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Abstract: Complex vibrational phenomena, such as gear impacts and mesh stiffness excitations, often
require a significant amount of effort to be revealed using nonlinear analytical methods. However, key
parameters for addressing vibrational problems can often be identified through simplified approaches
based on linear analysis models. In light of these considerations, this study aimed to propose linear
analytical methods to investigate the influences of various key parameters within symmetric systems.
To achieve the main goal of this study, system modeling and eigensolutions were first implemented,
focusing on a specific manual transmission with a front-engine/front-wheel configuration. Second,
analytical techniques to reduce the number of degrees of freedom from the original symmetric
system were suggested, and the reduced model was validated. Third, the system responses in the
time domain were examined, along with key system parameters, such as gear mesh stiffness and
clutch dampers, using state–variable equations. As a result, the findings from the linear system
model demonstrated the fundamental dynamic characteristics of the torsional system within specific
frequency regimes relevant to noise and vibration problems. Furthermore, the reduced lumped linear
model employing the state–variable formula established its reliability in determining key parameters
for mitigating noise and vibration problems.

Keywords: geared system; manual transmission; driveline; linear analysis; eigensolutions; system
reduction; symmetrically torsional system; state–variable equation

1. Introduction

In the field of system dynamics, which focuses on torsional vibrations occurring in
a vehicle driveline with symmetric conditions, numerous studies have been conducted
to improve noise, vibration, and harshness (NVH) qualities [1–22]. These studies have
aimed to identify the main causes of NVH problems, such as gear rattle and whine noise,
by comprehending the basic mechanisms of drivelines with gear pairs and their dynamic
characteristics through both linear and nonlinear analyses [10–13]. To determine the key
parameters related to the specific noise and vibration issues, linear analysis can be per-
formed as a fundamental step to reveal the critical system parameters relevant to the NVH
problems in question [1–7]. When it comes to examining system responses, the analytical
approach is commonly more efficient for diagnosing and improving vehicle driveline prob-
lems under symmetric conditions than the experimental method, as experiments generally
require more significant costs and time than simulations [16–19].

In a review of prior studies, Yoon and Singh investigated the dynamic properties
of gear rattle under wide-open throttle (WOT) and coast conditions. They proposed a
simplified nonlinear model employing drag torque estimation [1]. Guo et al. suggested a
prediction model for gear rattle incorporating various key parameters, such as backlash,
time-varying mesh stiffness, nonlinear oil film force between teeth, and drag torque. In
this study, the developed model was compared with experimental methods, revealing the
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influence of each parameter on gear rattle [2]. Zhou et al. conducted experimental studies
on the rattle behavior of a complete dual-clutch transmission (DCT) system, both on a
rattle test bench and in a vehicle [3]. Through this study, the authors investigated the gear
rattle sensitivity and the dynamic evolution of the geartrain in a DCT. Diez-Ibarbia et al.
proposed examining the lubricant effect between teeth in contact to understand its role
in non-stationary phenomena. In this context, the gear transmission model was used to
calculate the dynamic transmission error (DTE), with a specific focus on the influence of
fluid viscosity on the system’s dynamic behavior [4]. Bozca proposed the method to reduce
the gear-rattle noise of the five-speed manual gearbox with the optimization of gearbox
geometric design parameters [5]. Rigaud and Perret-Liaudet investigated the nonlinear
dynamic behavior of a rattling spur gear pair induced by vibro-impacts between gear teeth.
They suggested their own experimental set-up to visualize the contact zone and identify
the successive impacts [6]. Donmez and Kahraman proposed a gear rattle prediction
model by incorporating manufacturing errors such as eccentricities and tooth indexing
errors [7]. Singh et al. proposed design guidelines for automotive manual transmissions
and discussed gear rattle criteria based on clutch, flywheel, and drag torque [8]. Pizzolante
et al. proposed an analytical procedure for the generalization of the rattle index in any type
of ordinary transmission layout. To determine the rattle index, they conducted numerical
studies to examine the effectiveness and reliability of the introduced index [9]. Guo
et al. suggested a comprehensive nonlinear model to investigate the effects of influencing
parameters such as drag torque, nonlinear oil film force, lubricant viscosity, time-varying
meshing stiffness, friction force, and gear backlash. This study demonstrated a nonlinear
dynamic model of gear rattling that considered the combined effects of the aforementioned
parameters and their severity [10]. Shangguan et al. presented a nonlinear torsional model
for a driveline system with four degrees of freedom to study gear rattle under idling
conditions [11]. In this study, they developed experimental and calculation methods to
reduce gear rattle in a generic transmission at idle. Trochon suggested a lumped parameter
model of an automotive manual transmission corresponding to a nonlinear system and
compared neutral rattle phenomena under driving and coast conditions [12]. Idehara
et al. conducted and verified a system model of a powertrain with gear pairs to reduce
gear impacts by changing clutch disc parameters [13]. Beinstingel et al. investigated
parametrically excited vibrations and parametric instabilities arising from time-varying
gear mesh stiffness, resulting in gear whine [14]. In this study, the authors analyzed
the nonlinear model using the Newmark integration scheme and the harmonic balance
approach to identify parametric instabilities. Pizzolante et al. proposed an analytical
formulation capable of forecasting the main overall direction and magnitude of bearing
reaction forces on an idler gear under quasi-static conditions [15]. In this study, they aimed
to examine the geartrain formed by three gears to observe the modification of the ellipse
shape concerning the excitation frequency and different modal shapes. Palermo et al.
introduced a transmission error (TE) measurement with respect to the traditional direct
method to demonstrate that low-cost digital encoders can be successfully used together
with the elapsed time method [16]. To verify this measurement, the authors exploited
it to compare the theoretical and experimental methods. Mughal et al. introduced a
gear tribodynamics model using the potential energy method to estimate time variable
meshing stiffness (TVMS) [17]. In this research, the authors suggested a fully analytical and
time-efficient model for lubricated contact stiffness based on transitions in the regimes of
lubrication. Yoo et al. proposed a hybrid metal composite gear to reduce gear whine noise
and evaluated dynamic transmission error (DTE) [18]. In this study, they investigated the
effect of composite material in reducing DTE in a hybrid metal composite gear in which
the tooth and hub were steel-based and the blank was composed of a composite material.
Barthod et al. suggested an experimental gearbox model for characterizing the rattle
threshold and noise caused by engine torque fluctuations, investigating the rattle threshold,
influence of excitation, and geometrical gearbox parameters [19]. Cui et al. proposed an
analytical algorithm for meshing stiffness relative to the gear peeling position based on the
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energy method, comparing the effects on peeling length, depth, and width [20]. Chen et al.
proposed matching models between the dual-mass flywheel (DMF) and power transmission
system based on sensitivity and the natural frequency range, adjusting structural and
resultant parameters to understand the dynamic characteristics using the torsional stiffness
of the DMF [21]. Ren et al. suggested a high-speed vehicle model to obtain the gear
meshing forces and investigated their effect on the gear transmission under high-speed
conditions [22].

According to the summaries of prior research, there appears to be a lack of fundamen-
tal approaches for conducting linear analysis in symmetric driveline systems, even though
Singh et al. suggested a linearized design guideline to address gear impact problems [8].
Furthermore, the reviewed articles conducted their work using nonlinear analytical meth-
ods and their own experimental setups to resolve gear impact vibration issues. However,
these methods require a significant amount of effort and cost. Thus, to overcome the
complexity associated with nonlinear analysis, this study proposes the use of linear an-
alytical methods to investigate and determine gear impact problems and their relevant
key parameters. Therefore, the specific objectives of this study were as follows: (1) to
propose mathematical techniques for reducing the number of degrees of freedom (DOFs)
by comparing eigensolutions and frequency response functions (FRFs) derived from the
original system with the results obtained from the reduced model; (2) to investigate linear
system responses in the time domain using state variable equations, which were compared
with results obtained from key factors, such as magnitude and phase, in the FRFs. This
approach aimed to present efficient methods for determining key parameters to reduce the
specific noise and vibration problems with less effort compared with nonlinear analysis.
To achieve these specific objectives, this study focused on a specific manual transmission
with a front-engine/front-wheel driveline assembly. In addition, Figure 1 illustrates the
analytical approach using linear analysis. For example, the system modeling process was
conducted in the first step, followed by the development of the original and reduced sys-
tem models. The verification of the reduced model, involving a comparison of dynamic
characteristics, such as eigensolutions and FRFs, led to the state variable equations to reveal
the system responses and the effectiveness of key parameters in the time domain. In the
case study, the primary key parameters, such as Kc, Io5, and Kg, were the focus, and their
designations are announced later.
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2. Problem Formulation

In this study, a specific manual transmission was analyzed under 3rd gear engaged
and 5th gear unloaded condition within a front-engine/front-wheel drive configuration.
Two models with 15 and 6 degrees of freedom (DOFs) were used for analysis [1]. Figure 2a
depicts the physical driveline system with 15 DOFs. The power generated by the engine is
transmitted from the flywheel and clutch to the tires through the transmission, as shown in
Figure 2.
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Figure 2. Schematic of driveline system with 15 DOFs: (a) physical driveline system [1];
(b) schematic diagram.

The manual transmission plays a crucial role in adapting the transferred torque and
speed to suit various driving conditions. The transmission consists of three major compo-
nents: input and output shafts, speed gears, and synchronizers. In Figure 2a, the symbols
marked with a cross represent the speed gears, which remain unloaded and freely rotate
unless the synchronizer is engaged. The straight lines in Figure 2a represent the fixed
gears welded to the input (or output) shaft. Figure 2b provides a schematic diagram based
on the physical system shown in Figure 2a. Each element in the schematic diagram is
represented by lumped inertia or stiffness. The synchronizers and fixed gears are assumed
to be lumped into the input and output shafts. The symbols and their descriptions for the
lumped inertia and stiffnesses are summarized in Tables 1 and 2. To fulfill the objectives of
this study, several assumptions were made: first, nonlinearities such as clutch hysteresis
and gear backlashes were disregarded in the linear analysis. This omission removed the
energy loss effect caused by dry friction and practical gear impact phenomena, respectively;
second, gear pairs were assumed to be continuously in contact on the driving side, which
always ensures a gear rattle-free condition; third, only one clutch stiffness value was con-
sidered, even though the clutch dampers exhibited multi-staged properties. This limitation
prevented the exploration of gear impact conditions caused by changes in stiffness.
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Table 1. Inertia employed in simulations.

Inertia
(Description)

Values
(kg·m2) Inertia Values

(kg·m2)

If
(Flywheel) 1.38 × 10−1 Io5

(5th gear on output shaft) 5.23 × 10−4

Ih
(Clutch hub) 5.76 × 10−3 Iri

(Idler) 4.35 × 10−4

Ii
(Input shaft) 3.10 × 10−3 Ior

(Reverse gear on output shaft) 1.33 × 10−3

Io
(Output shaft) 25.33 × 10−3 Id

(Differential) 2.15 × 10−2

Ii3
(3rd gear on input shaft) 5.80 × 10−4 Ijl

(Left cv joint) 3.91 × 10−3

Ii4
(4th gear on input shaft) 8.73 × 10−4 Ijr

(Right cv joint) 4.35 × 10−3

Io1
(1st gear on output shaft) 2.60 × 10−3 Ivtl

(Left tire and vehicle) 23.9591

Io2
(2nd gear on output shaft) 1.39 × 10−3 Ivtr

(Right tire and vehicle) 23.9591

Table 2. Stiffness employed in simulations.

Stiffness
(Description)

Values
(N·m·rad−1) Stiffness Values

(N·m−1)

Ki
(Input shaft stiffness) 10,000 Kg

(Gear mesh stiffness) 2.7 × 108

Kjl, Kjr
(Stiffness between left or right drive shaft and differential) 10,000

Kd
(Gear mesh stiffness between
output shaft and differential)

2.7 × 108

Kvl, Kvr
(Stiffness between left or right cv joint and vehicle) 10,000

Kc
(Clutch stiffness) 1838

3. Modeling and Analysis of the Symmetric Driveline for Linear Analysis
3.1. Modeling of the Torsional System

The 15-DOF driveline system for this study consisted of several components, including
the flywheel, clutch, driveshaft, joint, and vehicle, as shown in Figure 2b. Each of the
elements depicted in Figure 2b represents lumped inertias and stiffnesses. The lumped
mass, denoted If, is connected to the clutch hub, Ih, by the clutch stiffness, Kc. Using
Newton’s second law, Equation (1) can be derived as follows.

∑n
i=1 Ti = −Kc

(
θ f − θh

)
= I f

..
θ f (1)

The torsional displacements of sub-systems connected with gear pairs are influenced
by each gear ratio. The effect of these gear ratios should be incorporated into the mathemat-
ical formulation by considering the relative displacements in the gear pairs. The schematic
for the clutch hub, input shaft, and speed gears is depicted in Figure 3a, where the inertia
values of the 3rd gear and its relevant synchronizer are combined into the input shaft
inertia, considering their engaged status. Figure 3b illustrates the basic mechanism with
a free body diagram (FBD) that operates between gear pairs, such as the input shaft and
speed gears on the output shaft, along with the torque flow. The torque transferred at the
engaged gear pairs can be expressed as RinKgδn. Here, δn = Rinθin + Ronθon represents the
relative displacement of the speed gear pairs. The radius of each gear is summarized in
Table 3.
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Table 3. Gear radii employed in simulations.

Radius
(Description) Values (mm) Radius Values (mm)

Ri1
(1st gear on input shaft) 18.30 Ro2

(2nd gear on output shaft) 51.99

Ri2
(2nd gear on input shaft) 29.51 Ro3

(3rd gear on output shaft) 46.01

Ri3
(3rd gear on input shaft) 35.50 Ro4

(4th gear on output shaft) 39.55

Ri4
(4th gear on input shaft) 41.95 Ro5

(5th gear on output shaft) 35.58

Ri5
(5th gear on input shaft) 45.92 Ror

(Reverse gear on output shaft) 54.95

Rir
(Reverse gear on input shaft) 16.36 Ro

(Final gear on output shaft) 26.63

Rri
(Idler) 40.14 Rd

(Final gear on differential) 103.37

Ro1
(1st gear on output shaft) 63.20

As illustrated in Figure 3, the basic derivation of dynamic equations can be described
as follows.

n
∑

i=1
Ti = −Ki(θi − θh)− Kg(Ri1θi1 + Ro1θo1)Ri1 − Kg(Ri2θi2 + Ro2θo2)Ri2

−Kg(Ri5θi5 + Ro5θo5)Ri5 − Kg(Rirθi + Rriθri)Rir − Kg(Ri3θi + Ro3θo)Ri3

= (Ii + Ii3)
..
θi

(2)

Thus, the complete equation of motion with 15 DOFs can be established as follows.
Here, the torque excitation and damping effects are neglected for the implementation
of the linear real eigensolutions, and θ(t), M, and K represent the absolute torsional
displacement, inertia, and stiffness matrices, respectively.

M
..
θ(t) + K θ(t) = 0. (3)

θ =
[
θ f θh θi θo θ01 θ02 θo5 θri θor θi4 θd θjl θjr θvlt θvtr

]T
. (4)
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M = diag
[

I f , Ih, (Ii + Ii3), Io, Io1, Io2, Io5, Iri, Ior, Ii4, Id, Ijl , Ijr, Ivtl , Ivtr

]
. (5)

K =

 k(i, j)

. (6)

k1,1 = kc, (7a)

k2,2 = kc + ki. (7b)

k3,3 = ki + kg

(
Ri1

2 + Ri2
2 + Ri3

2 + Ri5
2 + Rir

2
)

. (8)

k4,4 = kg

(
Ro3

2 + Ro4
2
)
+ kdRo

2. (9)

k5,5 = kgRo1
2, (10a)

k6,6 = kgRo2
2. (10b)

k7,7 = kgRo5
2, (11a)

k8,8 = 2kgRri
2. (11b)

k9,9 = kgRor
2, (12a)

k10,10 = kgRi4
2. (12b)

k11,11 = kdRd
2 + k jl + k jr. (13)

k12,12 = k jl + kvl , (14a)

k13,13 = k jr + kvr. (14b)

k14,14 = kvl , (15a)

k15,15 = kvr. (15b)

k1,2 = k2,1 = −kc, (16a)

k2,3 = k3,2 = −ki. (16b)

k3,4 = k4,3 = kgRi3Ro3, (17a)

k3,5 = k5,3 = kgRi1Ro1. (17b)
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k3,6 = k6,3 = kgRi2Ro2, (18a)

k3,7 = k7,3 = kgRi5Ro5. (18b)

k3,8 = k8,3 = kgRirRri, (19a)

k4,10 = k10,4 = kgRi4Ro4. (19b)

k4,11 = k11,4 = kgRoRd, (20a)

k8,9 = k9,8 = kgRriRor. (20b)

k11,12 = k12,11 = −k jl , (21a)

k11,13 = k13,11 = −k jr. (21b)

k12,14 = k14,12 = −kvl , (22a)

k13,15 = k15,13 = −kvr. (22b)

Here, the units Kg and Kd are in N·m−1, and the torsional stiffness has the unit of
N·m·rad−1.

3.2. Modal Analysis of the Torsional System

In general, the dynamic characteristics of a system were examined on the basis of the
modal analysis, in which the natural frequencies and mode shapes reveal the fundamental
dynamic behaviors of the system when it is excited. Consequently, the results from modal
analysis provide the practical information necessary for improving vibratory conditions
resulting from various excitation forces or torques. The characteristic equation of this
system can be obtained by multiplying Equation (3) by the inverse inertia matrix M−1 as
follows [23–29].

M−1M
..
θ(t) + M−1K θ(t) = 0. (23)

..
θ(t) + M−1K θ(t) = 0. (24)

θ(t) = Uei(wt+φ). (25)

..
θ(t) = −w2Uei(wt+φ) = −λUei(wt+φ). (26)

−λUei(wt+φ) + M−1K Uei(wt+φ) = 0. (27)

[
−λI + M−1K

]
Uei(wt+φ) = 0. (28)

U 6= 0, det
∣∣∣M−1K− λI

∣∣∣ = 0. (29)
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(λ− λ1)(λ− λ2) · · · (λ− λr) · · · (λ− λ15) = 0, λr = wr
2, r = 1, 2, · · · , r, · · · 15. (30)

[
M−1K− λr I

]
Ur = 0. (31)

K Ur = λr M Ur. (32)

[
U
]
= [U1 U2 · · ·Ur · · ·U15]. (33)

In this context, the general solution of Equation (24) can be expressed as Equation (25),
where U is an arbitrary constant vector with a size of 15 by 1, and φ represents an arbitrary
phase. Here, λr = wr

2 is an eigenvalue, and wr is the corresponding natural frequency of
the system. Eigenvectors corresponding to each eigenvalue are obtained from Equation (32),
where Ur represents the rth eigenvector. The modal matrix U consists of each eigenvector
augmented, as described in Equation (33). Therefore, each column vector projects its
relevant mode shape for each concerned natural frequency. Mode shapes are vectors that
represent the dynamic motions for each natural frequency, and the systems positioned
after the output shaft, including the idler, are influenced by the gear ratio. For instance,
concerning the output shaft, the torsional displacement is affected by the radii of Ri3
and Ro3, which are related to the engagement of the 3rd gear. Consequently, the modal
vector component U(4,i), which is associated with the output shaft, should be normalized

considering the gear ratio, resulting in a modified modal vector U(4,i)×
Ro3
Ri3

. Considering the
influence of the gear ratio for the rest of the sub-systems and normalizing the eigenvectors
with respect to their maximum vector components yields the normalized modal vectors.
The first four natural frequencies and mode shapes are presented in Table 4 and Figure 4.
This study utilized MATLAB to obtain the results. Here, the y- and x-axes of Figure 3 are
the normalized values of the modal vector and their relevant subsystem, as described in
Equations (4) and (5). Considering the typical range of vehicle speeds, they do not exceed
8000 RPM, and at this speed, the firing frequency is below 300 Hz. Therefore, natural
frequencies higher than 300 Hz were ignored. Additionally, since this torsional system
is semi-positive definite, a rigid body mode appears, which must be disregarded due to
numerical instabilities in the simulations [12,23–29].

Table 4. First four natural frequencies of the 15-DOF system.

Mode Description Natural Frequency (Hz)

1 Hopping mode (f1) 2.3
2 Driveline surging mode (f2) 7.6
3 Clutch spring mode (f3) 60.8
4 Clutch + input shaft mode (f4) 272.5

3.3. System Responses in the Frequency Domain

To obtain the frequency response functions (FRFs) based on the results calculated
through modal analysis, damping effects must be included, as the real eigensolution is
conducted without considering damping effects. Since it can be challenging to directly mea-
sure physical damping under dynamic conditions, the damping matrix can be reasonably
approximated from the decoupled modal domain [12,23–29]. The mathematical formula-
tion P(t) as principal coordinates can be calculated by transferring the basic coordinates
θ(t), as follows.

M
..
θ(t) + K θ(t) = 0, (34a)

θ(t) = U P(t). (34b)
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M U
..
P(t) + K U P(t) = 0. (35)

UT M U
..
P(t) + UTK U P(t) = 0. (36)

Mr
..
P(t) + Kr P(t) = 0. (37)


. . .

Mri
. . .

 ..
P +


. . .

λi Mri
. . .

P = 0, i = 1, 2, · · · 15. (38)
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Figure 4. First four modes of the 15-DOF system.

Here, Mr and Kr represent the modal mass and stiffness matrices. Equation (38)
describes the decoupled system, which is transformed into the modal coordinates η(t) from
the physical coordinate system. From Equation (38), the normalized constant matrix βr is
obtained as follows.

Mr =


. . .

Mri
. . .

 =


. . . √

Mri
. . .




. . . √
Mri

. . .

. (39)

βr = Mr
1
2 =


. . . √

Mri
. . .

. (40)

βr
2

..
P(t) + Kr P(t) = 0, P(t) = βr

−1η(t). (41)
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βr
−1βr βr βr

−1 ..
η(t) + βr

−1Kr βr
−1η(t) = 0. (42)

..
η(t) +


. . .

wri
2

. . .

η(t) = 0. (43)

Here, Equation (43) clearly shows that the system is decoupled by reflecting its nat-
ural frequencies of the 15-DOF system. To transform the physical coordinate θ(t) into
the modal coordinate η(t), two stages of calculations are performed, as described in
Equations (34)–(43), using the principal coordinate P(t). However, this transformation
can be simplified into a stage, as follows.

1√
Mri

Ui
T M Ui

1√
Mri

= 1, i = 1, 2, 3, · · · , 15. (44)

φ =
[
U1 U2 · · · U15

]


1√
Mr1

1√
Mr2

. . .
1√

Mr15

 = U β. (45)

M
..
θ(t) + K θ(t) = 0, θ(t) = φ η(t). (46)

M φ
..
η(t) + K φ η(t) = 0. (47)

φT M φ
..
η(t) + φTK φ η(t) = 0. (48)

..
ηr + wr

2ηr(t) = 0, r = 1, 2, 3, · · · , 15. (49)

Here, φ is the normal modal matrix, and Equations (44)–(49) represent the series of
techniques for transforming the physical coordinates into the modal domain. Using the
normal modal matrix φ, the viscous damping matrix can be approximated as follows.

φT · C · φ =


. . .

Cr
. . .

 =


. . .

2ζwr
. . .

. (50)

[C] =
[
φT
]−1


. . .

2ζrwr
. . .

[φ]−1. (51)

M
..
θ(t) + C

.
θ(t) + K θ(t) = T(t). (52)

T(t) =
[
T 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]T . (53)

θ(t) =
∼
θ eiωt, (54a)

.
θ(t) = i·w·

∼
θ eiωt, (54b)
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..
θ(t) = −w2·

∼
θ eiωt. (54c)

[
K−M·w2 + iCw

]∼
θ eiωt =

∼
Teiωt. (55)

∼
θ (w) =

[
K−Mw2 + iCw

]−1∼
T. (56)

In this context, the damping matrix C can be inversely derived reversely from the
modal damping matrix Cr. In this study, a damping ratio ζ of 5% was employed, and
Equation (52) represents the fundamental equation, incorporating the calculated physical
damping matrix and its input torque vector. The excitation value for the input torque T
is set to unity. From Equation (56), the FRFs of the 15-DOF system can be calculated. The
FRFs in the 15-DOF system described in Figure 5 are defined as follows:

∣∣∣Yf f

∣∣∣, FRFs of the

flywheel;
∣∣∣Yh f

∣∣∣, FRFs of the clutch hub;
∣∣∣Yi f

∣∣∣, FRFs of the input shaft. The resonance regions
in the FRFs depicted in Figure 5 correlate well with the natural frequencies obtained from
the modal analysis.
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4. System Reduction and Validation with the Original System

The previously developed 15-DOF system model provides all dynamic characteristics,
such as natural frequencies and resonance areas. However, the size of matrices and vectors
in its mathematical formulations can lead to various issues in numerical simulations,
including inefficient calculation times and convergence problems in numerical iterations,
especially concerning sensitive nonlinearities [30]. To increase the reliability and efficiency
of simulations, particularly when dealing with highly nonlinear elements such as gear
impacts and parameter excitations in gear pairs, it is necessary to reduce the number of
DOFs. To achieve the primary goal of this study, we focused on reducing the DOFs from
15 to 6 using a two-step process. First, the speed gears, which were not currently relevant
for the examination, were lumped together with each driving input or output shaft. For
instance, the 4th speed gear (or 1st, 2nd, and reverse gears) could be combined with the
output shaft (or input shaft), as shown in Figures 2, 6 and 7 by considering their gear ratios,
as illustrated in Figure 6 [31]. Second, the rotational system from the final gear to the wheel
was simplified by distributing the inertia and stiffness values on the driveshaft equally, as
illustrated in Figure 8 [32].
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Figure 6. Geared system with 4 DOFs: (a) description of the torsional system with lumped inertias
and springs; (b) free body diagram for the equation of motions.
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To reduce the lumped model for the gear pairs, we can consider a simple geared
system, as illustrated in Figure 6. Figure 6 shows a simple geared system with 4 DOFs
and its FBD. In this diagram, Igi and Igo represent the inertias of input and output gears,
respectively, while Ig1 and Ig2 show the inertias of speed gear pairs. Kg1 and Kg2 present
the assumed constant values of the gear mesh stiffness. θgi, θgo, θg1, and θg2 denote the
angular displacements of each lumped mass, as presented in Figure 6. Ti represents the
external torque operating on the input gear, and F is the internal force at the contact point
between the gear pair. Basic dynamic motions can be derived using the illustrated FBD
and Newton’s second law, as follows.

Igi
..
θgi + Kg1θgi − Kg1θg1 = Ti. (57)

Ig1
..
θg1 + Kg1θg1 − Kg1θgi = −

(
F × Rg1

)
. (58)
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Ig2
..
θg2 + Kg2θg2 − Kg2θgo =

(
F × Rg2

)
. (59)

Igo
..
θgo + Kg2θgo − Kg2θg2 = 0. (60)

Ig1
..
θg1 + Kg1θg1 − Kg1θgi

Ig2
..
θg2 + Kg2θg2 − Kg2θgo

=
−
(

F×Rg1
)(

F×Rg2
) = −n. (61)

(
Ig1 + n2 Ig2

) ..
θg1 − Kg1θgi +

(
Kg1 + n2Kg2

)
θg1 − nKg2θgo = 0. (62)
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Here, Equation (62) is derived from Equations (58) and (59) by utilizing the gear

ratio
Rg1
Rg2

=
θg2
θg1

= n, as described in Equation (61). Consequently, the 4-DOF geared
system depicted in Figure 6a is ultimately reduced to a 3-DOF system, in conjunction with
Equations (58)–(62). Therefore, using the techniques suggested above, speed gears, such as
1st, 2nd, 4th, and reverse gears, as illustrated in Figure 2, can be combined with the input
and output shafts. In summary, the original system with 15 DOFs, as shown in Figure 2,
can be reduced to a 10-DOF geared system, as depicted in Figure 7. Thus, the reduced
model for the practical system illustrated in Figure 7 is formulated with the reduced DOF
using the following basic equations.

M
..
θ(t) + K θ(t) = 0. (63)
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θ =
[
θ f θh θie θo5 θog θvg

]T
. (64)

M = diag
[

I f , Ih, Iie, Io5, Iog, Ivg

]
. (65)

K =

 k(i, j)

. (66)

Iie = Iie + Ii3 +

(
Ri1
Ro1

)2
Io1 +

(
Ri2
Ro2

)2
Io2 +

(
Rir
Rri

)2
{

Iri +

(
Rri
Ror

)2
Ior

}
. (67)

Ioe = Io +

(
Ro4

Ri4

)2
Ii4. (68)

The inertias of the reduced system were designated as follows: Iie, input shaft lumped
with 1st, 2nd, and reverse gears; Ioe, output shaft lumped with the 4th gear. In addition,
the inertia and stiffness values on the driveshaft could be reduced by assuming equivalent
stiffness values for the parallel and series connections of the spring. As illustrated in
Figure 8, their equivalent properties were derived as follows.

Keqg = (Ro/Rd)
2Keq, (69a)

Keq = Keq1 + Keq2. (69b)

Keq1 = Keq2 =
KvrKjr

Kvr + Kjr
. (70)

Ivg = (Ro/Rd)
2 Ive, (71a)

Iog = Ioe + (Ro/Rd)
2 Ido. (71b)

Ive = Ivt1 + Ivt2. (72)

Ivt1 = Ivtl +
Ijl

2
, (73a)

Ivt2 = Ivtr +
Ijr

2
. (73b)

Ido = Id +
Ijl + Ijr

2
. (74)

In Figure 8c, Keq is lumped into Keqg in Figure 8d, as described in Equation (69a). The
inertias and stiffnesses employed in the system reduction are designated as follows: Ido,
differential gear lumped with the left and right cv joints; Ivt1, left tire and vehicle lumped
with the left cv joint; Ivt2, right tire and vehicle lumped with the right cv joint; Ive, whole
inertia lumped with Ivt1 and Ivt2; Iog, output shaft lumped with Ido; Ivg, inertia of the tire and

vehicle affected by the gear ratio
(

Ro
Rd

)
; Keq1, equivalent stiffness of the series connection of

Kvl and Kjl ; Keq2, equivalent stiffness of the series connection of Kvr and Kjr; Keq, equivalent
stiffness of the parallel connection of Keq1 and Keq2; Keqg, differential stiffness lumped with

Keq by employing the gear ratio
(

Ro
Rd

)
. Finally, the number of DOFs for the system was
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reduced from 10 to 6, as illustrated in Figure 9, and all the components of the stiffness
matrix K from Equation (66) were obtained as follows.

K1,1 = Kc, (75a)

K2,2 = Kc + Ki. (75b)

K3,3 = Ki +
(

Ri5
2 + Ri3

2
)

Kg. (76)

K4,4 = KgRo5
2. (77)

K5,5 = KgRo3
2 + Keqg, (78a)

K6,6 = Keqg. (78b)

k1,2 = k2,1 = −kc, (79a)

k2,3 = k3,2 = −ki. (79b)

k3,4 = k4,3 = kgRi5Ro5, (80a)

k3,5 = k5,3 = kgRi3Ro3. (80b)

k5,6 = k6,5 = −keqg. (81)
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The dynamic characteristics of the 6-DOF system can be obtained using modal analysis.
Table 5 and Figure 10 show the first three natural frequencies and mode shapes for both
models. Here, the y- and x-axes of Figure 10 are the normalized values of the modal vector
and their relevant subsystem, as described in Equations (64) and (65). The differences
between the natural frequencies of the 15-DOF and 6-DOF models are due to the reduction
effect. The natural frequencies corresponding to the lumped inertia naturally disappeared
as the relevant inertia was reduced. Therefore, the 1st natural frequency value of the
15-DOF model did not appear in the 6-DOF model. For example, the 1st mode shown in
Figure 4 represents the hopping mode observed in the right and left wheels, which was
removed when the differential gear, cv joint, vehicle, and tires were combined during the
system reduction. Except for the hopping mode, which was not the main concern of this
study, the first three mode shapes and natural frequencies presented in Figure 4, Figure 10
and Table 5 correlated well with each other.

Table 5. First four natural frequencies of the 15- and 6-DOF systems.

Natural Frequency (Hz) 6-DOF 15-DOF

f1 7.6 2.3
f2 60.6 7.6
f3 272.8 60.8
f4 1846.3 272.5
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To calculate the frequency response functions, the damping matrix was approxi-
mated, and unit torque excitation was considered, as described in Equations (50)–(56). The
frequency response functions also correlated well between each model, as compared in
Figure 11. The FRFs for both the 15- and 6-DOF system models described in Figure 11
are defined as follows: |Y1|, FRFs of the flywheel; |Y2|, FRFs of the clutch hub; |Y3|, FRFs
of the input shaft; |Y4|, FRFs of the 5th gear on the output shaft; |Y5|, FRFs of the output
shaft; |Y6|, FRFs of the tire and vehicle. The difference between |Y6|, the FRFs of the vehicle
in the 15- and 6-DOF system models, arose during the system reduction process, as the
inertia and stiffness values for the vehicle components were modified with respect to the
employed gear ratio.
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5. Linear Analysis in the Time Domain

From the results based on the modal analysis and FRFs, the linear system responses
in the time domain can be investigated to find the main system parameters for improving
the noise and vibration conditions. The time domain solutions are obtained with two
different approaches. In general, the system responses consist of transient and steady-state
terms. First, the basic equation model suggested previously can be used on the basis
of the modal analysis and FRFs. For example, the modal domain and FRF results are
simply used for investigating the transient and steady-state responses, respectively. Second,
the state variable equations can be used as an alternative method which will lead to a
simpler calculation procedure than the first approach, since both transient and steady-state
responses are obtained simultaneously.

5.1. Time Responses Based on Modal Domain and FRFs

The transient responses can be directly calculated by transferring the modal domain
coordinates η(t) to the physical domain for θ(t), as described in Equation (46). Each
coordinate can be estimated along with the initial conditions (ICs) as follows.

M
..
θ(t) + C

.
θ(t) + K θ(t) = 0. (82)

..
η(t) +


. . .

2ζwr
. . .

 .
η(t) +


. . .

wri
. . .

η(t) = 0. (83)
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η(t) = e−iwnit[Acos(wdit) + B sin(wdit)], i = 1, 2, · · · 6. (84)

η(0) = φ−1θ(0), (85a)

.
η(0) = φ−1

.
θ(0). (85b)

The 6-DOF model is a coupled system, as shown in Equation (82). Using the normal
modal matrix φ from Equation (45), the coupled system of Equation (82) is transformed
into the decoupled system, as derived in Equation (83). Overall, the transient responses
of the torsional system can be expressed by Equation (84), where A and B are arbitrary
constant vectors. These unknown constants are determined by substituting the modal
initial values η(0) and

.
η(0). In this study, 0.1 (rad) and 0 (rad/s) were used as the initial

torsional displacement and velocity, respectively. Finally, the transient responses of the
torsional system in the physical domain were calculated by multiplying φ by η(t), and
the results are shown in Figure 12. Along with the damping effects, the system responses
converged to zero well. Here, the transient responses in the physical domain described in
Figure 12 are defined as follows: Xtr1, transient response for the flywheel; Xtr2, transient
response for the clutch hub; Xtr3, transient response for the input shaft; Xtr4, transient
response for the 5th gear on the output shaft; Xtr5, transient response for the output shaft;
Xtr6, transient response for the tire and vehicle.
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From the whole system responses, combined with the transient and steady-state terms,
only the steady-state responses are revealed after the transient responses converge to zero
completely. To obtain the damped forced responses in a torsional system under sinusoidal
excitation, the produced values such as the magnitude and phase from the FRFs, as seen in
Figure 11, can be employed. The FRFs for the 6-DOF system can be derived as follows.

M
..
θ(t) + C

.
θ(t) + K θ(t) = T(t). (86)

T(t) =
[
1 0 0 0 0 0

]Teiωt =
∼
Teiωt. (87)

θ(t) =
∼
θ eiωt, (88a)
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∼
θn =

∣∣∣∣∼θn

∣∣∣∣eiϕn , n = 1, 2, · · · 6. (88b)

∼
θ (ω)=

[
K−M·ω2 + i · C·ω

]−1∼
T. (89)

θ(t) =
∣∣∣∣∼θ (wo)

∣∣∣∣eiϕ(wo)eiwot at w = wo. (90)

The formula for calculating the FRFs in Equation (89) is derived by substituting
Equations (88) and (87) into Equation (86). Since the results are generated as a function of
frequency ω and are represented as complex values, their magnitudes and phases provide
practical information regarding the amplitude and phase shift of the system responses.
Thus, the dynamic behaviors in the time domain are obtained as described in Equation (90)
for a specific excitation frequency value, ωo. To focus on the linear analysis concerning
specific noise and vibration problems, such as gear rattle, this study concentrated on
the system responses at ωo = 60 (Hz). Figure 13 displays the steady-state responses at
ωo = 60 (Hz) for the torsional system. In Figure 13, the responses from Xss1 to Xss6 represent,
in order: steady-state responses based on the FRF components of the flywheel, clutch hub,
input shaft, 5th speed gear on the output shaft, and vehicle.
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5.2. Time Responses Based on the State Variable Equation

The equations derived in Equations (82)–(86) are based on the 2nd-order ordinary
differential equations (ODE). However, this method using the original forms described
in Equations (82)–(86) becomes more complex as the order of the differential equation
increases [33]. However, state variables are used to describe the mathematical state of a
dynamic system by a set of 1st-order ODEs rather than by one or more nth-order ODEs.
Thus, the simulations using the 1st-order ODEs can be more efficient in terms of modeling
and analyzing the system responses, especially by including the MIMO (multi-input multi-
output) system and time-varying and non-linear effects [25,34]. The state variable equation
can be formulated by defining each state variable with the matrix and vector forms, as
described in Equations (91) and (92).

.
x(t) = A x(t) + B u(t). (91)

y(t) = C x(t) + D u(t). (92)
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Equations (91) and (92) represent the state–space representation. In this representation,
x(t) is the state vector containing the displacements and velocities, A is the system matrix,
B is the input matrix, C is the output matrix, D is the constant matrix relevant to the input,
u(t) is the input vector, and y(t) is the concerned output vector. The scope of this study
was to investigate the system responses for the torsional dynamic behaviors of the physical
system described earlier. Therefore, Equation (92) was not the main focus of this study;
instead, Equation (91) was the primary focus for examining the system responses of the
torsional system.

5.2.1. Transient Response

The system response in a zero-input case can be calculated using the state transition
matrix Φ(t) and the initial values x(0). The general process for calculating the transient
responses with the state transition matrix, based on the state variable equation, is described
as follows [35].

.
x(t) = A x(t). (93)

x(t) = b0 + b1t + b2t2 + b3t3 + · · ·+ bktk · · · . (94)

b1 + 2b2t + 3b3t2 + · · ·+ kbktk−1 · · · = A
(

b0 + b1t + b2t2 + b3t3 + · · ·+ bktk · · ·
)

. (95)

bk =
1
k!

Akb0 , (96a)

x(0) = b0. (96b)

x(t) = ∑∞
k=0

Aktk

k!
(97a)

x(0) = eAtx(0). (97b)

x(t) = Φ(t)x(0). (98)

Φ(t) = eAt = ueΛtu−1. (99)

eΛt =


eλ1t 0 0 0

0 eλ2t 0 0

0 0
. . . 0

0 0 0 eλnt

. (100)

For this study, the initial values of 0.1 (rad) and 0 (rad/s) were used for the initial
torsional displacement x(0) and velocity

.
x(0), respectively. The solution of the system can

be assumed on the basis of the power series with arbitrary vectors b0 and bk (k = 1, 2, 3, ···),
as described in Equation (94). Thus, substituting Equation (94) into Equation (93) leads
to a series expansion as stated in Equation (95). By equating the same tk terms on both
sides of Equation (95), the basic forms of constant vectors bk (k = 1, 2, 3, ···) are expressed as
Equation (96), where the initial torsional displacement is represented as x(0) = b0. Thus,
the basic solution of x(t) can be written as Equation (97) with the matrix exponential eAt.
Moreover, the matrix exponential eAt, when the initial conditions are given at t = 0 in a
linear system, is considered the state transition matrix Φ(t), as described in Equation (98).
In addition, Φ(t) can be calculated along with the eigenmatrix u and eigenvalue λn of the
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system matrix A. Figure 14 compares the results of transient responses based on the state
variable equation with the ones obtained from the modal analysis, demonstrating a strong
correlation between the two.
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5.2.2. Steady-State Responses for Semi-Definite System

The steady-state responses using the state variable equation under sinusoidal input can
be calculated by employing the state-transition matrix and the convolution method [36,37].
The process of obtaining the steady-state responses using the state transition matrix Φ(t)
and the initial condition x(0) is described as follows.

.
x(t)− A x(t) = B u(t). (101)

e−At .
x(t)− e−At A x(t) = e−AtB u(t). (102)

d
dt

{
e−Atx(t)

}
= e−AtB u(t). (103)

∫ t

0

d
dτ

{
e−Aτx(τ)

}
dτ =

∫ t

0
e−Aτ B u(τ)dτ. (104)

e−Atx(t)− x(0) =
∫ t

0
e−Aτ B u(τ)dτ. (105)

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)B u(τ) dτ. (106)

Here, the same initial condition, x(0), that was used for the transient responses was
employed to calculate the steady-state responses. In addition, Equation (101) represents a
revised formula achieved by transferring the term A x(t) to the left side of Equation (91), re-
sulting in Equation (102) by multiplying e−At on both sides of Equation (101). Furthermore,
the left side of Equation (102) reflects the partial derivative of e−Atx(t), which is summa-
rized as Equation (103). Integrating both sides of Equation (103) over the range from 0 to t
yields Equations (104)–(106). Using these final-form equations to calculate the steady-state
responses, the dynamic behaviors of the system are shown in Figure 15. When comparing
the results based on the FRF method and state variable equations, it is evident that they
are well correlated for Xss2, Xss3, Xss4, and Xss5, as clearly seen in Figure 15. However, the
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simulated results for Xss1 and Xss6 exhibit significant discrepancies between the FRFs and
state variable equation methods, primarily due to the rigid body mode observed at 0 Hz
for the semi-definite system. This mode can lead to numerical issues that might mislead
the integration routine by introducing an arbitrary constant, including infinity, into all
solutions [12]. Thus, to thoroughly investigate the dynamic responses occurring between
each coupled system, the absolute motions must be transformed into relative coordinates,
thereby converting the semi-definite configuration into the definite system model [25].
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To transform the semi−definite system into a positive-definite system, new coordinates
can be defined as q1 = θ f − θh, q2 = θh − θie, q3 = Ri5θie + Ro5θo5, q4 = Ri3θie + Ro3θog, and
q5 = θog − θvg. Thus, the relative angular displacement vector q and linear transformation
matrix P can be expressed as follows [12].

q =


q1
q2
q3
q4
q5

 =


1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 Ri5 Ro5 0 0
0 0 Ri3 0 Ro3 0
0 0 0 0 1 −1





θ f
θh
θie
θo5
θog
θvg

 = P θ. (107)

M* ..
q(t) + C* .

q(t) + K*q(t) = T*(t). (108)

M* = P M−1M P*, (109a)

C* = P M−1C P*. (109b)

K* = P M−1K P*, (110a)

T*(t) = P M−1T(t). (110b)

P* = Pt(P Pt)−1, (111a)

P Pt(P Pt)−1
= I. (111b)



Symmetry 2023, 15, 1904 24 of 34

.
x(t) = A*x(t) + B*u*(t). (112)

x(t) =
[
q1 q2 q3 q4 q5

.
q1

.
q2

.
q3

.
q4

.
q5
]T , (113a)

A* =

 0 I

− K*

M* − C*

M*

. (113b)

B* = 0, B*(6, 1) = 1, (114a)

u*(t) = P M−1u(t). (114b)

From Equations (107)–(114), P is not generated as a square matrix. Therefore, to
determine the inverse matrix with respect to P, the product of P and Pt can be introduced,

as indicated in Equation (111b), where P∗ = Pt(P Pt)−1 of Equation (111a) is defined as
a pseudo-inverse matrix. Overall, Equation (108) has new coordinates transferred from
the absolute displacement θ(t) to the relative displacement q(t), resulting in a positive-
definite system. Using Equations (107)–(111), the state variable equation can be derived as
expressed in Equations (112)–(114). In these equations, x(t), A∗, B∗, and u∗(t) represent
state variables, the system matrix, input matrix, and input vector related to the system
parameters based on M∗, C∗ and K∗. The steady-state responses with the new coordinate
systems, based on Equations (107)–(114), are presented in Figure 16 and compared with the
time responses based on FRFs. From the comparisons between two sets of results based
on the state variable model and FRFs, it is evident that they are well correlated with each
other. Furthermore, the rigid body modes within the nearly zero frequency ranges are
completely eliminated.
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6. Case Study

Dynamic characteristics in a geared system can be investigated by focusing on several
key parameters such as clutch stiffness Kc, unloaded gear inertia Io5, and gear mesh stiffness
Kg with respect to torsional vibration problems such as gear rattle and whine. To investigate
the effects of these key parameters for resolving the aforementioned issues, the relevant
parameters, such as Kc, Io5, and Kg, were examined [1,5–8,14,20,22,38–40]. For example, to
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improve gear rattle conditions, prior research has suggested modifying clutch stiffness Kc
and unloaded gear inertia Io5 [1,5–8,14]. On the other hand, gear whine is closely related
to gear properties such as the gear involute and mesh stiffness. In general, Kc consists of
multi-staged clutch dampers, as illustrated in Figure 17. Figure 17a illustrates the physical
drawing of the entire clutch system with the clutch damper indicated as the clutch spring.
Typically, multi-clutch spring components are located inside the clutch housing along
with the clutch friction disk. Figure 17b presents an example of the clutch stiffness profile,
featuring two staged clutch springs or clutch dampers [1]. In addition, Kg exhibits nonlinear
dynamic characteristics along with gear rotational motions under the symmetric condition,
as depicted in Figure 18. However, for the purposes of linear analysis concerning the effects
of key parameters such as Kc, Io5, and Kg, this study employed various constant values to
investigate their relationship with primary torsional vibratory problems, namely gear rattle
and whine.
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6.1. Case Study I: Clutch Stiffness Kc

The natural frequencies of the system are compared for three different clutch stiff-
ness values, as summarized in Table 6, where the values of Kc1 and Kc2 are given as
595.8 N·m·rad−1 and (Kc1 + Kc)/2, respectively. Significant changes were observed in the
second natural frequency because the dynamic behavior at the second mode was mostly
affected by clutch stiffness. This effect was clearly observed in the mode shapes presented
in Figures 3, 9 and 18a. When examining the second mode shapes (clutch spring modes)
with various Kc values, as seen in Figure 19a, their basic mode shapes were nearly identical,
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except for the calculated natural frequencies, which are compared in Tables 6 and 7. In
general, gear rattle was closely related to this clutch spring mode, which operates within the
second resonance region [1,8,14]. Thus, based on the linearly simulated results presented
in Figure 19a and Tables 6 and 7, clutch stiffness can be considered a key parameter for
resolving gear impact problems.

Table 6. Comparison of natural frequencies along with clutch stiffnesses for the positive definite system.

Natural Frequency
(Hz)

Kc1 Kc2 Original Kc
(595.8 N·m·rad−1) (1216.9 N·m·rad−1) (1838 N·m·rad−1)

f1 6.6 7.3 7.6
f2 40.6 51.8 60.6
f3 266.0 269.4 272.8
f4 1845.7 1845.7 1846.3
f5 4484.9 4484.9 4485.7

Symmetry 2023, 15, x FOR PEER REVIEW 25 of 33 
 

 

6.1. Case Study I: Clutch Stiffness Kc 

The natural frequencies of the system are compared for three different clutch stiffness 

values, as summarized in Table 6, where the values of Kc1 and Kc2 are given as 595.8 

N∙m∙rad−1 and (Kc1 + Kc)/2, respectively. Significant changes were observed in the second 

natural frequency because the dynamic behavior at the second mode was mostly affected 

by clutch stiffness. This effect was clearly observed in the mode shapes presented in Fig-

ures 3, 9, and 18a. When examining the second mode shapes (clutch spring modes) with 

various Kc values, as seen in Figure 19a, their basic mode shapes were nearly identical, 

except for the calculated natural frequencies, which are compared in Tables 6 and 7. In 

general, gear rattle was closely related to this clutch spring mode, which operates within 

the second resonance region [1,8,14]. Thus, based on the linearly simulated results pre-

sented in Figure 19a and Tables 6 and 7, clutch stiffness can be considered a key parameter 

for resolving gear impact problems. 

 
(a) 

 
(b) 

Figure 19. Mode shapes along with Kc and Io5 values: (a) second mode shapes with various Kc; (b) 

fifth mode shapes with various Io5. 

Table 6. Comparison of natural frequencies along with clutch stiffnesses for the positive definite 

system. 

Natural Frequency 

(Hz) 

Kc1 Kc2 Original Kc 

(595.8 N∙m∙rad−1) (1216.9 N∙m∙rad−1) (1838 N∙m∙rad−1) 

f1 6.6 7.3 7.6 

f2 40.6 51.8 60.6 

f3 266.0 269.4 272.8 

f4 1845.7 1845.7 1846.3 

f5 4484.9 4484.9 4485.7 
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(b) fifth mode shapes with various Io5.

Table 7. Components of second modal vectors along with various Kc values.

2nd Mode Shape Kc1 Kc2 Kc

1. flywheel −0.0693 −0.0847 −0.0903
2. clutch hub 0.9742 0.9328 0.8930
3. input shaft 0.9999 0.9997 0.9992

4. unloaded gear 1 0.9999 0.9994
5. output shaft 0.9996 1 1

6. vehicle + wheel −0.0032 −0.0020 −0.0014

The effect of Kc was also evident from the time domain analysis, as shown in Figure 20.
To investigate the time domain responses, the relative motions in terms of q3(t) and q4(t)
were the primary focus, as gear impacts and their associated torsional vibrations generally
occur at the gear pairs. To simulate the system responses in the time domain, the engine
torque Te was employed as the excitation torque, as described below.

Te = Tm + Tpmcos
(
wpt

)
(115)
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Here, Tm and Tpm represent the mean and alternating components of the engine torque,
respectively, and wp is the firing frequency, with the values used for Tm, Tpm, and wp being
168.9 N·m, 251.5 N·m, and 60 Hz, respectively [1]. Figure 20 compares the time responses
for q3 and q4, which represent the relative motions between unloaded and loaded gear pairs,
respectively. Figure 20a illustrates the system responses with various Kc values. It is worth
noting that the amplitude of q3 decreased as the value of Kc was reduced. For instance, when
smaller values such as Kc1 (595.8 N·m·rad−1) and Kc2 (1216.9 N·m·rad−1) were employed,
the amplitude of q3 decreased compared with the response for Kc (1838 N·m·rad−1). This
reduction in amplitude was further confirmed when comparing the peak-to-peak values,
as summarized in Table 8. Furthermore, Figure 20b and Table 8 demonstrate that q4 was
also significantly influenced by the key parameter Kc. In this context, q3 can be expected to
reflect the gear rattle status, which occurs at the unloaded gear pair. In addition, q4 can be
considered the vibratory conditions transferred from the loaded gear pair to the rest parts
of the driveline. Consequently, these results provide valuable insights into improving the
vibration conditions associated with gear rattle, as compared in Figure 20 and Tables 6–8,
even though they do not explicitly depict the gear contact motions. In summary, it can be
concluded that clutch stiffness values have a significant influence on the dynamic behavior
of the gears, and reducing clutch stiffness improves the vibrational problems caused by
gear impacts.
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Table 8. Comparison of peak-to-peak value along with various Kc values.

Peak-to-Peak Value
q3 (mm)

Peak-to-Peak Value
q4 (mm)

Kc1
(595.8 N·m·rad−1) 1.2723 × 10−4 3.9210 × 10−4

Kc2
(1216.9 N·m·rad−1) 5.1967 × 10−4 15 × 10−4

Original Kc
(1838 N·m·rad−1) 20 × 10−4 56 × 10−4

6.2. Case Study II: Unloaded Gear Inertia Io5

Once again, the natural frequencies of the system, along with the unloaded gear inertia
Io5, are listed in Table 9. In this case, 0.5Io5 (1.30× 10−4 kg·m2) and 1.5Io5 (3.92 × 10−4 kg·m2)
were used for comparison with the original Io5. With different values for Io5, only the
natural frequency f5, as shown in Table 9, was affected, while the other natural frequencies
remained nearly the same. For instance, when Io5 varied, natural frequencies f1, f2, f3, and
f4 showed minimal variation. However, the natural frequency f5 exhibited a clear change,
with an increase (or decrease) in Io5 resulting in higher (or lower) values, such as 6040.3 (or
3845.5) Hz compared with the original value of 4485.7 Hz.

Table 9. Comparison of natural frequencies along with inertia values of the unloaded gear for the
positive-definite system.

Natural Frequency
(Hz)

0.5 Io5
Original Io5 1.5 Io5(5.23 × 10−4)

f1 7.6 7.6 7.6
f2 61.5 60.6 59.8
f3 274.7 272.8 271.1
f4 1897.0 1846.3 1795.8
f5 6040.3 4485.7 3845.5

This effect of Io5 is evident in Figure 19b, Tables 10 and 11. Upon examining the
mode shapes, it becomes apparent that only the fifth mode shape, corresponding to natural
frequency f5, was significantly influenced by Io5 compared with the other sub-systems, as
shown in Table 11. Furthermore, the comparison between Tables 10 and 11 reveals that the
mode shape was primarily affected at the fifth mode, except for the second mode, providing
valuable insights into the relationship between unloaded gar inertia and gear dynamic
motions for various Io5 values. Figure 21 displays the steady-state responses of q3 and q4
for the unloaded and loaded gear pairs, respectively, with 0.5 Io5, 1.5 Io5, and the original
Io5. As observed from the modal analysis regarding the effect of Io5 mentioned earlier, the
steady-state responses of q3 in the time domain also exhibited significant changes with
different Io5 values, as depicted in Figure 21a.

Table 10. Components of second modal vectors along with various Io5 values.

Second Mode Shape 0.5 Io5 Io5 1.5 Io5

1. flywheel −0.0878 −0.0903 −0.0929
2. clutch hub 0.9853 0.8930 0.8908
3. input shaft 0.9991 0.9992 0.9992

4. unloaded gear 0.9992 0.9994 0.9996
5. output shaft 1 1 1

6. vehicle + wheel −0.0014 −0.0014 −0.0015
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Table 11. Components of fifth modal vectors along with various Io5 values.

Fifth Mode Shape 0.5 Io5 Io5 1.5 Io5

1. flywheel 0 0 0
2. clutch hub 0.0001 0.0005 0.0010
3. input shaft −0.1018 −0.2150 −0.3392

4. unloaded gear 1 1 1
5. output shaft 0.0055 0.0218 0.0487

6. vehicle + wheel 0 0 0
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, 1.5 Io5.

For example, a reduction (or increase) in the inertia value of Io5 led to a corresponding
reduction (or increase) in the amplitude of response. This was also evident when compared
to the peak-to-peak values summarized in Table 12. On the other hand, q4, associated with
the loaded gear pair, demonstrated minimal variation across different Io5 values, as evident
in Figure 21b and Table 12. These results underline the importance of Io5 in addressing gear
rattle issues, even in the context of linear analysis. Generally, reducing the inertia of the
unloaded gear aligns with prior studies’ findings as an effective approach to improving
gear rattling conditions [8]. In summary, it can be concluded that unloaded gears also have
a significant influence on specific dynamic behaviors such as gear rattle. Therefore, altering
the inertia values of unloaded gears relevant to the gear impact problems can improve the
gear impact conditions when designing the clutch stiffness.
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Table 12. Comparison of peak-to-peak value along with unloaded gear Io5 values.

Peak-to-Peak Value
q3 (mm)

Peak-to-Peak Value
q4 (mm)

0.5 Io5 9.2703 × 10−4 52 × 10−4

Io5 20 × 10−4 56 × 10−4

1.5 Io5 30 × 10−4 56 × 10−4

6.3. Case Study III: Gear Mesh Stiffness Kg

Table 13 presents a comparison of natural frequencies for various Kg values. Upon
examining the calculated natural frequencies, it becomes evident that there were no dis-
cernible differences below 300 Hz. However, in the higher frequency range, above 300 Hz,
substantial differences emerged, as illustrated in Table 13. Notably, the natural frequencies,
associated with dominant gear dynamic modes were significantly influenced by variations
in 0.1 Kg (2.7 × 107 N·m−1), Kg, and 10 Kg (2.7 × 109 N·m−1). Here, the natural frequencies
corresponding to f4 and f5 exhibited pronounced changes, with f4 and f5 decreasing (or
increasing) as Kg decreased (or increased).

Table 13. Comparison of natural frequencies along with gear mesh stiffnesses Kg for the positive-
definite system.

Natural Frequency
(Hz)

0.1 Kg
Original Kg 10 Kg(2.7 × 108)

f1 7.6 7.6 7.6
f2 60.6 60.6 60.6
f3 264.5 272.8 273.5
f4 603.5 1846.3 5820
f5 1422.1 4485.7 14,170

Despite these variations in natural frequencies, the mode shapes for fourth and fifth
modes remained nearly identical, as clearly shown in Figure 22, Tables 14 and 15. While the
modal vectors themselves did not exhibit differences with various Kg, the mode shapes for
both the fourth and fifth modes suggest that gear dynamic motions were indeed dominant,
as evident in Figure 22. The fourth mode shapes depicted in Figure 22a indicate that both
the unloaded and loaded gear pairs contributed significantly to the dominant motions. On
the other hand, the fifth mode was influenced more by the unloaded gear pairs, as observed
in Figure 22b. Overall, both the fourth and fifth modes are expected to play a crucial role in
gear dynamic behaviors.

Table 14. Components of fourth modal vectors along with various Kg.

4th Mode Shape 0.1 Kg Kg 10 Kg

1. flywheel 0.0001 0 0
2. clutch hub −0.1100 −0.0104 −0.0010
3. input shaft 0.7801 0.7942 0.7954

4. unloaded gear 1 1 1
5. output shaft −0.8204 −0.9503 −0.9625

6. vehicle + wheel 0 0 0

Table 15. Components of fifth modal vectors along with various Kg.

5th Mode Shape 0.1 Kg Kg 10 Kg

1. flywheel 0 0 0
2. clutch hub 0.0049 0.0005 0
3. input shaft −0.2212 −0.2150 −0.2144

4. unloaded gear 1 1 1
5. output shaft 0.0224 0.0218 0.0218

6. vehicle + wheel 0 0 0
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Figure 23 presents comparisons of steady-state responses in the time domain, occurring
at the unloaded and loaded gear pairs. When evaluating q3 along with different Kg values, it
becomes apparent that the amplitudes of steady-state responses decreased as Kg increased,
as shown in Figure 23a. These significant changes are further corroborated by the peak-to-
peak values, as detailed in Table 16. Similarly, when comparing the time responses of the
loaded gear pair, the same influences observed in the unloaded gear pair were evident, as
depicted in Figure 23b and Table 16. Moreover, the mean values of time responses for the
loaded gear pair were significantly affected. Specifically, as Kg increased, the mean values
of steady-state responses approached zero. These results underline the impact of Kg on
gear dynamic motions, particularly noticeable in the case of the loaded gear pairs, which
are central to issues such as gear whine vibrations [38–40].
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Table 16. Comparison of peak-to-peak value along with various Kg values.

Peak-to-Peak Value
q3 (mm)

Peak-to-Peak Value
q4 (mm)

0.1 Kg 199 × 10−4 567 × 10−4

1 Kg 20 × 10−4 56 × 10−4

10 Kg 1.9951 × 10−4 5.5771 × 10−4

In summary, it can be concluded that mesh stiffness significantly influences other
specific gear dynamic behaviors, such as gear whine, which can occur in both loaded and
unloaded gear pairs. Therefore, designing appropriate mesh stiffness values contributes to
improving gear parametric excitations.

7. Conclusions

This study investigated the vehicle driveline under symmetric conditions using a linear
analytical method to explore the dynamic characteristics of a specific manual transmission
with a front-engine/front-wheel configuration. To examine these dynamics, a mathematical
model based on a practical powertrain assembly was developed. The contributions of this
study can be summarized as follows. First, a mathematical technique to reduce the number
of DOFs for simulation was proposed, and its validity was established. Consequently,
the dynamic characteristics, including eigensolutions and frequency response functions
(FRFs) of the reduced system model, demonstrated a strong correlation with the simulated
results of the original model. Second, this study extensively investigated a linear analysis
model based on state variable equations. The linear results derived from the state variable
equations were successfully validated against those from the FRF method. Furthermore,
the findings based on the state variable equations effectively captured the relationships
between key parameters and their associated vibratory issues, such as gear rattle and
whine problems. Thus, this study successfully proposed the utilization of linear analytical
methods to investigate and determine gear impact and excitation problems and their
relevant key parameters in order to simplify the analysis compared to the complexity of
nonlinear analysis.

The present study primarily emphasized the linear analytical method, specifically
concentrating on the state variable equations, which can serve as the foundation for non-
linear analysis, incorporating features such as gear contact models. However, the current
study has limitations in capturing the actual nonlinear dynamic behaviors, such as gear
impact and gear time-varying motions. Therefore, the next stage of this research will imple-
ment a more advanced analytical model utilizing state variable forms while incorporating
nonlinear properties, such as gear backlash and multi-staged clutch dampers.
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