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Abstract: A D-decomposition of a graph (or digraph) G is a partition of the edge set (or arc set) of
G into subsets, where each subset induces a copy of the fixed graph D. Graph decomposition finds
motivation in numerous practical applications, particularly in the realm of symmetric graphs, where
these decompositions illuminate intricate symmetrical patterns within the graph, aiding in various
fields such as network design, and combinatorial mathematics, among various others. Of particular
interest is the case where G is λK∗v , the λ-fold complete symmetric digraph on v vertices, that is, the
digraph with λ directed edges in each direction between each pair of vertices. For a given digraph D,
the set of all values v for which λK∗v has a D-decomposition is called the λ-fold spectrum of D. An
eight-cycle has 22 non-isomorphic orientations. The λ-fold spectrum problem has been solved for
one of these oriented cycles. In this paper, we provide a complete solution to the λ-fold spectrum
problem for each of the remaining 21 orientations.

Keywords: λ-fold spectrum problem; complete symmetric digraph; decompositions; orientations of
an eight-cycle

1. Introduction

Assuming m and n are positive integers with m ≤ n, we use the notation [m, n] to
represent the set containing all integers between m and n inclusive. When referring to a
graph (or digraph) G, we use V(G) to denote its vertex set and E(G) to denote its edge set
(or arc set). Moreover, we will use λG to represent the multigraph (or directed multigraph)
with vertex set V(G) and λ copies of each edge (or arc) in E(G). For the sake of clarity,
edges are denoted using curly brackets and arcs are denoted using parentheses. For a given
simple undirected graph G, we use G∗ to denote the symmetric digraph with vertex set
V(G∗) = V(G) and arc set E(G∗) =

⋃
{x,y}∈E(G){(x, y), (y, x)}. In essence, G∗ represents

the digraph obtained from G by replacing each of its edges with a pair of symmetric arcs.
Hence, λK∗v and λK∗x,y, respectively, are the λ-fold complete symmetric digraph with v
vertices and λ-fold complete bipartite symmetric digraph with x and y vertices in the parts.

Let G be a directed multigraph. A decomposition of G is a set D = {D1, D2, . . . , Dt}
of subgraphs of G such that E(D1) ∪ E(D2) ∪ . . . ∪ E(Dt) = E(G) and E(Di) ∩ E(Dj) = ∅
for i 6= j. A decomposition of a digraph G into subgraphs, each isomorphic to a given
digraph D, is called a D-decomposition of G. A (G, D)-design refers to the same concept
as a D-decomposition of G. The spectrum of D is the set of all v for which K∗v has a D-
decomposition. Similarly, the set of all v for which λK∗v has a D-decomposition is called the
λ-fold spectrum of D.

Graphs, digraphs, and multigraphs are fundamental mathematical structures of great
significance in various fields, including computer science, logistics, chemistry, and biology
[1–4]. In particular, digraphs have a wide range of real-world applications such as social
networks, communication networks, electrical circuit design, network flow analysis, and
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biological networks (see [5]). In this context, graph decomposition, an essential concept in
both graph theory and combinatorial design theory, involves breaking down intricate struc-
tures into smaller, structured components. Many problems in these fields can be viewed
in terms of decomposition of graphs into prescribed subgraphs. Beyond its theoretical
significance, graph decomposition finds practical applications in diverse areas such as
graph similarity and matching [6] and parallel computations on large graphs [7], among
others.

For a decomposition of λK∗v into copies of a digraph D, it is necessary that the number
of arcs in λK∗v , namely, λv(v− 1), be a multiple of the number of the arcs in D. Moreover,
both gcd{d+(x) : x ∈ V(D)} and gcd{d−(x) : x ∈ V(D)} divide λ(v − 1), which is
both indegree and outdegree of every vertex in λK∗v , where d+(x) and d−(x) denote the
outdegree and indegree of the vertex x, respectively. Thus, based on these discussions, we
now have the following obvious necessary conditions for the existence of a decomposition
of λK∗v into digraph D.

Lemma 1. Let D be a digraph. The necessary conditions for the existence of a D-decomposition of
λK∗v are

(a) |V(D)| ≤ v,
(b) |E(D)| divides λv(v− 1), and
(c) both gcd{d+(x) : x ∈ V(D)} and gcd{d−(x) : x ∈ V(D)} divide λ(v− 1).

The number of non-isomorphic orientations of a cycle of order n is denoted by o(Cn)
and is given as follows [8]:

o(Cn) =
1

2n ∑
d|n

ϕ(d)2n/d +

{
0, if n is odd
2n/2−2, if n is even

(1)

where ϕ is the Euler’s totient function. We can quickly verify by Equation (1) that o(C3) = 2,
o(C4) = o(C5) = 4, o(C6) = 9, o(C7) = 10, and o(C8) = 22.

The spectrum problem for certain subgraphs of K∗4 (both bipartite and non-bipartite)
has already been studied [9–13]. Two non-isomorphic orientations of C3 are called cyclic
and transitive orientations. If D is a cyclic orientation of C3, then a (K∗v , D)-design is
commonly referred to as a Mendelsohn triple system. The spectrum for Mendelsohn triple
systems was independently studied and settled by Mendelsohn [12] and Bermond [9]. A
(K∗v , D)-design with D being a transitive orientation of K3 is referred to as a transitive triple
system. Hung and Mendelsohn [11] found the spectrum for transitive triple systems. For
all remaining simple connected subgraphs of K∗3 , the spectrum was found by Hartman and
Mendelsohn in [14]. A four-cycle (referred to as a quadrilateral) can have precisely four
distinct orientations. In [13], it was proven that if D is a cyclic orientation of a quadrilateral,
then a (K∗v , D)-design exists if and only if v > 4 and v ≡ 0 or 1 (mod 4). For the remaining
three orientations of a four-cycle, the spectrum problem was settled in [10]. Alspach
et al. [15] showed that any of the four orientations of a five-cycle (referred to as a pentagon)
can decompose K∗v if and only if v ≡ 0 or 1 (mod 5). It is shown in [16] that for given
positive integers m and v such that 2 ≤ m ≤ v, the digraph K∗v can be decomposed into
directed cycles (i.e., with all the edges being oriented in the same direction) of length m
if and only if (m, v) /∈

{
(3, 6), (4, 4), (6, 6)

}
and the number of arcs in K∗v is divisible by m.

For all nine possible orientations of a six-cycle, the λ-fold spectrum problem was settled by
Adams et al. [17]. Also, recently [18], the spectrum problem for all ten possible orientations
of a seven-cycle (referred to as a heptagon) was completely settled.

Twenty-two non-isomorphic orientations of an eight-cycle exist. We denote these
as D1, D2, . . . , D21 and D22, as illustrated in Figure 1. The λ-fold spectrum problem was
settled for the directed eight-cycle (D1 in Figure 1) in [19]. The focus of this research is to
settle this problem for the remaining twenty-one orientations. Let us now state the main
result of this paper, which is proved in Section 4.
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Theorem 1. Let D be an orientation of an eight-cycle and let λ and v be positive integers such that
v ≥ 8. There exists a D-decomposition of λK∗v if and only if λv(v− 1) ≡ 0 (mod 8) except for
D = D14 and λ(v− 1) is odd.
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Figure 1. The twenty-two orientations of an eight-cycle. The λ-fold spectrum problem for the directed
eight-cycle (D1) has previously been settled.
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An antidirected cycle of length n is obtained by orienting the edges of a cycle of length
n such that no directed path of length 2 is induced. Thus, a cycle Cn is antidirected if any
vertex of Cn has either indegree 2 or outdegree 2 in Cn, and antidirected cycles necessarily
have an even number of arcs. In Figure 1, D14 is the antidirected eight-cycle. Thus, applying
the necessary conditions provided in Lemma 1 to the 21 directed cycles under consideration,
we obtain the following necessary conditions.

Lemma 2. Let D ∈ {D2, D3, . . . , D22}\{D14} and let λ and v be positive integers such that
v ≥ 8. There exists a D-decomposition of λK∗v only if λv(v− 1) ≡ 0 (mod 8). Furthermore, there
exists a D14-decomposition of λK∗v only if λv(v− 1) ≡ 0 (mod 8) and λ(v− 1) ≡ 0 (mod 2).

Proof. In accordance with Lemma 1, for D ∈ {D2, D3, . . . , D22}, it is evident that |E(D)| =
8, which divides λv(v − 1). In other words, λv(v − 1) ≡ 0 (mod 8). Additionally, for
D ∈ {D2, D3, . . . , D22}\{D14}, gcd{d+(x) : x ∈ V(D)} = gcd{d−(x) : x ∈ V(D)} = 1,
which always divides λ(v− 1). Furthermore, gcd{d+(x) : x ∈ V(D14)} = gcd{d−(x) :
x ∈ V(D14)} = 2. Thus, the result follows.

It was shown by Bermond, Huang, and Sotteau [19] in 1978 that these necessary
conditions are sufficient for the directed eight-cycle D1.

Theorem 2 ([19]). For integer v ≥ 8, there exists a D1-decomposition of λK∗v if and only if
λv(v− 1) ≡ 0 (mod 8).

The rest of this paper is devoted to establishing the sufficiency of the necessary
conditions given in Lemma 2. We achieve this by exhibiting constructions for the desired
decompositions (see Section 3) using certain small examples (see Section 2). Henceforth,
each of the graphs in Figure 1, with vertices labeled as in the figure, will be represented
by Di[u1, u1, . . . , u8]. For instance, D5[0, 1, 2, . . . , 7] refers to the digraph with vertex set
{0, 1, 2, . . . , 7} and arc set {(1, 0), (1, 2), (2, 3), (4, 3), (4, 5), (5, 6), (6, 7), (7, 0)}.

We denote the reverse orientation of D by Rev(D), which is the digraph with vertex set
V(D) and arc set

{
(v, u) : (u, v) ∈ E(D)

}
. It is important to note that, if graph G has a

D-decomposition, then its reverse graph (Rev(G)) must have a Rev(D)-decomposition. In
this paper, we will make use of the following fact:

Fact 1. Let D and G be digraphs. A (G, D)-design exists if and only if a (Rev(G), Rev(D))-design
exists.

Since λK∗v is its own reverse orientation, we observe that the λ-fold spectrum of D and
Rev(D) are equivalent. This fact leads to the following corollary:

Corollary 1. Let D be a digraph. A D-decomposition of λK∗v exists if and only if a Rev(D)-
decomposition of λK∗v exists.

The following result of Sotteau proves the existence of 2m-cycle decompositions of
complete bipartite graphs for m ≥ 2. We will use this result to obtain a decomposition of
K∗2x,2y into several oriented eight-cycles.

Theorem 3 ([20]). Let x, y, and m be positive integers such that m ≥ 2. There exists a 2m-cycle
decomposition of K2x,2y if and only if m | 2xy and min{2x, 2y} ≥ m.

Note that 8 of the 22 oriented eight-cycles of interest in this paper occur in pairs with
respect to their reverse orientations (see Figure 1), namely, Rev(D15) ∼= D19, Rev(D16) ∼=
D20, Rev(D17) ∼= D21, and Rev(D18) ∼= D22. The other 14 orientations in this paper are
reverse orientations of themselves, namely, Rev(Di) ∼= Di for all i ∈ [1, 14].
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Consider an orientation of an eight-cycle that is isomorphic to its own reverse, i.e.,
any Di in Figure 1 such that i /∈ [15, 22]. By definition of reverse orientation, the set
{Di, Rev(Di)} is an obvious Di-decomposition of C∗8 (the symmetric digraph with an eight-
cycle as the underlying simple graph). By Fact 1, we obtain the following corollary from
the case m = 4 in Theorem 3.

Corollary 2. Let D ∈ {D1, D2, . . . , D14}. There exists a D-decomposition of K∗2x,2y if xy ≡ 0
(mod 2) and min{x, y} ≥ 2.

2. Examples of Small Designs

In this section, we focus on the designs of small orders that will establish the existence
of necessary base cases. These designs in Examples 1 to 4 were obtained through a computer
search by the first author. Additionally, these decompositions are extensively utilized in
the general constructions discussed in Section 3.

Given a digraph represented by the notation D[u1, u2, . . . , u8] and i ∈ Zn, we define
D[u1, u2, . . . , u8] + i = D[u1 + i, u2 + i, . . . , u8 + i], where all addition is performed modulo
n. Similarly, if the vertices of D are ordered pairs in Zm ×Zn, then D

[
(u1, v1), (u2, v2), . . . ,

(u8, v8)
]
+ (i, 0) means the digraph D

[
(u1 + i, v1), (u2 + i, v2), . . . , (u8 + i, v8)

]
. We also

adopt the convention that both ∞ + i and ∞ + (i, 0) result in simply ∞.

2.1. Small Designs for λ = 1
Example 1. Let the vertex set of K∗8 be Z8 and let

D5 =
{

D5[0, 1, 7, 5, 4, 3, 6, 2], D5[0, 6, 7, 1, 5, 3, 2, 4], D5[1, 0, 5, 6, 4, 7, 2, 3], D5[2, 1, 5, 0, 3, 7, 6, 4],

D5[3, 7, 0, 6, 2, 5, 4, 1], D5[4, 0, 2, 1, 6, 3, 5, 7], D5[7, 0, 3, 4, 1, 6, 5, 2]
}

,

D12 =
{

D12[0, 2, 4, 6, 1, 3, 7, 5], D12[0, 4, 1, 5, 2, 7, 3, 6], D12[1, 7, 6, 4, 5, 2, 3, 0], D12[2, 6, 5, 1, 3, 0, 4, 7],

D12[3, 5, 0, 6, 2, 1, 7, 4], D12[4, 2, 1, 0, 7, 6, 5, 3], D12[5, 7, 0, 2, 3, 6, 1, 4]
}

,

D13 =
{

D13[0, 6, 3, 4, 7, 1, 5, 2], D13[0, 4, 6, 2, 7, 3, 1, 5], D13[2, 7, 0, 5, 6, 1, 4, 3], D13[4, 1, 2, 5, 3, 6, 7, 0],

D13[5, 3, 7, 4, 2, 1, 0, 6], D13[5, 4, 2, 3, 0, 1, 6, 7], D13[6, 2, 0, 3, 1, 7, 5, 4]
}

.

Then, Di forms a Di-decomposition of K∗8 for i ∈ {5, 12, 13}.

Example 2. Let the vertex set of K∗8 be Z7 ∪ {∞} and let

D2 =
⋃

i∈Z7

{
D2[0, 1, 3, 6, 4, 5, 2, ∞] + i

}
,

D3 =
⋃

i∈Z7

{
D3[0, 1, 6, 3, 4, 2, 5, ∞] + i

}
,

D4 =
⋃

i∈Z7

{
D4[0, 1, 6, 2, 3, 5, ∞, 4] + i

}
,

D6 =
⋃

i∈Z7

{
D6[0, 1, 6, 3, 4, 2, 5, ∞] + i

}
,

D7 =
⋃

i∈Z7

{
D7[0, 1, 3, 6, 2, 4, 5, ∞] + i

}
,

D8 =
⋃

i∈Z7

{
D8[0, 1, 3, 6, 2, 4, 5, ∞] + i

}
,

D9 =
⋃

i∈Z7

{
D9[0, 1, 2, 5, 3, 6, 4, ∞] + i

}
,

D10 =
⋃

i∈Z7

{
D10[0, 1, 5, 3, 2, 6, 4, ∞] + i

}
,

D11 =
⋃

i∈Z7

{
D11[0, 1, 6, 3, 4, 2, 5, ∞] + i

}
,

D15 =
⋃

i∈Z7

{
D15[0, 1, 3, 6, 2, 4, 5, ∞] + i

}
,

D16 =
⋃

i∈Z7

{
D16[0, 1, 3, 4, 6, 2, 5, ∞] + i

}
,

D17 =
⋃

i∈Z7

{
D17[0, 1, 6, 2, 3, 5, ∞, 4] + i

}
,

D18 =
⋃

i∈Z7

{
D18[0, 1, 5, 3, 2, 6, 4, ∞] + i

}
.

Then, Di forms a Di-decomposition of K∗8 for i ∈ [2, 18]\{5, 12, 13, 14}.
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Example 3. Let the vertex set of K∗9 be Z9 and let

D2 =
{

D2[0, 1, 2, 3, 4, 5, 6, 7], D2[1, 3, 0, 5, 2, 4, 7, 8], D2[1, 4, 0, 3, 6, 2, 8, 5], D2[3, 8, 7, 6, 0, 2, 1, 5],

D2[4, 7, 3, 8, 2, 5, 0, 6], D2[5, 6, 1, 8, 4, 3, 2, 7], D2[6, 1, 3, 7, 2, 0, 4, 8], D2[7, 5, 4, 2, 6, 8, 0, 1],

D2[8, 0, 7, 1, 4, 6, 3, 5]
}

,

D3 =
{

D3[0, 1, 2, 3, 4, 5, 6, 7], D3[1, 0, 3, 6, 2, 5, 8, 4], D3[1, 3, 4, 2, 6, 0, 7, 8], D3[2, 7, 4, 0, 3, 5, 1, 8],

D3[3, 5, 0, 2, 8, 6, 1, 7], D3[3, 6, 7, 1, 5, 0, 4, 8], D3[4, 2, 3, 8, 0, 6, 5, 7], D3[4, 6, 1, 2, 0, 8, 7, 5],

D3[7, 3, 1, 4, 6, 8, 5, 2]
}

,

D4 =
⋃

i∈Z9

{
D4[0, 1, 3, 2, 7, 4, 8, 6] + i

}
,

D5 =
⋃

i∈Z9

{
D5[0, 1, 3, 8, 7, 4, 2, 5] + i

}
,

D6 =
⋃

i∈Z9

{
D6[0, 1, 3, 8, 5, 4, 2, 6] + i

}
,

D7 =
{

D7[0, 1, 2, 3, 4, 5, 6, 7], D7[0, 2, 1, 3, 5, 4, 6, 8], D7[1, 8, 3, 7, 4, 2, 6, 0], D7[2, 7, 5, 6, 3, 0, 4, 8],

D7[3, 0, 4, 1, 5, 2, 7, 8], D7[3, 2, 6, 0, 8, 7, 5, 1], D7[6, 3, 5, 2, 8, 4, 1, 7], D7[6, 8, 5, 0, 2, 4, 7, 1],

D7[7, 3, 4, 6, 1, 8, 5, 0]
}

,

D8 =
⋃

i∈Z9

{
D8[0, 1, 2, 4, 6, 3, 8, 5] + i

}
,

D9 =
⋃

i∈Z9

{
D9[0, 1, 2, 5, 3, 8, 4, 6] + i

}
,

D10 =
{

D10[0, 1, 2, 3, 4, 5, 6, 7], D10[1, 0, 8, 5, 7, 4, 2, 3], D10[2, 0, 4, 3, 1, 8, 7, 6], D10[4, 8, 2, 5, 0, 7, 1, 6],

D10[6, 0, 5, 3, 7, 2, 4, 8], D10[6, 3, 0, 2, 8, 1, 5, 4], D10[7, 1, 4, 0, 6, 3, 8, 5], D10[7, 4, 1, 5, 2, 6, 8, 3],

D10[8, 0, 3, 5, 6, 1, 2, 7]
}

,

D11 =
⋃

i∈Z9

{
D11[0, 1, 5, 4, 6, 3, 8, 2] + i

}
,

D12 =
⋃

i∈Z9

{
D12[0, 1, 4, 8, 5, 7, 3, 2] + i

}
,

D13 =
⋃

i∈Z9

{
D13[0, 1, 3, 8, 5, 4, 2, 6] + i

}
,

D14 =
⋃

i∈Z9

{
D14[0, 1, 3, 8, 5, 4, 2, 6] + i

}
,

D15 =
⋃

i∈Z9

{
D15[0, 1, 3, 5, 2, 6, 7, 4] + i

}
,

D16 =
⋃

i∈Z9

{
D16[0, 1, 3, 4, 8, 5, 2, 7] + i

}
,

D17 =
⋃

i∈Z9

{
D17[0, 1, 4, 3, 8, 5, 7, 2] + i

}
,

D18 =
⋃

i∈Z9

{
D18[0, 1, 3, 8, 7, 4, 2, 5] + i

}
.

Then, Di forms a Di-decomposition of K∗9 for i ∈ [2, 18].

Example 4. Let V(K∗4,4) = Z8 with vertex partition {0, 1, 2, 3} ∪ {4, 5, 6, 7} and let

D15 = {D15[0, 4, 1, 5, 2, 6, 3, 7], D15[1, 5, 0, 4, 2, 7, 3, 6], D15[6, 1, 7, 2, 4, 3, 5, 0], D15[7, 0, 6, 2, 5, 3, 4, 1]},
D16 = {D16[0, 4, 1, 5, 2, 6, 3, 7], D16[1, 5, 0, 4, 2, 7, 3, 6], D16[6, 0, 5, 3, 4, 2, 7, 1], D16[7, 1, 4, 3, 5, 2, 6, 0]},
D17 = {D17[0, 4, 1, 5, 2, 6, 3, 7], D17[1, 4, 0, 5, 3, 7, 2, 6], D17[5, 0, 6, 1, 7, 2, 4, 3], D17[5, 1, 7, 0, 6, 3, 4, 2]},
D18 = {D18[0, 4, 1, 5, 2, 6, 3, 7], D18[2, 4, 3, 5, 0, 6, 1, 7], D18[4, 0, 5, 1, 7, 3, 6, 2], D18[7, 0, 6, 1, 4, 3, 5, 2]}.

Then, Di forms a Di-decomposition of K∗4,4 for i ∈ [15, 18].

Example 5. Let V(K∗5,8) = (Z5 × Z2) ∪ {∞0, ∞1, ∞2}. For brevity, we use ij to denote the
ordered pair (i, j) ∈ V(K∗5,8) and we (continue to) use the convention that ∞k + i0 = ∞k for
each k ∈ {0, 1, 2}. Thus, the vertex bipartition of K∗5,8 is {a0 : a ∈ Z5} ∪ ({a1 : a ∈ Z5} ∪
{∞0, ∞1, ∞2}). Let

D15 =
⋃

i∈Z5

{
D15[00, 01, 10, 21, 40, ∞0, 30, ∞1] + i0, D15[01, 00, 11, 20, 41, 10, ∞2, 30] + i0

}
,

D16 =
⋃

i∈Z5

{
D16[00, 01, 20, ∞0, 30, 11, 40, ∞1] + i0, D16[01, 00, 11, 20, 31, 40, ∞2, 30] + i0

}
,

D17 =
⋃

i∈Z5

{
D17[00, ∞0, 20, 21, 10, 01, 30, ∞1] + i0, D17[01, 00, ∞2, 40, 11, 30, 41, 10] + i0

}
.

Then, Di forms a Di-decomposition of K∗5,8 for i ∈ [15, 17].
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Example 6. Let V(K∗6,8) = {ab : a ∈ Z6 and b ∈ Z2} ∪ {∞0, ∞1} with vertex partition
{a0 : a ∈ Z6} ∪ ({a1 : a ∈ Z6} ∪ {∞0, ∞1}). Let

D18 =
⋃

i∈Z6

{
D18[01, 00, 11, 10, 31, 40, 21, 50] + i0, D18[00, ∞0, 10, 31, 50, 21, 30, ∞1] + i0

}
.

Then, D18 forms a D18-decomposition of K∗6,8.

Example 7. Let V(K∗7,8) = {ab : a ∈ Z7 and b ∈ Z2} ∪ {∞} with vertex partition {a0 : a ∈
Z7} ∪ ({a1 : a ∈ Z7} ∪ {∞}). Let

D15 =
⋃

i∈Z7

{
D15[00, 01, 10, 11, 30, 41, 60, 31] + i0, D15[01, 50, 61, 00, 41, 20, ∞, 40] + i0

}
,

D16 =
⋃

i∈Z7

{
D16[00, 01, 40, 41, 30, 21, 60, ∞] + i0, D16[01, 20, 41, 00, 11, 40, 61, 10] + i0

}
,

D17 =
⋃

i∈Z7

{
D17[00, 01, 50, 21, 40, 31, 20, ∞] + i0, D17[01, 00, 31, 40, 21, 50, 11, 60] + i0

}
,

D18 =
⋃

i∈Z7

{
D18[01, 00, 11, 20, 41, 60, 31, 30] + i0, D18[00, 31, 10, 21, 30, 11, 50, ∞] + i0

}
.

Then, Di forms a Di-decomposition of K∗7,8 for i ∈ [15, 18].

2.2. Small Designs for λ = 2

Example 8. Let the vertex set of 2K∗8 be Z7 ∪ {∞} and let

D14 =
⋃

i∈Z7

{
D14[0, 1, 3, 6, 2, 4, 5, ∞] + i, D14[0, 1, 3, 5, 6, 2, ∞, 4] + i

}
.

Then, D14 forms a D14-decomposition of 2K∗8 .

Example 9. Let the vertex set of 2K∗12 be Z11 ∪ {∞} and let

D2 =
⋃

i∈Z11

{
2(D2[0, 3, 1, 5, 10, 9, 4, ∞] + i), D2[0, 9, 1, 2, 3, 5, 8, 4] + i

}
,

D3 =
⋃

i∈Z11

{
2(D3[0, 1, 3, 7, 2, 10, 4, ∞] + i), D3[0, 10, 9, 1, 3, 5, 8, 4] + i

}
,

D4 =
⋃

i∈Z11

{
2(D4[0, 1, 5, 7, 2, 10, 4, ∞] + i), D4[0, 10, 2, 1, 3, 5, 8, 4] + i

}
,

D5 =
⋃

i∈Z11

{
2(D5[0, 1, 5, 3, 8, 2, 10, ∞] + i), D5[0, 10, 1, 3, 2, 5, 8, 4] + i

}
,

D6 =
⋃

i∈Z11

{
2(D6[0, 1, 5, 2, 7, 9, 4, ∞] + i), D6[0, 10, 1, 3, 6, 5, 8, 4] + i

}
,

D7 =
⋃

i∈Z11

{
2(D7[0, 1, 3, 9, 2, 8, 5, ∞] + i), D7[0, 4, 1, 9, 5, 6, 8, 10] + i

}
,

D8 =
⋃

i∈Z11

{
2(D8[0, 1, 5, 7, 4, 9, 3, ∞] + i), D8[0, 4, 5, 2, 9, 6, 8, 10] + i

}
,

D9 =
⋃

i∈Z11

{
2(D9[0, 1, 5, 7, 4, 9, 3, ∞] + i), D9[0, 4, 5, 2, 3, 10, 7, 9] + i

}
,

D10 =
⋃

i∈Z11

{
2(D10[0, 1, 3, 8, 4, 9, 6, ∞] + i), D10[0, 4, 1, 10, 9, 5, 6, 8] + i

}
,

D11 =
⋃

i∈Z11

{
2(D11[0, 1, 3, 6, 10, 4, 9, ∞] + i), D11[0, 4, 2, 1, 3, 10, 7, 8] + i

}
,

D12 =
⋃

i∈Z11

{
2(D12[0, 1, 3, 8, 2, ∞, 4, 7] + i), D12[0, 4, 1, 3, 2, 9, 10, 8] + i

}
,

D13 =
⋃

i∈Z11

{
D13[0, 1, 3, 8, 5, 10, 6, ∞] + i, D13[0, 4, 1, 2, 9, 7, 6, 8] + i

}
,

D14 =
⋃

i∈Z11

{
D14[0, 1, 2, 3, 4, 6, 8, 5] + i, D14[0, 2, 4, 1, 5, 8, 3, ∞] + i,

D14[0, 3, 8, 1, 5, 9, ∞, 6] + i
}

,

D15 =
⋃

i∈Z11

{
2(D15[0, 1, 3, 7, 2, 8, 5, ∞] + i), D15[0, 4, 1, 2, 10, 6, 7, 9] + i

}
,

D16 =
⋃

i∈Z11

{
2(D16[0, 1, 3, 7, 2, 5, 10, ∞] + i), D16[0, 4, 1, 2, 9, 6, 8, 10] + i

}
,

D17 =
⋃

i∈Z11

{
2(D17[0, 1, 3, 6, 10, 4, 9, ∞] + i), D17[0, 4, 1, 10, 6, 5, 7, 8] + i

}
,

D18 =
⋃

i∈Z11

{
2(D18[0, 1, 3, 7, 2, 10, 4, ∞] + i), D18[0, 4, 1, 3, 2, 9, 7, 8] + i

}
.

Then, Di forms a Di-decomposition of 2K∗12 for i ∈ [2, 18].
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Example 10. Let the vertex set of 2K∗13 be Z13 and let

D2 =
⋃

i∈Z13

{
2(D2[0, 8, 1, 2, 4, 3, 12, 9] + i), D2[0, 10, 4, 2, 5, 3, 11, 6] + i

}
,

D3 =
⋃

i∈Z13

{
2(D3[0, 1, 8, 4, 5, 2, 6, 11] + i), D3[0, 5, 10, 4, 7, 1, 12, 2] + i

}
,

D4 =
⋃

i∈Z13

{
2(D4[0, 1, 2, 9, 5, 7, 4, 8] + i), D4[0, 5, 3, 8, 2, 9, 7, 10] + i

}
,

D5 =
⋃

i∈Z13

{
2(D5[0, 1, 2, 4, 11, 3, 12, 9] + i), D5[0, 5, 3, 6, 11, 1, 8, 2] + i

}
,

D6 =
⋃

i∈Z13

{
2(D6[0, 1, 2, 6, 3, 10, 12, 4] + i), D6[0, 5, 3, 1, 4, 9, 12, 6] + i

}
,

D7 =
⋃

i∈Z13

{
2(D7[0, 1, 4, 8, 9, 2, 6, 11] + i), D7[0, 2, 4, 10, 5, 8, 3, 6] + i

}
,

D8 =
⋃

i∈Z13

{
2(D8[0, 1, 2, 5, 7, 11, 3, 9] + i), D8[0, 2, 5, 7, 10, 3, 11, 6] + i

}
,

D9 =
⋃

i∈Z13

{
2(D9[0, 1, 2, 5, 7, 12, 3, 9] + i), D9[0, 2, 5, 11, 6, 1, 3, 10] + i

}
,

D10 =
⋃

i∈Z13

{
2(D10[0, 1, 4, 12, 8, 9, 2, 11] + i), D10[0, 2, 7, 4, 10, 5, 3, 6] + i

}
,

D11 =
⋃

i∈Z13

{
2(D11[0, 1, 4, 12, 5, 6, 2, 11] + i), D11[0, 2, 7, 4, 11, 6, 12, 10] + i

}
,

D12 =
⋃

i∈Z13

{
2(D12[0, 1, 4, 6, 2, 3, 12, 7] + i), D12[0, 2, 7, 1, 11, 6, 4, 10] + i

}
,

D13 =
⋃

i∈Z13

{
2(D13[0, 1, 5, 2, 3, 10, 6, 8] + i), D13[0, 2, 7, 1, 9, 6, 12, 10] + i

}
,

D14 =
⋃

i∈Z13

{
2(D14[0, 1, 2, 5, 7, 3, 9, 4] + i), D14[0, 2, 5, 10, 8, 1, 9, 6] + i

}
,

D15 =
⋃

i∈Z13

{
2(D15[0, 1, 4, 5, 9, 2, 6, 8] + i), D15[0, 2, 4, 12, 5, 8, 3, 6] + i

}
,

D16 =
⋃

i∈Z13

{
2(D16[0, 1, 4, 5, 7, 11, 2, 8] + i), D16[0, 2, 4, 7, 10, 3, 11, 5] + i

}
,

D17 =
⋃

i∈Z13

{
2(D17[0, 1, 8, 4, 5, 9, 6, 11] + i), D17[0, 2, 7, 4, 12, 5, 3, 6] + i

}
,

D18 =
⋃

i∈Z13

{
2(D18[0, 1, 4, 6, 2, 3, 11, 7] + i), D18[0, 2, 7, 1, 11, 6, 12, 10] + i

}
.

Then, Di forms a Di-decomposition of 2K∗13 for i ∈ [2, 18].

2.3. Small Designs for λ = 4

Example 11. Let the vertex set of 4K∗10 be Z9 ∪ {∞} and let

D2 =
⋃

i∈Z9

{
2(D2[0, 2, 1, 4, 5, 7, 3, ∞] + i), 2(D2[0, 4, 1, 3, 6, 7, 2, ∞] + i), D2[0, 2, 1, 5, 4, 8, 6, 3] + i

}
,

D3 =
⋃

i∈Z9

{
2(D3[0, 1, 3, 4, 6, 2, 5, ∞] + i), 2(D3[0, 3, 1, 6, 7, 2, 5, ∞] + i), D3[0, 1, 2, 6, 4, 8, 5, 3] + i

}
,

D4 =
⋃

i∈Z9

{
2(D4[0, 1, 2, 4, 7, 3, 5, ∞] + i), 2(D4[0, 3, 4, 2, 7, 1, 5, ∞] + i), D4[0, 1, 5, 6, 3, 7, 4, 2] + i

}
,

D5 =
⋃

i∈Z9

{
2(D5[0, 1, 2, 5, 3, 8, 6, ∞] + i), 2(D5[0, 3, 4, 6, 1, 5, 8, ∞] + i), D5[0, 1, 7, 5, 6, 4, 8, 3] + i

}
,

D6 =
⋃

i∈Z9

{
2(D6[0, 1, 5, 3, 4, 2, 7, ∞] + i), 2(D6[0, 3, 4, 6, 1, 5, 8, ∞] + i), D6[0, 1, 4, 2, 5, 7, 6, 3] + i

}
,

D7 =
⋃

i∈Z9

{
2(D7[0, 1, 3, 7, 8, 2, 4, ∞] + i), 2(D7[0, 3, 2, 7, 1, 6, 8, ∞] + i), D7[0, 1, 6, 2, 8, 7, 5, 3] + i

}
,

D8 =
⋃

i∈Z9

{
2(D8[0, 1, 2, 4, 6, 3, 8, ∞] + i), 2(D8[0, 3, 4, 2, 5, 1, 6, ∞] + i), D8[0, 1, 8, 4, 2, 7, 6, 3] + i

}
,

D9 =
⋃

i∈Z9

{
2(D9[0, 1, 2, 6, 4, 7, 5, ∞] + i), 2(D9[0, 3, 4, 1, 5, 7, 2, ∞] + i), D9[0, 3, 1, 6, 5, 4, 7, 2] + i

}
,

D10 =
⋃

i∈Z9

{
2(D10[0, 1, 3, 2, 8, 4, 6, ∞] + i), 2(D10[0, 3, 1, 5, 2, 6, 7, ∞] + i), D10[0, 1, 3, 6, 2, 8, 7, 5] + i

}
,

D11 =
⋃

i∈Z9

{
2(D11[0, 1, 5, 3, 4, 2, 8, ∞] + i), 2(D11[0, 3, 1, 6, 2, 5, 4, ∞] + i), D11[0, 1, 3, 8, 5, 4, 7, 2] + i

}
,

D12 =
⋃

i∈Z9

{
2(D12[0, 1, 3, 5, 2, ∞, 4, 8] + i), 2(D12[0, 3, 1, 2, 6, ∞, 8, 5] + i), D12[0, 1, 4, 2, 7, 6, 3, 5] + i

}
,

D13 =
⋃

i∈Z9

{
2(D13[0, 1, 3, 5, 8, 7, 2, ∞] + i), 2(D13[0, 3, 1, 4, 8, 7, 2, ∞] + i), D13[0, 1, 3, 2, 8, 4, 7, 5] + i

}
,

D14 =
⋃

i∈Z9

{
2(D14[0, 1, 2, 4, 6, 3, 8, ∞] + i), 2(D14[0, 3, 4, 1, 6, 2, ∞, 5] + i), D14[0, 1, 3, 6, 5, 7, 4, 2] + i

}
,

D15 =
⋃

i∈Z9

{
2(D15[0, 1, 3, 5, 2, 7, 8, ∞] + i), 2(D15[0, 3, 1, 5, 2, 7, 8, ∞] + i), D15[0, 1, 6, 3, 8, 5, 4, 2] + i

}
,

D16 =
⋃

i∈Z9

{
2(D16[0, 1, 3, 6, 7, 2, 4, ∞] + i), 2(D16[0, 3, 1, 2, 7, 4, 8, ∞] + i), D16[0, 1, 6, 4, 3, 8, 5, 2] + i

}
,

D17 =
⋃

i∈Z9

{
2(D17[0, 1, 3, 2, 7, 4, 6, ∞] + i), 2(D17[0, 3, 1, 5, 8, 7, 2, ∞] + i), D17[0, 1, 4, 6, 3, 8, 7, 2] + i

}
,

D18 =
⋃

i∈Z9

{
2(D18[0, 1, 3, 5, 2, 7, 6, ∞] + i), 2(D18[0, 3, 1, 5, 2, 7, 6, ∞] + i), D18[0, 1, 4, 2, 7, 6, 8, 3] + i

}
.

Then, Di forms a Di-decomposition of 4K∗10 for i ∈ [2, 18].
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Example 12. Let the vertex set of 4K∗11 be Z11 and let

D2 =
⋃

i∈Z11

{
3(D2[0, 1, 2, 4, 7, 3, 8, 5] + i), D2[0, 1, 3, 7, 4, 8, 6, 2] + i, D2[0, 7, 1, 2, 6, 4, 10, 8] + i

}
,

D3 =
⋃

i∈Z11

{
3(D3[0, 1, 6, 2, 3, 5, 10, 8] + i), D3[0, 3, 2, 1, 5, 9, 6, 4] + i, D3[0, 5, 2, 4, 1, 6, 3, 7] + i

}
,

D4 =
⋃

i∈Z11

{
3(D4[0, 1, 2, 7, 3, 5, 8, 6] + i), D4[0, 3, 2, 1, 5, 9, 6, 4] + i, D4[0, 5, 2, 10, 1, 6, 3, 7] + i

}
,

D5 =
⋃

i∈Z11

{
3(D5[0, 1, 2, 4, 9, 3, 10, 8] + i), D5[0, 3, 2, 6, 5, 1, 9, 7] + i, D5[0, 5, 2, 4, 1, 6, 3, 7] + i

}
,

D6 =
⋃

i∈Z11

{
3(D6[0, 1, 2, 4, 9, 3, 10, 8] + i), D6[0, 3, 1, 5, 9, 8, 7, 4] + i, D6[0, 5, 2, 4, 1, 9, 3, 7] + i

}
,

D7 =
⋃

i∈Z11

{
3(D7[0, 1, 7, 6, 2, 4, 10, 8] + i), D7[0, 1, 3, 2, 6, 10, 7, 4] + i), D7[0, 3, 6, 2, 4, 7, 1, 5] + i

}
,

D8 =
⋃

i∈Z11

{
3(D8[0, 1, 3, 2, 9, 4, 7, 5] + i), D8[0, 1, 5, 4, 8, 10, 6, 3] + i, D8[0, 3, 5, 1, 4, 7, 2, 6] + i

}
,

D9 =
⋃

i∈Z11

{
3(D9[0, 1, 3, 2, 9, 4, 10, 8] + i), D9[0, 2, 1, 5, 6, 3, 10, 7] + i, D9[0, 3, 5, 1, 4, 10, 2, 6] + i

}
,

D10 =
⋃

i∈Z11

{
3(D10[0, 1, 3, 7, 6, 8, 2, 5] + i), D10[0, 1, 3, 6, 2, 9, 10, 7] + i, D10[0, 3, 1, 6, 2, 5, 10, 7] + i

}
,

D11 =
⋃

i∈Z11

{
3(D11[0, 1, 3, 7, 2, 5, 4, 6] + i), D11[0, 1, 4, 6, 2, 3, 10, 7] + i, D11[0, 3, 1, 8, 2, 5, 10, 7] + i

}
,

D12 =
⋃

i∈Z11

{
3(D12[0, 1, 3, 4, 9, 5, 8, 6] + i), D12[0, 1, 4, 8, 10, 6, 7, 3] + i, D12[0, 3, 1, 4, 9, 2, 10, 6] + i

}
,

D13 =
⋃

i∈Z11

{
3(D13[0, 1, 3, 4, 7, 5, 10, 6] + i), D13[0, 1, 4, 8, 5, 7, 3, 10] + i, D13[0, 3, 1, 4, 8, 2, 9, 6] + i

}
,

D14 =
⋃

i∈Z11

{
3(D14[0, 1, 2, 4, 6, 3, 10, 5] + i), D14[0, 1, 2, 9, 6, 8, 4, 7] + i, D14[0, 3, 5, 1, 9, 4, 10, 7] + i

}
,

D15 =
⋃

i∈Z11

{
3(D15[0, 1, 7, 3, 2, 4, 10, 8] + i), D15[0, 2, 1, 5, 6, 3, 7, 4] + i, D15[0, 3, 6, 1, 8, 2, 4, 7] + i

}
,

D16 =
⋃

i∈Z11

{
3(D16[0, 1, 7, 2, 4, 3, 10, 8] + i), D16[0, 2, 1, 5, 9, 10, 6, 3] + i, D16[0, 3, 6, 8, 2, 9, 1, 5] + i

}
,

D17 =
⋃

i∈Z11

{
3(D17[0, 1, 3, 2, 5, 9, 4, 6] + i), D17[0, 1, 3, 6, 2, 9, 10, 7] + i, D17[0, 3, 1, 6, 9, 5, 2, 7] + i

}
,

D18 =
⋃

i∈Z11

{
3(D18[0, 1, 3, 4, 2, 5, 10, 6] + i), D18[0, 1, 4, 8, 10, 6, 2, 3] + i, D18[0, 3, 1, 4, 9, 6, 2, 7] + i

}
.

Then, Di forms a Di-decomposition of 4K∗11 for i ∈ [2, 18].

Example 13. Let the vertex set of 4K∗14 be Z13 ∪ {∞} and let

D2 =
⋃

i∈Z13

{
4(D2[0, 1, 2, 4, 7, 11, 3, ∞] + i), 2(D2[0, 6, 1, 7, 2, 9, 5, 3] + i), D2[0, 3, 1, 7, 4, 10, 6, 2] + i

}
,

D3 =
⋃

i∈Z13

{
4(D3[0, 1, 9, 10, 12, 2, 6, ∞] + i), 2(D3[0, 5, 12, 6, 3, 1, 7, 4] + i), D3[0, 2, 4, 11, 7, 1, 9, 5] + i

}
,

D4 =
⋃

i∈Z13

{
4(D4[0, 1, 2, 10, 12, 3, 6, ∞] + i), 2(D4[0, 5, 1, 8, 2, 12, 9, 7] + i), D4[0, 2, 9, 11, 6, 1, 8, 4] + i

}
,

D5 =
⋃

i∈Z13

{
4(D5[0, 1, 2, 4, 12, 3, 6, ∞] + i), 2(D5[0, 5, 1, 8, 2, 12, 9, 7] + i), D5[0, 2, 9, 5, 7, 3, 11, 6] + i

}
,

D6 =
⋃

i∈Z13

{
4(D6[0, 1, 2, 4, 7, 3, 8, ∞] + i), 2(D6[0, 5, 1, 7, 4, 11, 8, 2] + i), D6[0, 2, 9, 3, 12, 1, 10, 5] + i

}
,

D7 =
⋃

i∈Z13

{
4(D7[0, 1, 9, 5, 6, 8, 11, ∞] + i), 2(D7[0, 2, 5, 12, 6, 1, 7, 3] + i), D7[0, 5, 11, 4, 12, 8, 6, 2] + i

}
,

D8 =
⋃

i∈Z13

{
4(D8[0, 1, 2, 10, 12, 8, 11, ∞] + i), 2(D8[0, 2, 8, 1, 7, 11, 6, 3] + i), D8[0, 5, 1, 7, 2, 8, 6, 4] + i

}
,

D9 =
⋃

i∈Z13

{
4(D9[0, 1, 2, 11, 3, 6, 4, ∞] + i), 2(D9[0, 2, 8, 1, 9, 6, 10, 3] + i), D9[0, 5, 1, 7, 3, 11, 4, 2] + i

}
,

D10 =
⋃

i∈Z13

{
4(D10[0, 1, 9, 5, 3, 4, 7, ∞] + i), 2(D10[0, 2, 7, 1, 6, 3, 10, 4] + i), D10[0, 2, 5, 9, 3, 1, 7, 4] + i

}
,

D11 =
⋃

i∈Z13

{
4(D11[0, 1, 9, 6, 8, 12, 11, ∞] + i), 2(D11[0, 2, 6, 12, 7, 1, 8, 3] + i), D11[0, 2, 5, 9, 6, 4, 11, 7] + i

}
,

D12 =
⋃

i∈Z13

{
4(D12[0, 1, 9, 10, 7, ∞, 2, 11] + i), 2(D12[0, 2, 6, 1, 7, 4, 11, 5] + i), D12[0, 2, 5, 1, 8, 6, 3, 7] + i

}
,

D13 =
⋃

i∈Z13

{
4(D13[0, 1, 9, 10, 12, 8, 5, ∞] + i), 2(D13[0, 2, 7, 1, 10, 4, 9, 3] + i), D13[0, 2, 5, 1, 12, 3, 10, 7] + i

}
,

D14 =
⋃

i∈Z13

{
2(D14[0, 1, 2, 10, 12, 8, 1, ∞] + i), 2(D14[0, 1, 3, 2, 7, 4, ∞, 9] + i), 2(D14[0, 2, 8, 1, 11, 3, 12, 5] + i),

D14[0, 2, 8, 11, 7, 1, 12, 3] + i
}

,

D15 =
⋃

i∈Z13

{
4(D15[0, 1, 9, 10, 6, 8, 11, ∞] + i), 2(D15[0, 2, 5, 1, 8, 3, 9, 6] + i), D15[0, 5, 11, 6, 12, 8, 4, 2] + i

}
,

D16 =
⋃

i∈Z13

{
4(D16[0, 1, 9, 10, 12, 8, 11, ∞] + i), 2(D16[0, 2, 5, 1, 9, 3, 10, 7] + i), D16[0, 5, 11, 7, 2, 8, 6, 4] + i

}
,

D17 =
⋃

i∈Z13

{
4(D17[0, 1, 9, 5, 6, 4, 7, ∞] + i), 2(D17[0, 2, 5, 9, 3, 6, 1, 7] + i), D17[0, 2, 7, 11, 6, 12, 10, 4] + i

}
,

D18 =
⋃

i∈Z13

{
4(D18[0, 1, 9, 10, 6, 8, 5, ∞] + i), 2(D18[0, 2, 5, 11, 1, 8, 12, 7] + i), D18[0, 2, 6, 1, 7, 5, 10, 4] + i

}
.

Then, Di forms a Di-decomposition of 4K∗14 for i ∈ [2, 18].
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Example 14. Let the vertex set of 4K∗15 be Z15 and let

D2 =
⋃

i∈Z15

{
4(D2[0, 6, 1, 5, 4, 9, 2, 8] + i), 2(D2[0, 2, 3, 5, 1, 13, 9, 12] + i), D2[0, 2, 3, 1, 13, 10, 12, 14] + i

}
,

D3 =
⋃

i∈Z15

{
4(D3[0, 1, 6, 10, 2, 8, 13, 7] + i), 2(D3[0, 3, 2, 4, 7, 5, 1, 12] + i), D3[0, 3, 2, 4, 1, 14, 12, 13] + i

}
,

D4 =
⋃

i∈Z15

{
4(D4[0, 1, 5, 10, 2, 7, 13, 6] + i), 2(D4[0, 3, 5, 4, 2, 13, 1, 12] + i), D4[0, 3, 5, 4, 1, 14, 12, 13] + i

}
,

D5 =
⋃

i∈Z15

{
4(D5[0, 1, 5, 12, 2, 7, 13, 6] + i), 2(D5[0, 3, 1, 12, 11, 7, 10, 13] + i), D5[0, 3, 4, 2, 1, 14, 11, 13] + i

}
,

D6 =
⋃

i∈Z15

{
4(D6[0, 1, 5, 10, 2, 7, 13, 6] + i), 2(D6[0, 3, 1, 4, 7, 6, 2, 13] + i), D6[0, 3, 1, 13, 11, 10, 12, 14] + i

}
,

D7 =
⋃

i∈Z15

{
4(D7[0, 3, 11, 7, 1, 6, 12, 5] + i), 2(D7[0, 1, 3, 7, 6, 8, 9, 12] + i), D7[0, 2, 1, 3, 5, 6, 8, 4] + i},

D8 =
⋃

i∈Z15

{
4(D8[0, 3, 7, 1, 9, 4, 11, 5] + i), 2(D8[0, 1, 2, 4, 3, 7, 9, 12] + i), D8[0, 2, 3, 5, 7, 6, 8, 4] + i

}
,

D9 =
⋃

i∈Z15

{
4(D9[0, 3, 7, 1, 8, 2, 12, 5] + i), 2(D9[0, 1, 2, 4, 3, 5, 9, 12] + i), D9[0, 2, 3, 5, 1, 12, 11, 13] + i

}
,

D10 =
⋃

i∈Z15

{
4(D10[0, 1, 7, 12, 6, 10, 3, 8] + i), 2(D10[0, 3, 1, 5, 2, 13, 11, 12] + i), D10[0, 3, 5, 4, 2, 14, 12, 13] + i

}
,

D11 =
⋃

i∈Z15

{
4(D11[0, 3, 8, 1, 5, 11, 2, 7] + i), 2(D11[0, 1, 2, 4, 5, 6, 10, 12] + i), D11[0, 2, 6, 3, 1, 12, 10, 13] + i

}
,

D12 =
⋃

i∈Z15

{
4(D12[0, 3, 8, 1, 7, 11, 2, 10] + i), 2(D12[0, 1, 2, 3, 5, 6, 8, 12] + i), D12[0, 2, 6, 4, 1, 3, 14, 12] + i

}
,

D13 =
⋃

i∈Z15

{
4(D13[0, 3, 8, 1, 5, 11, 4, 9] + i), 2(D13[0, 1, 2, 3, 4, 6, 10, 12] + i), D13[0, 2, 6, 8, 4, 1, 14, 12] + i

}
,

D14 =
⋃

i∈Z15

{
4(D14[0, 3, 7, 12, 2, 8, 1, 9] + i), 2(D14[0, 1, 2, 3, 4, 6, 8, 12] + i), D14[0, 2, 4, 8, 6, 3, 14, 12] + i

}
,

D15 =
⋃

i∈Z15

{
4(D15[0, 6, 1, 3, 10, 14, 2, 8] + i), 2(D15[0, 1, 2, 12, 11, 7, 5, 3] + i), D15[0, 3, 6, 2, 7, 8, 4, 5] + i

}
,

D16 =
⋃

i∈Z15

{
4(D16[0, 1, 10, 2, 7, 3, 11, 5] + i), 2(D16[0, 2, 5, 1, 12, 9, 10, 13] + i), D16[0, 2, 4, 1, 13, 11, 12, 14] + i

}
,

D17 =
⋃

i∈Z15

{
4(D17[0, 3, 8, 1, 5, 11, 2, 7] + i), 2(D17[0, 1, 2, 4, 5, 9, 10, 12] + i), D17[0, 2, 6, 3, 1, 14, 10, 12] + i

}
,

D18 =
⋃

i∈Z15

{
4(D18[0, 3, 8, 1, 7, 11, 4, 9] + i), 2(D18[0, 1, 2, 3, 5, 6, 10, 12] + i), D18[0, 2, 6, 4, 1, 12, 10, 13] + i

}
.

Then, Di forms a Di-decomposition of 4K∗15 for i ∈ [2, 18].

3. General Constructions

The union G ∪ H of two edge-disjoint graphs (or digraphs) G and H has as vertex set
and edge (or arc) set the unions of the vertex sets and edge (or arc) sets, respectively, of
G and H. Moreover, given a positive integer α, we will denote the edge-disjoint union of
α copies of G by αG, which are not necessarily vertex-disjoint. If G and H are vertex-disjoint,
then we will denote the join of G and H by G ∨ H, which has vertex set V(G) ∪V(H) and
edge (or arc) set E(G) ∪ E(H) ∪ { {u, v} : u ∈ V(G), v ∈ V(H)}. To illustrate the different
types of notation described here, consider that K17 can be viewed as

(
K8 ∪K8

)
∨K1 ∪K8,8 =

K9 ∪ K9 ∪ K8,8. Note that the join precedes the union in the order of operations.
We begin by establishing a lemma concerning the decompositions of K∗8,8, K∗8,10, K∗8,12,

and K∗8,14.

Lemma 3. For each i ∈ [2, 18] and each y ∈ {8, 10, 12, 14}, there exists Di-decomposition of K∗8,y.

Proof. If D ∈ {D2, D3, . . . , D14}, then the result follows from Corollary 2.
For i ∈ [15, 18], a Di-decomposition of K∗4,4 and hence of K∗8,8 and K∗8,12 exists (since

K∗8,8 = 4K∗4,4 and K∗8,12 = 6K∗4,4), as given in Example 4.
For i ∈ [15, 17], we have the required Di-decomposition of K∗8,10 since K∗8,10 = 2K∗5,8,

and K∗5,8 has a Di-decomposition by Example 5. In the case of i = 18, note that K∗8,10 =
K∗4,8 ∪ K∗6,8 = 2K∗4,4 ∪ K∗6,8, and the result follows from the existence of D18-decompositions
of K∗4,4 and K∗6,8, where the latter decomposition follows from Example 6.

Finally, a Di-decomposition of K∗7,8 and hence of K∗8,14 exists (since K∗8,14 = 2K∗7,8), as
given in Example 7 for i ∈ [15, 18].

In the subsequent lemmata, we present our constructions for decomposing λK∗v ,
which cover values of v working modulo 8. Afterward, we summarize the main result in
Theorem 1.

Lemma 4. Let λ and v be positive integers such that v ≡ 0 (mod 8) and v ≥ 8. If D ∈
{D2, D3, . . . , D18}\{D14}, then there exists a D-decomposition of λK∗v . Furthermore, if λ is even,
then there exists a D14-decomposition of λK∗v .
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Proof. Let x be a nonnegative integer and v = 8x. If v = 8 and i ∈ [2, 18]\{14}, then the
result can be obtained from λ copies of a Di-decomposition of K∗8 found in Examples 1
and 2. If v = 8, λ is even, and D = D14, then the result follows from λ/2 copies of a
D14-decomposition of 2K∗8 found in Example 8. Therefore, we may assume x ≥ 2 and λ is
even whenever D = D14.

We note that K8x can be represented as xK8 ∪ (x
2)K8,8. Thus, λK∗8x = x

(λK∗8
)
∪ (x

2)
(λK∗8,8

)
,

and the result follows from the existence of Di-decompositions of λK∗8 and λK∗8,8 for i ∈
[2, 18], where the latter decomposition follows from λ copies of a Di-decomposition of K∗8,8
by Lemma 3.

Lemma 5. Let λ and v be positive integers such that v ≡ 1 (mod 8) and v ≥ 9. If D ∈
{D2, D3, . . . , D18}, then there exists a D-decomposition of λK∗v .

Proof. When v is 9, the result follows from λ copies of a Di-decomposition of K∗9 for each
i ∈ [2, 18] (see Example 3). Henceforth, during the remaining part of the proof, we let
v = 8x + 1 for some integer x ≥ 2.

Now, let i ∈ [2, 18]. Note that K8x+1 can be represented as (xK8)∨K1 ∪ (x
2)K8,8 = xK9 ∪

(x
2)K8,8. Thus, λK∗8x+1 = x

(λK∗9
)
∪ (x

2)
(λK∗8,8

)
, and the result follows from the existence of

Di-decompositions of λK∗9 and λK∗8,8, where the latter decomposition follows from λ copies
of a Di-decomposition of K∗8,8 (see Lemma 3).

Lemma 6. Let λ and v be positive integers such that λ ≡ 0 (mod 4), v ≡ 2 (mod 8) and
v ≥ 10. If D ∈ {D2, D3, . . . , D18}, then there exists a D-decomposition of λK∗v .

Proof. Let x be a nonnegative integer and let v = 8x + 2. By Example 11, there exists a
Di-decomposition of 4K∗10 for each i ∈ [2, 18]. Therefore, if x = 1, then the result follows
from λ/4 copies of a Di-decomposition of 4K∗10. Hence, we may assume x ≥ 2.

We note that K8x+2 = (x− 1)K8 ∪ K10 ∪ (x− 1)K8,10 ∪ (x−1
2 )K8,8. Thus, λK∗8x+2 can be

represented as (x− 1)
(λK∗8

)
∪ λK∗10 ∪ (x− 1)

(λK∗8,10
)
∪ (x−1

2 )
(λK∗8,8

)
. It is shown in the Ex-

amples 1 and 2 that K∗8 , and hence λK∗8 , admits a Di-decomposition for i ∈ [2, 18]. Moreover,
Di-decompositions of λK∗8,8 and λK∗8,10 follow from λ copies of a Di-decomposition of K∗8,8
and K∗8,10 (see Lemma 3). Now, the result follows.

Lemma 7. Let λ and v be positive integers such that λ ≡ 0 (mod 4), v ≡ 3 (mod 8) and
v ≥ 11. If D ∈ {D2, D3, . . . , D18}, then there exists a D-decomposition of λK∗v .

Proof. Let x be a nonnegative integer and let v = 8x + 3. By Example 12, there exists a
Di-decomposition of 4K∗11 for each i ∈ [2, 18]. Therefore, if x = 1, then the result follows
from λ/4 copies of a Di-decomposition of 4K∗11. Hence, we may assume x ≥ 2.

We note that K8x+3 = ((x− 1)K8 ∪ K10) ∨ K1 ∪ (x− 1)K8,10 ∪ (x−1
2 )K8,8. Thus, λK∗8x+2

can be represented as (x− 1)
(λK∗9

)
∪ λK∗11 ∪ (x− 1)

(λK∗8,10
)
∪ (x−1

2 )
(λK∗8,8

)
. It is shown in

Example 3 that K∗9 , and hence λK∗9 , admits a Di-decomposition for i ∈ [2, 18]. Then the
proof proceeds similarly to that of Lemma 6.

Lemma 8. Let λ and v be positive integers such that λ ≡ 0 (mod 2), v ≡ 4 (mod 8) and
v ≥ 12. If D ∈ {D2, D3, . . . , D18}, then there exists a D-decomposition of λK∗v .

Proof. Let x be a nonnegative integer and let v = 8x + 4. By Example 9, there exists a
Di-decomposition of 2K∗12 for each i ∈ [2, 18]. Therefore, if x = 1, then the result follows
from λ/2 copies of a Di-decomposition of 2K∗12. Hence, we may assume x ≥ 2.

We note that K8x+4 = (x− 1)K8 ∪ K12 ∪ (x− 1)K8,12 ∪ (x−1
2 )K8,8. Thus, λK∗8x+4 can be

represented as (x− 1)
(λK∗8

)
∪ λK∗12 ∪ (x− 1)

(λK∗8,12
)
∪ (x−1

2 )
(λK∗8,8

)
. It is shown in Examples
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1 and 2 that K∗8 , and hence λK∗8 , admits a Di-decomposition for i ∈ [2, 18]. Furthermore,
Di-decompositions of λK∗8,8 and λK∗8,12 follow from λ copies of a Di-decomposition of K∗8,8
and K∗8,10 (see Lemma 3). Now, the result follows.

Lemma 9. Let λ and v be positive integers such that λ ≡ 0 (mod 2), v ≡ 5 (mod 8) and
v ≥ 13. If D ∈ {D2, D3, . . . , D18}, then there exists a D-decomposition of λK∗v .

Proof. Let x be a nonnegative integer and let v = 8x + 5. By Example 10, there exists a
Di-decomposition of 2K∗13 for each i ∈ [2, 18]. Therefore, if x = 1, then the result follows
from λ/2 copies of a Di-decomposition of 2K∗13. Hence, we may assume x ≥ 2.

We note that K8x+5 = ((x− 1)K8 ∪ K12) ∨ K1 ∪ (x− 1)K8,12 ∪ (x−1
2 )K8,8. Thus, λK∗8x+5

can be represented as (x− 1)
(λK∗9

)
∪ λK∗13 ∪ (x− 1)

(λK∗8,12
)
∪ (x−1

2 )
(λK∗8,8

)
. It is shown in

Example 3 that K∗9 , and hence λK∗9 , admits a Di-decomposition for i ∈ [2, 18]. Then the
proof proceeds similarly to that of Lemma 8.

Lemma 10. Let λ and v be positive integers such that λ ≡ 0 (mod 4), v ≡ 6 (mod 8) and
v ≥ 14. If D ∈ {D2, D3, . . . , D18}, then there exists a D-decomposition of λK∗v .

Proof. Let x be a nonnegative integer and let v = 8x + 6. By Example 13, there exists a
Di-decomposition of 4K∗14 for each i ∈ [2, 18]. Therefore, if x = 1, then the result follows
from λ/4 copies of a Di-decomposition of 4K∗14. Hence, we may assume x ≥ 2.

We note that K8x+6 = (x− 1)K8 ∪ K14 ∪ (x− 1)K8,14 ∪ (x−1
2 )K8,8. Thus, λK∗8x+6 can be

represented as (x− 1)
(λK∗8

)
∪ λK∗14 ∪ (x− 1)

(λK∗8,14
)
∪ (x−1

2 )
(λK∗8,8

)
. It is shown in Examples

1 and 2 that K∗8 , and hence λK∗8 , admits a Di-decomposition for i ∈ [2, 18]. Moreover, Di-
decompositions of λK∗8,8 and λK∗8,14 follow from λ copies of a Di-decomposition of K∗8,8 and
K∗8,14 (see Lemma 3). Now, the result follows.

Lemma 11. Let λ and v be positive integers such that λ ≡ 0 (mod 4), v ≡ 7 (mod 8) and
v ≥ 15. If D ∈ {D2, D3, . . . , D18}, then there exists a D-decomposition of λK∗v .

Proof. Let x be a nonnegative integer and let v = 8x + 7. By Example 14, there exists a
Di-decomposition of 4K∗15 for each i ∈ [2, 18]. Therefore, if x = 1, then the result follows
from λ/2 copies of a Di-decomposition of 4K∗15. Hence, we may assume x ≥ 2.

We note that K8x+7 = ((x− 1)K8 ∪ K14) ∨ K1 ∪ (x− 1)K8,14 ∪ (x−1
2 )K8,8. Thus, λK∗8x+7

can be represented as (x− 1)
(λK∗9

)
∪ λK∗15 ∪ (x− 1)

(λK∗8,14
)
∪ (x−1

2 )
(λK∗8,8

)
. It is shown in

Example 3 that K∗9 , and hence λK∗9 , admits a Di-decomposition for i ∈ [2, 18]. Then the
proof proceeds similarly to that of Lemma 10.

4. Proof of Main Result

Combining the previous results from Lemmata 4 through 11, it is now possible to
obtain the proof of Theorem 1, which gives a complete solution to the λ-fold spectrum
problem for all possible orientations of the eight-cycle.

Proof of Theorem 1. The necessity follows from Lemma 2. Now, we prove the sufficiency.
Let v ≥ 8 and D ∈ {D1, D2, . . . , D18}. If D = D1, sufficiency is guaranteed by Theorem 2.
When v ≡ 0 (mod 8), and λ is even for D = D14, then sufficiency follows from Lemma 4.
In the case v ≡ 1 (mod 8), the result follows from Lemma 5. If λ ≡ 0 (mod 4) and
v ≡ 2, 3, 6, or 7 (mod 8), the results follow from, respectively, Lemmata 6, 7, 10, and 11.
Furthermore, we have the required decompositions when λ ≡ 0 (mod 2) and v ≡ 4 or 5
(mod 8) by Lemma 8 and Lemma 9, respectively.

For i ∈ [15, 18], the existence of a (λK∗v , Di)-design is equivalent to the existence of a
(λK∗v , Di+4)-design, given that Di is the reverse orientation of Di+4. Thus, we now have the
sufficient conditions that allow λK∗v to be decomposed into oriented eight-cycles.
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When λ = 1, the spectrum problem for oriented cycles with orders 3, 4, 5, 6, and 7
has already been addressed in the literature [9–13,15,17,18]. With the proof Theorem 1, the
spectrum problem for oriented eight-cycles has now been solved. Furthermore, until now,
C6 was the only cycle for which the λ-fold spectrum problem had been solved (in [17]) for
all its orientations. However, with the proof of the theorem above, the λ-fold spectrum
problem has been solved for all oriented eight-cycles.

5. Conclusions

The main focus of this article was on the λ-fold spectrum problem concerning non-
isomorphic orientations of an eight-cycle. The necessary conditions for such a decompo-
sition are that λv(v− 1) ≡ 0 (mod 8) and λ(v− 1) is even in the case of an antidirected
cycle. Out of the twenty-two oriented eight-cycles, the problem has been settled for only
one of them [19]. For all the remaining orientations, we have shown that these necessary
conditions are also sufficient.

In future research, our initial focus will be on investigating the λ-fold spectrum prob-
lem for oriented heptagons. Subsequently, we aim to address the spectrum problem for
antidirected cycles of arbitrary orders. Additionally, exploring a more comprehensive
version of the spectrum problem concerning directed cycles of any order is of particular in-
terest.
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