+2, ηm)
).

≥ S(ηn, ηn+1,
t
3

P(ηn, ηn+1)
) ∗ S(ηn+1, ηn+2,

t
3

Q(ηn+1, ηn+2)
)

∗ S(ηn+2, ηn+3,
t

32

P(ηn+2, ηn+3)R(ηn+2, ηn+3)
) ∗ S(ηn+3, ηn+4,

t
32

Q(ηn+3, ηn+4)R(ηn+3, ηn+4)
)

∗ S(ηn+4, ηm,
t

32

R(ηn+4, ηm)R(ηn+2, ηm)
).
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≥ S(ηn, ηn+1,
t
3

P(ηn, ηn+1)
) ∗ S(ηn+1, ηn+2,

t
3

Q(ηn+1, ηn+2)
)

∗ S(ηn+2, ηn+3,
t

32

P(ηn+2, ηn+3)R(ηn+2, ηn+3)
) ∗ S(ηn+3, ηn+4,

t
32

Q(ηn+3, ηn+4)R(ηn+3, ηn+4)
)

...

∗ S(ηm−2, ηm−1,
t

3m

Q(ηm−2, ηm−1)R(ηm−2, ηm) · · · R(ηn+2, ηm)
)

∗ S(ηm−1, ηm,
t

3m

R(ηm−1, ηm)R(ηm−2, ηm) · · · R(ηn+2, ηm)
).

By taking the limit as n approaches infinity in the above inequality and applying
Equations (11) and (8), we obtain:

lim
n→+∞

S(ηn, ηm, t) ≥ 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 = 1. (12)

Hence, limn→+∞ S(ηn, ηm, t) = 1; this suggests that the sequence {ηn} is a Cauchy
sequence within the space F , and since F is a complete FT CMS , there exists an element
η∗ ∈ F such that ηn converges to η∗, i.e.,

lim
n→+∞

S(ηn, η∗, t) = 1. (13)

The continuity of T implies that limn→+∞ S(T(ηn), T(η∗), t) = 1 for all t > 0. Conse-
quently, we have:

lim
n→+∞

S(ηn+1, T(η∗), t) = lim
n→+∞

S(T(ηn), T(η∗), t) = 1, for all t > 0. (14)

This leads to the conclusion that ηn → T(η∗), and utilizing Lemma 1, we conclude
that T(η∗) = η∗, establishing that η∗ is a fixed point of T.

As a specific instance, when we set P(η, ξ) = Q(η, ξ) = R(η, ξ) = b, Theorem 1
offers a demonstration for the situation of a complete fuzzy rectangular b-metric space, as
illustrated in the following corollary.

Corollary 1. Consider a complete fuzzy rectangular b-metric space denoted as (F ,S , ∗), and let
the mapping T : F → F be characterized as an (α-ψ)-fuzzy contractive mapping, where ψ belongs
to the set Ψ. This mapping satisfies the following conditions:

(1) T possesses α-admissibility.
(2) There exists an element η0 in F such that α(η0, Tη0, t) ≥ 1 ∀ t > 0.
(3) T exhibits continuity.

Then, T possesses a fixed point, which means that there exists an element η∗ ∈ F satisfying
T(η∗) = η∗.

Proof. By substituting P(η, ξ) = Q(η, ξ) = R(η, ξ) = b into Theorem 1 and following the
same steps outlined in the proof, it can be concluded that T possesses a fixed point, as it
satisfies all the conditions stipulated in Theorem 1.

Corollary 2. Consider a complete fuzzy rectangular metric space denoted as (F ,S , ∗). Within this
space, there exists a mapping T : F → F that can be characterized as an (α-ψ)-fuzzy contractive
mapping, with ψ belonging to the set Ψ. These mappings adhere to the following conditions:

(1) T possesses α-admissibility.
(2) There exists an element η0 in F such that α(η0, Tη0, t) ≥ 1 ∀ t > 0.
(3) T exhibits continuity.
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Consequently, T possesses a fixed point, meaning that there exists an element η∗ ∈ F such
that T(η∗) = η∗.

Proof. By setting P(η, ξ) = Q(η, ξ) = R(η, ξ) = 1 in Theorem 1 and revisiting the proof,
we can conclude that T possesses a fixed point, as it satisfies all the conditions stipulated in
Theorem 1.

In the upcoming theorem, we substitute the continuity assumptions of T in Theorem 1
with an alternative regularity condition.

Theorem 2. Consider a complete FT CMS denoted as (F ,S , ∗). Within this space, there are
three noncomparable functions, namely, P, Q, R : F 2 → [1, 1/τ), where τ ∈ (0, 1). Furthermore,
let T : F → F be an (α-ψ)-fuzzy contractive mapping, with ψ belonging to the set Ψ. These
mappings adhere to the following conditions:

(1) T possesses α-admissibility.
(2) There exists an element η0 in F such that α(η0, Tη0, t) ≥ 1 ∀ t > 0.
(3) If {ηn} is any sequence in F such that α(ηn, ηn+1, t) ≥ 1 for all n ∈ N and ηn → η as n

tends to +∞, then α(ηn, η, t) ≥ 1 ∀ n ∈ N.
(4) If the sequence {ηn} is defined as ηn = Tnη0 for some η0 ∈ F , then for any η ∈ F , the

following limits exists and are finite;

lim
n→+∞

P(ηn, η), lim
n→+∞

Q(η, ηn) and lim
n→+∞

R(η, ηn) (15)

As a result, T admits a fixed point, signifying the existence of an element η∗ ∈ F such that
T(η∗) = η∗.

Proof. By following the proof outlined in Theorem 1, we can establish that the sequence
{ηn} is a Cauchy sequence within the context of a complete FT CMS denoted as (F ,S , ∗).
This, in turn, implies the existence of an element η∗ ∈ F such that ηn → η∗ as n tends to
positive infinity. Therefore, based on hypothesis (3), we can deduce the following:

α(ηn, η∗, t) ≥ 1 for all n ∈ N and∀ t > 0. (16)

Utilizing the triangular property of S and combining Equations (16) and (7), we can derive:

(
1

S(Tη∗, η∗, t)
− 1) ≤ (

1
S(Tη∗, Tηn, t)

− 1) + (
1

S(ηn+1, η∗, t)
− 1).

≤ α(ηn, η∗, t)(
1

S(Tηn, Tη∗, t)
− 1) + (

1
S(ηn+1, η∗, t)

− 1).

≤ ψ(
1

S(ηn, η∗, t)
− 1) + (

1
S(ηn+1, η∗, t)

− 1), since ψ(r) < r.

< (
1

S(ηn, η∗, t)
− 1) + (

1
S(ηn+1, η∗, t)

− 1). (17)

As we allow n to approach positive infinity in Equation (17), we acquire:

lim
n→+∞

S(Tη∗, η∗, t) = 1 for all t > 0, (18)

that is, T(η∗) = η∗, demonstrating that T possesses a fixed point.

4. Application

Consider the space F = C([0, 1],R), which represents the set of all continuous real-
valued functions defined on the interval [0, 1]. We establish three noncomparable functions,
denoted as P, Q, R : F 2 → [1,+∞), in the following manner: P(η, ξ) = η + ξ + 1, Q(η, ξ) =
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η2 + ξ + 1, and R(η, ξ) = η2 + ξ2 + 1. The fuzzy metric S is defined over the set F
as follows:

S(η, ξ, t) = e−sups∈[0,1]
|η(s)−ξ(s)|

t , where η, ξ ∈ F , t > 0. (19)

Therefore, (F ,S , ∗) constitutes a complete FT CMS .

Theorem 3. Consider (F ,S , ∗) to be a complete FT CMS as previously defined. We introduce
an integral operator T : F −→ F defined by the following expression:

Tη(s) = p(s) +
∫ s

0
G(s, x, η(x))dx. (20)

Here, p and η ∈ F , and G(s, x, η(x)) : [0, 1]2 −→ R is a continuous function. Furthermore, G
satisfies the following conditions:

|G(s, x, η(x))− G(s, x, ξ(x))| ≤ h(s, x)|η(x)− ξ(x)|, η, ξ ∈ F

for some function h : [0, 1]2 → [0,+∞) such that h ∈ L1([0, 1],R), and it satisfies the following:

• 0 < sups∈[0,1]
∫ s

0 h(s, x)dx ≤ k < 1, for some k ∈ (0, 1);

• e− supx∈[0,1]
k|η(x)−ξ(x)|

t ≥ 2 e− supx∈[0,1]
|η(x)−ξ(x)|

t .

Then, the integral Equation (20) has a solution.

Proof. Let us initially define the function α : F 2 × (0,+∞)→ [0,+∞) as follows:

α(η, ξ, t) =


1/4 if η = 0, or ξ = 0.
1/2 if η = ξ.
1 otherwise .

(21)

Also, let ψ(r) = r/2. For η, ξ ∈ F , we examine the fuzzy metric:

S(Tη, Tξ, t) = e
−sups∈[0,1]

|Tη(s)− Tξ(s)|
t .

≥ e
−sups∈[0,1]

∫ s
0 |G(s, x, η(x))− G(s, x, ξ(x))|dx

t .

≥ e
−sups∈[0,1]

∫ s
0 h(s, x)|η(x)− ξ(x)|dx

t . (22)

≥ e
−supx∈[0,1]

|η(x)− ξ(x)|sups
∫ s

0 h(s, x)dx
t .

≥ e
−supx∈[0,1]

k|η(x)− ξ(x)|
t

≥ 2e
−supx∈[0,1]

|η(x)− ξ(x)|
t = 2(S(η, ξ, t)).
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Therefore, in order to demonstrate that T is an (α-ψ)-fuzzy contractive mapping, it is
necessary to establish the validity of Equation (7). Thus, for any η, ξ ∈ F , we can infer from
Equations (21) and (22) that:

α(η, ξ, t)(
1

S(Tη, Tξ, t)
− 1) ≤ 1

S(Tη, Tξ, t)
− 1.

≤ 1
2S(η, ξ, t)

− 1 ≤ 1
2
(

1
S(η, ξ, t)

− 1). (23)

= ψ(
1

S(η, ξ, t)
− 1).

In conclusion, we established that the operator T possesses a fixed point, denoted as
η∗ ∈ C([0, 1],R), which serves as a solution to integral Equation (20). Therefore, all the
conditions of Theorem 1 have been satisfied.

Next, we present an example of Theorem 3.

Example 4 ([20]). Let (F ,S , ∗) be a complete FT CMS as defined above. Consider the differen-
tial equation

η′′(s)− η(s) = cos(s), η(0) = 0, η′(0) = 0,

this produces the following integral equation

η(s) = 1− cos(s)−
∫ s

0
(s− x)η(x)dx, (24)

where G(s, x, η(x)) = (s− x)η(x). Observe that

|G(s, x, η(x))− G(s, x, ξ(x))| = |(s− x)η(x)− (s− x)ξ(x)|. (25)

= |(s− x)||η(x)− ξ(x)| = h(s, x)|η(x)− ξ(x)|,

with h(s, x) = |(s− x)|; hence, 0 < sups∈[0,1]
∫ s

0 h(s, x)dx ≤ k < 1. Note that following the
steps in Equation (22) we have

S(Tη, Tξ, t) ≥ e
−sups∈[0,1]

∫ s
0 |G(s, x, η(x))− G(s, x, ξ(x))|dx

t .

≥ e
−supx∈[0,1]

|η(x)− ξ(x)|sups
∫ s

0 |s− x|dx
t .

≥ e
−supx∈[0,1]

k|η(x)− ξ(x)|
t = 2(S(η, ξ, t)).

With α and ψ as defined in Theorem 3. Following the steps in Equation (23), we conclude that
the integral Equation (24) has a solution.

5. Conclusions

This article has focused on the concept of fuzzy triple controlled metric spaces. We
have established fixed point results within these spaces by employing (α-ψ)-fuzzy con-
tractive mappings. Additionally, we have provided several examples and demonstrated
the application of our findings in the context of the existence of a solution to an integral
equation. We have also given an example of a solution to an integral equation.

It is worth mentioning that in 1999, Molodstov introduced the theory of soft sets, a
mathematical concept that deals with uncertainties [11]. Subsequently, Das and Samanta
introduced the concepts of soft metric spaces, making significant contributions to this
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area [23–25]. Beaula and Raja introduced the concept of fuzzy soft metric spaces, paving the
way for fixed point theory in the context of soft fuzzy metric spaces [26]. Related works can
be found in references [34–36]. More recently, the work of Sonam et al. presented fixed point
results in soft fuzzy metric spaces as well as fixed point results in soft rectangularb-metric
spaces [27,28].

For potential future research, we suggest exploring the concept of soft double and triple
controlled fuzzy metric spaces and investigating fixed point results within these spaces.
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