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Abstract: We introduce a matrix-valued fractional delay differential system in diverse cases and
present Fox type stability results with applications of aggregated special functions. In addition we
present an example showing the numerical solutions based on the second type Kudryashov method.
Finally, via the method of variation of constants, and some properties of the parametric Mittag—Leffler
matrices, we obtain both symmetric random and symmetric fuzzy finite-time stability results for the
governing fractional delay model. A numerical example is considered to illustrate applicability of
the study.
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1. Introduction

Generally fractional-order equations are considered as an extension of ODEs, and they
have been used as more appropriate models of real-world issues in physics, engineering, fi-
nance, etc. [1,2]. The applications of fractional-order calculus have been growing, including
petroleum engineering, viscoelastic mechanics, anomalous diffusion, multi-strain tuber-
culosis model, control system, and many other branches of engineering and physics [3,4].
A good collection of diverse fractional-order models used to mechanics, viscoelasticity,
thermodiffusion, and thermodynamics is given in [5]. In different processes, like technical
processes, chemical processes, economics, biosciences, a delay is observed. With the combi-
nation of both time delay and fractional derivative, the subject of fractional-order delay
differential models is enjoying growing interest among scientists [6-11].

finite-time stability is a notion that was first presented in the 1950s. This notion differs
from classical stability [12,13] in two significant ways. First, finite-time stability requires
prescribed bounds on system variables. Second, it deals with systems whose operation is
limited to a fixed finite interval of time. For systems that are known to operate only over
a finite interval of time and whenever, from specific considerations, the systems’ variables
must lie within particular bounds, finite-time stability is the only meaningful description
of stability [14-16].

Motivated by [17,18], we consider the Caputo fractional delay differential system below:

DEF(X)=EF(x—t) +E1G(x) + B2 H(x, F(x)), x€v:=1[0,T], t>0, (1)
F(x) = K(x), —t<x <0, 2)

where D¥ is the Caputo derivative with 0 < % < 1, t is a fixed delay time, T = x*t for
K ep:={12---}.

Symmetry 2023, 15, 1880. https:/ /doi.org/10.3390/sym15101880

https://www.mdpi.com/journal /symmetry


https://doi.org/10.3390/sym15101880
https://doi.org/10.3390/sym15101880
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-4096-1469
https://orcid.org/0000-0003-3108-6524
https://orcid.org/0000-0002-6770-6951
https://orcid.org/0000-0001-7098-8059
https://doi.org/10.3390/sym15101880
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15101880?type=check_update&version=2

Symmetry 2023, 15, 1880

2 of 40

Let [.]uxn be a square matrix of n x n, for every n € N. We shall investigate the
cases below:

Casel: 5 = [1]141, E=5p = [0]1><1/ and F,G € C(v, ]R)

Case2: E; = Ep = [0]uxn, & € R"™", K € C([-t,0],R"), and F € C([—t, T],R").

Case3: &1 = [l]nxn, E2 = [Oluxn, E € R™", K € C([-t,0],R"), G € C(v,R"), and
]-"6 C([—t, T],R").

Cased: E; = [0luxn, E2 = [Unxn, E € R K € C([~t,0],R"), H € C(v x R", R"), and

.7: E C([—t, T],R").

In Case (1), we study Fox type stability results with applications of aggregation maps
and special functions. Finally, a numerical method is applied to find the approximate
solutions. In Case (2), via the method of variation of constants, and some properties of
the delayed one parameter Mittag-Leffler matrix, we investigate the explicit formula of
solutions. Thereafter, we propose symmetric random finite-time stability results. In Case (3),
by the method of variation of constants, and some properties of the delayed two parameter
Mittag-Leffler matrix, we study the explicit formula of solutions. In Case (4), through the
delayed Mittag—Leffler matrices in one and two parameters, we prove symmetric fuzzy
finite-time stability for the above fractional-order delay system. Next, a numerical example
is considered to illustrate applicability of the study.

2. Preliminaries
2.1. Special Functions
2.1.1. Fox Type Functions

In this part, we present the Fox H-function and its variations (see [19]).
The Fox H-function introduced by Charles Fox (1961) is defined as follows:

ViWhe | _ 1 / s
X (N]»,M]»)LD] = o E%@(S)X ds, ®)

where i = —1, x € C\{0}, x° = exp(S[log|x| +i arg(x)]), and

|

TTL, T(N; — MjS)TTE T(1 — V; + W;S)
172 401 T(1 = Nj+ MjS) T T(V; = W;S)

@(S) :=

in which an empty product is interpreted as 1, and the integers A, B, C, D satisfy the
inequalities 0 < B < Cand 1 < A < D. Let the coefficients

W;>0(=1...,C) and M;>0(j=1,...,D),
and the complex parameters
Vi(j=1,...,C) and N;(j=1,...,D)

be constrained s.t. no poles of the integrand in (3) coincide, and 2" is a suitable contour of
the Mellin—Barnes type (in the complex S-plane) which has one of the forms below:

* 2 = Z_isaleftloop beginning at —oo and terminating at —oco, enclosing all the
poles of I'(S).
* X = ZLisaleftloop beginning at 4+-cc and terminating at +co, enclosing all the

polesof I'( V; —§), situated in a horizontal strip beginning at the point +oc0 + il

~—~—
1<j<C

and ending at the point +o0 +iA; with —co < Ay < Ay < +o0,and V; € C.
* 2 = Zirw is a contour beginning at the point A — ico and ending at the point A + ico,
for every A € R.
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Plus, if,
B C A D
R:ZZVVJ'— Z W]'-FZM]'— Z M]'>0,
j=1 j=B+1 j=1 j=A+1

then, the integral in (3) converges absolutely and defines the H-function that is analytic in
the sector: -
larg(x)| < ER

and with the point x = 0 being tacitly excluded. Indeed, the H-function makes sense and
also presents an analytic function of x when either

C D
Rl::ZWj_gMj<o and 0 < [x| < oo,
]:

or

S W M
R; =0 and 0<|x|<R2::]11Wj gMj :

We now propose the special cases of Fox’s H-function as follows:

¢  Exponential function:

oHoly] = exp(x) = 1 1

where x € C.

*  One parameter Mittag—Leffler function:

(=] X]
H;[Ny; x] == _—
where x, N7 € C, and ®(Np) > 0.
*  Gauss Hypergeometric function:
> (V1)i(Va)j x/ o I'(V1 +] Va+j) X
Hy[V1, Vo; Nis x) = &= -
2l [V1, V2; Naj x| ]g,) (Ny); ! F Vz ; T(Ny + ) e

Furthermore, this function can be represented in terms of the Mellin—Barnes integral of
the form

oH; [Vh, Vo; Ny; x] = (—x)~%ds,

r(Ny) 1 T(S)T(Vy —S)[(V, —S)
T (Vy)T(V5) 27i /J T(N; —S)

where X, Vi,Vo, N7 € C, Ni 7é 0,—-1,—-2,-3,...,and %(Vl),%(VZ),%(Nl) > 0.

*  Wright function:

00 X]
Hy[Vy; Ny x| = s

where V1, Np, x € Cand R(V;), R(N7) > 0.
*  Fox-Wright function:
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Consider the positive vectors W = (Wy,...,W¢), M = (Mjy, ..., Mp), and complex
vectors V = (V4,...,V¢), and N = (Nj, ..., Np). The Fox-Wright function is given by

the series
(VL W), (VeWe) | _ vw)| _ v T(Wn+V)x"
cHp [X (N1,M1),~..,(ND,MD)] = cHp [X (N,M)] = n;) T(Mn+N) n!’
where
C
I(Wn+V)=]][T(Wn+V)),
=1
and
D
[(Mn+N) = [ [T(M;n + Nj)
j=1

The series (4) has a nonzero radius of convergence if

D C
Ry:=) Mj—) W;>-1
j=1 j=1

Plus, if Ry > —1, then, the series converges for all finite values of x, and if R; =

radius of convergence equals
C D
—W; M
— j j
Ros= W 1M
j=1 j=1
The convergence on the boundary |x| = Ry, however, depends on the value of

7

C-D-1
2

D
R3:=) Nj-— Zw+
j=1

by noting that series (4) converges absolutely for x| = Ry, if ®(R3) > 0.

e  Meijer G-function:

(N1,1),...,(Np,1)

k] = o
:;L/dm[%,
2mi Ja

[T T(Nj+ )T, T(1—V; = S)
I B+1F(V+S)H anT(1- '_S),

and 5 = exp(~Sllog x| +i arg(x)]), x # 0and 2 = —
Note that an empty product in (9) is defined to be one, and the poles

(V1.1),.. (Ve 1) :l

where

@'(S) ==

Njy =

ic=—(Nj+0), j=1,...,A ceN,,

of the gamma functions T'(N; + S) and the poles

Vig =1-Vi+¢, i=1,...,B, ¢ €Ny,

4)

©)

—1, its

(6)

@)

®)

)

(10)

(11)
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cHp[W,...,

Ve; Ny, ..., Np; x| =

of the gamma functions I'(1 — V; — S) do not coincide, that is
Nj+o # Vi—o' -1, i=1,...,B, j=1,...,A, 0,0 €Ny (12)

Besides, 2" is one of the contours given above that separate all poles Nj; in (10) on the left
from all poles Vj, in (11) on the right of 2.

e  G-function:
= Hel(W)n X"
cHp[V4,...,Ve; Ny, ..., Nc; x| = Z =N n A
=0 T (N 1!

where x € C, C,D eNo,andVi,Nj €eC fori=1,...,Candj=1,...,D.
For p € C, we define

(13)

(Po=1, p#0,
(P)n=p(e+1)...(p+n—-1), neN.

9% # —0, j=1,...,Dand o € Ny, then, this function (13) can be represented in terms of
the Mellin—Barnes integral of the following form

HfDlr(N]‘)l/ T(S) 1S 1r(v S)
1=, T(Vi) 2mi Jor TI2, T(N; - S)

where N; #0,-1,-2,...,j=1,...D,V; #20,—-1,-2,...,i=1,...C, and with the special
contour Z’.

(=x)~%dS, x #0,

2.1.2. Mittag—Leffler Type Functions
We introduce a novel Mittag-Leffler function with m-parameters as follows [20]:
Suppose (V, W)C = [Vl, Wy;...; Ve, Wc], (N, M)D = [Nl,Ml; ...;Np, MD], C+
D =m —1,and m € N. The m-parameter function of the Mittag—Leffler type is given by

Vi, Wi Ve, We _ (V.W)c
MIX,T;NLMU..-;ND,MD(X) - M ,T(N,M)p

_ i (VD)wyn - - (Vo) wen N
S T(an + 1) (N mypn - (ND)mpn ™

where x, &, 7, V;, W;, N;, M; € C, with min{a, T, V;, W;, N;, M]-} >0, foreveryi=1,---,C
and j=1,---,D. Note that the generalized Pochhammer symbol (A)g, is defined by

I'(A+ Bn)

(A)Bn = I—-(A)

We now introduce a family of parametric Mittag-Leffler type functions, as follows:

*  One-parameter function of the Mittag-Leffler type:

]Zol“]oc—i-l

where x,a € C,and R(a) > 0
*  Two-parameter function of the Mittag-Leffler type:

]Z(:)F]«xntr
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where x,a, 7 € C, and R(a), R(T) > 0.
e  Three-parameter function of the Mittag-Leffler type:

i (Vl)]Xj

MY _
DC,T(X) ] 0]'r<]“+T)

where the Pochhammer symbol (V1); defined by
W)j=vi(vi+1)---(Vi+j-1), (Vi)o=1,
and x,a, 7,V € C,and R(a), R(7) > 0.
*  Four-parameter function of the Mittag—Leffler type [21]:
e (Vi) x/
le,wl ( ) — ) d 1] ,

*T ]g[;)]!r(]oc+r)
where x, «, 7, V1, W; € C, and min{®(«), R(7),R(V1)} > 0.
e  Five-parameter function of the Mittag-Leffler type [22]:

V1 Wl _ o (Vl)wl] ]
i 00 = BT+ (N,

where min{R(«), R(7), R(Ny),®(V1)} > 0,and W; € (0,1) UN.

2.1.3. Supertrigonometric and Superhyperbolic Mittag-Leffler Type Functions

In this part, let x, N; € C, and R(N;) > 0. We shall consider the Supertrigonometric
and Superhyperbolic Mittag—Leffler type functions in one parameter, as follows [23-27]:

e  Pre-supercosine-Mittag-Leffler-type function:

precosn, (x) = Z 1“(((2])1)1\;1)(—£1)

i=0

*  Pre-supersine-Mittag-Leffler-type function:

) 00 1) X2]+1
presiny, (x Z (CEYED

*  Pre-superhyperbolic supercosine-Mittag-Leffler-type function

00 2]'
preCOSth 2 T—i—l)

*  Pre-superhyperbolic supersine-Mittag-Leffler-type function

2]+1
2] + 1 N1 + 1)

presinhy, (x Z

2.1.4. Supertrigonometric and Superhyperbolic Gauss-Hypergeometric Type Functions

Let x, N1, V1, Vo € C,and R(Np), R(V7), R(V2) > 0. We shall consider the Supertrigono-
metric and Superhyperbolic Gauss—-Hypergeometric type functions, as follows [28,29]:
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*  Supercosine-Gauss—-Hypergeometric type function:

. (V1)2j(Va)aj (—1)/x%
supercosy(V1, Vo, N1 x) = - .
25Up 1( 1, V2,1N1 X) ];) (N1)2j+1 (2])|

*  Supersine-Gauss-Hypergeometric type function:

[e9)

Z (V1)2j+1(Va)2j1 (—1)ix
~ (N1)2j11 2j+1)t -

2j+1

asupersing (V1, Vo, Ny; x

*  Superhyperbolic cosine-Gauss-Hypergeometric type function:

[e)

Z (V1)2j(V2)2j x¥
= (Ni)2jp1 (2)V

asupercoshy(Vy, Vo, N1; X)

e Superhyperbolic sine-Gauss-Hypergeometric type function:

, 2 (Vi)oj1(V2)ojn x2H1
asupersinhy (Vy, Vo, Ny; x) = ‘ :
) Jg (N1)2jy1 2/ +1)!

2.2. Generalized Triangular Norms (GTNs)
Lete :=[0,1] and

A1 0 0 oo 0
0 A»p O 0
diagMn(e) = 0 0 Az 0 = diag[An, T rAm’l}r Az] ce
. . . 1<i<n
0 0 0 . Ann 1<j<n

with the partial order relation below:
A :=diag[A11,- -+, Aun], B :=diag[B11, -, Bun] € diagMy(e€),

A <B <« Aij < Bl']',
AV

1<i<n 1<i<n
1<j<n 1<j<n

and the bold symbols 0 and 1 defind by

0 0 0 --- O
0 00 0
0.=1/0 00 --- 0 = diag[0,- - -, 0]uxn,
0o 00 - 0] nxn
and
1 0 0 0]
1 0 0
1.=10 01 --- 0 = diag[1, -, 1nxn-
0 00 - 1] nxn
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Definition 1 ([18]). A GTN on diagonal matrices is an operation © : (diagM, (€))? — diagM,,(€),
s.t. for every A, B, C, D € diagM,,(€), satisfies the following:

MHAO1=A,

Q)AQOB=BOA,

B AOBOC)=(AOB)OC,
(4)A<BandC=<D=—AQOC=<BQOD.

For every sequences {A;, }, {B,} converging to A, B € diagM,,(€) respectively, if

lim (A, () Buw) =A()B,

m—o0

then © on diagonal matrices is continuous.
For instance, consider the continuous GTNs Op, O, Oy, : (diagMy, (€))% — diagM,, (€)
defined as follows:

A(OB
P
= diag[Alll e /Aﬂl’l] @dlag[Bll/ e /Bi’li’l]

P
= diag[A11 . B11, Tty Ann : Bnn]r

A(OB
L

= diag[Allr e /A}’ln] @ diag[Blll Tty BVlYl]
L

= diag[max{A11 + B11 — 1,0}, -+ ,max{Aun + Bun — 1,0}],
and
A()B
M
= diag[Allr e rAnn} @ diag[Blll Tty Bnn]
M

= diag[min{A11,B11}, -+, min{Apnn, Bun }]-

If, for every GTNs (O, ®,, and every A, B € diagM,(¢),
A(OB=A()B,
1 2

then, we say that (O, is stronger than O, or, equivalently, (O, is weaker than O, .
In the above examples, O and (O, are weaker and stronger GTNs, respectively. In
other words, we get the ordering below:

O=0=0.
L P M
Throughout the paper, welet © := Oy .

2.3. Symmetric Matrix Valued Fuzzy Normed Spaces

Let J be a vector space and & be a collection of all matrix valued fuzzy sets (in short,
MVEF sets), with the continuous increasing mappings @ : J x (0, +c0) — diagM, (€), s.t.
limyp 00 (X, ¢) = 1, for every x € J.

In &, we define the ordering below:

=P —= D(x,¢) =P (x,9),
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for every ¢ > Oand x € J.

Definition 2 ([18]). Consider the continuous GIN (), the vector space J, and the MVF set
P : Jx(0,+00) — diagMy(€). A symmetric matrix valued fuzzy normed space (shortly,
SMVFNS) is a triple (3, ®, ©), s.t. for every x, x' € J, and ¢, ¢’ > 0, we have that

(1) ®(x,¢) >0,

2) ®(x,9) =1, iff x =0,

(x
(3) ®(vx, ¢) = P(x %),for every0 #v € C,
@ Q(x+x"0+¢) = 2(x, ) OP(X', ).

Note 1. A symmetric matrix valued fuzzy Banach space (or SMVFBS) is a complete SMVFNS.
In this paper we consider the minimum GTN.

Example 1. We prove in the following four steps that the parametric Mittag—Leffler function below
defines a symmetric fuzzy norm as follows:

My, ( X|) §0F<X)m

1+ Nlm)
for every Ny € (0,1), x € Jand ¢ > 0.
(1) If0 < Ny < 1, then, My, (0) = 1 and Lim M, (x) = 0. Thus, Mly, is an increasing
X——0

mapping, for every 0 < Ny < 1, and also we have that 0 < My, < 1.

(2) The equality My, ( - |X|> = 1, clearly shows that x = 0, for every ¢ € (0,00),

‘ ¢
and vice versa.
(3) Forevery x € J, v € Cand ¢ > 0, we get

lox[\"
a(-) - £ 0

¢

(4) Let

o (-15) (15

Thus, for every x, x' € J and ¢, ¢’ > 0, we have that

Wl
o ¢

If x = x', we get ¢ < ¢'. Thus, we have
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o ¢
/
L W
¢ ¢
/
> g X, XL
¢+¢ ¢+¢
/!
> olxtxl
T 9+
/ /
t‘hus,m > |X+X/|.But —u < —|X+X/|,andalso
¢ o+ ¢ ¢+
AN Cx XN
=\ ¢ =\ gty
-t - < - 14
mZZ:OF(l—i—Nlm) - Z I'(1+ Nym) (14)

which implies that

4 Ix + X'l
MNl(_qb) <MN1(_ Ry )

=y ) 2 o (<) (<)

for every x, x' € Jand ¢,¢" € (0,00). Thus, My, ( — f;) is a symmtric fuzzy norm for every

XEJ P>0and0 < Ny <1

Hence,

2.4. Symmetric Matrix Valued random Normed Spaces

Let & be a collection of all matrix valued distribution functions (shortly, MVDFs ) with
the left-continuous and non-decreasing mappings ¥ : RU { —o0, 400} — diagMy,(€), s.t.,
¥(0) = 0and ¥(+o0) = 1. Assume that the subset ¢ C €& contains all functions ¥ € €,
s.t., the left limit of the function ¥ at the point +c0is 1.

In €1, we define the ordering below:

¥ 2Y = Y(y) ¥ (y),

for every ¢ € R. The maximal element for ¢ in the above order is the MVDF &y(¢),

defined as
0, <0,
g pu—
o(¢) { 1, >0

Example 2. The function ¥ () given by

0252, P <0,
Y = 1
) { diaglexp(—1pl1),1 - Ll ¥ >0,

is a MVDEF. Note limy_, 100 ¥ () =1,and ¥ € €*.
Definition 3 ([17]). Consider the continuous GTN ©, the vector space J, and the DF'Y : J — ¢,

A symmetric matrix valued random normed space (shortly, SMVRNS) is a triple (J,¥, ©), s.t. for
every x,x' € J, and ¢ > 0, we have that



Symmetry 2023, 15, 1880

11 of 40

M ¥x(¥) = &(@), iff x =0,

2) Yor(y) = ‘I’X(%),for every 0 # v € C,
B) Ty +¢) =Y () O ¥y (¥),
where Y, denotes the value of ¥ at a point x € J.

Example 3. We prove in the following steps that the increasing Hypergeometric function below
defines a symmetric random norm as follows:

_|X||> _ i (VD)r(V2)k (_ ”Xl/’H)k

Hq ( V7, Vo, Ny;
2 1< 1, V2, 1N1, 1/] = (Nl)k ] 7
in which V1, Vo, Ny >0, x € 3, and i > 0.
(1) We can easily show that ;H; (Vl, Vo; N1; _th,b|) =1, for every p € (0, +00), iff x = 0.
(2) Forevery x € J, v € Cand ¢ > 0, we get
vxll®
s Doxlly - o ()
2 <V1,Vz, Ny; " = L %
lxll®
v

e (WM T
kg’) (N1)k k!

= o (VL Va; Ny; _||?¢(7||> :

o]

(3) Let2H1<V1,V2;N1;—|fl‘]|> < ,H (vl,vz; Nl;—“;ﬂ).Men, we have that 101 < I&1,

forevery x, x' € Jand p, ¢’ > 0.1If x = x', we have < ¢'. Thus, we obtain

/
bl 5 lad 1)
% 4 4 Y
li
NN
y+y P+
!
> ol
N p+y
! !
hence, lxl > 7”)(—”(/”. But il < - HX‘*‘XTH,and
P P+ Y Y+
k k
_ Xl Cx X
o (V)r(V2)k P o (V)r(V2)k P+
< , 15
= (N k! _k‘;) (N1)k k! 15)
which implies that
||X||> ( ||X+X'||)
Hq( Vq, Vo, Ny, ———— ) < H;( Vq, V5, Ny ————— ).
21(121#] 2Hy 1211,!14—1/1’

Thus, we conclude that
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|Ix+x’|>
Hy( Vy, Vo; N — A TA Y
2 1( 1, V2, N1 T

/
min {2H1 (Vl/ Vo; Ny; _||le||) , 21 (V1/ Vo; Ny; — Hiz,” > }

for every x, x' € Jand ¥, ' > 0. Hence, ,H, <V1, Vo, N1; —|flg|> is a symmetric random norm,

for every x € J, and ¢ > 0, where (g, ||.]|) is a normed linear space.

2.5. Caputo Fractional Derivatives

The fractional integral of order 0 < 8 < 1, for a function F : [0, +00) — R can be
written as follows

1 X
JRy :7/ —H)FLE()dt,
for every x > 0.
The Riemann-Liouville derivative of order 0 < 3 < 1, for a function F : [0, +00) — R
is defined by

1 d

RLHPB _
D0+(X) = mﬁ

[ - o Fba,

for every x > 0.
The Caputo derivative of order 0 < P < 1, for a function F : [0,4+00) — R is
given by

DF (1) = (D)0 — 1,

for every x > 0.

2.6. Delayed Parametric Mittag—Leffler Type Matrices

We first introduce parametric Mittag-Leffler matrices and then, we define delayed
parametric Mittag-Leffler matrices and some of their properties.

Definition 4 ([17]). The one parameter and two parameter Mittag—Leffler matrices with parameters
PB1, P2 > 0, and square matrix [X|, <y are respectively defined by

0 Xk
M - A
w0 = LD
_ X X
= bt raemy) Trarzpy T
and
M 3 Xt
w® = L k)
_ X x>
= bt ) TR )
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Definition 5 ([30]) Delayed one parameter and two parameter Mittag—Leffler matrices M?"m
R — R" and M“X ‘R — R" are respectively defined as follows:

0, —o0 < x < —t,
MY = I, —t<x <0, (16)
=A% eGP ;
I+ 8t + 2 5 jEe
and
0, —o0 < x < —t,

- -1
s - S

' (0P | o PP ) (=100 Ak : T

where I (or 1) and 0 are identity and zero matrices.
Lemma 1. Forevery x € [(j — 1)t,jt], withj € p, B > 0, and ¢, > 0, we have that
2P -
QM ¢) = My (12[xF), ¢),

and
¥ () = Furg gz (9)-

t

Proof. Making use of (16), we get

M, ) = <I+|| SR . L. ,¢>
IF1+%3) TR +1)

= ([EF) >

(,Z(:J rGR+1)’

= oMgp(E[XY), ).

O

Lemma 2. For x € [(j — 1)t, jt], with j € p, we get

[ =0 B (- nnF
(=Dt

= (= (G-DyHUIFB[L -, 3],
where Bla, B] = fol t%=1(1 — t)P~1dt is the Beta function.

Proof. Using integration by parts, we have

[N - - G- e
(=1t

[ - G-00 (- —2) Sy

j— 1t
= (x—(G—DHUVFB[ -, jp].
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Lemma 3. For x € ((j —1)t,jt], Y € [0, ] and fixed number j € p, we get

/(" (x—7)"F(r— (j— 1)t - YY¥*ldr

-1ty

= (= (=Dt =Y)0"VPB[1 - P, 7).
Proof. From integration by parts, we have
X 4
— ) B (- (j=-Dt=PYV¥F 4t
Sy P E === )

—(j—-1)t-Yy= x—=(-Dt=Y ,
G y=M /0 (x—(j—1)t—Y - M) BPMP1dm

x—(-1t=Y M -+
= — 1)t — Pl — &7 jB-1
/ =G 00-9) 8 (1 o M) M
N(x—(j—1)t=Y)=M / (=Dt Y0¥ - N)FNFLIN
= (X = (=Dt =V)U"V¥B[1 -, jp].
O

Lemma 4. For x € ((j —1)t,jt], Y € [0, 7] and fixed number j € p, we get

X =(r—
/y(;(f‘t)_mM;% I e (17)
_ Xy (T_y)%fl X B ,m:(r—t—y)m*
/y(X T) 171"(‘43) dt + t+y(X T) 7E %) dr
N e (T (== YyFE
+ +/(j—1)t+y(X T) *E dr.

T(B)

Proof. Applying mathematical induction, for every x € ((j —1)t,jt], Y € [0, 7] and fixed
number j € p, we get

(1) Forj=1, x € (0,t], applying th , we obtain

X B B E(rftfy)‘” . X B —p (T_y)‘p—l
/y(X T) T My dT—/y()( T) 171,(%) dr.

(2) Forj=2, x € (t2t], applying th , We obtain
X B(T—t—
L= e

t+y
:/ (x—1)" ‘BM“(T )P dT+ ()(fr) mM“(T I e

y
P (e [P ey
=/, -0 d”/ [I i) T Tep )
e g (Tt )
_./y (x —1) B TF) dt + +y()(*T) Pz %) dr.
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(3) Forj=E, x € (E—1)tEt],and E € p, we have that

e
o /(gl)tw(x B }(1,%;3_) NP
Forj = E+1, x € (Et, (E +1)t], the relation below holds:
/yX(X o) PMVEE I g
e e [ o R
Ny et
- o e [ e
— — E+1)P-1
ot E;y(x_f)qsag(r ;S(t(Ef)l(W))m .

Lemma 5. For every x € ((j — 1)t, jt], with fixed number j € p and T € [0, x), we get the
following items:
(i) Forevery T € [0, x — (j — 1)t), j € p, and ¢ > 0, we obtain

(i ) Sl )

(ii) For every T € [x — (E—1)t,x — (E —2)t) with E = 2,3,...,j, and ¢ > 0, we have

o(nia™ ) o e B0 ).

Proof. (i) Fort € [0,x — (j —1)t),j € p,and ¢ > 0, we get

o (Mfg“ —0%, ¢)
(= (=Dt —T7)¥1 )

x—o¥ "' _x—t-o)! -
N N VOIS R (P YTy

(- 1)F | (- )PP = G- 1) e
B s v e By v [y "”>
L Y o S
= (Tt T LET oo 2) )

Y
S

Y
S
N TN N TN
=
N
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9

9

(ii) For every T € [y — (E—1)t, x — (E = 2)t), E=2,3,--+ ,j,and ¢ > 0, we get
(Mg g
- @(1 x ;(QT Ll ;(;3_3;? P Y 5(]—52_);)—5121)%—1
- cp( x ;(Q;B*l s ;(fn_fz.?ﬂ oo jgpE2 s ﬁ(; z_)tz)_mfjr(r;)lml
- <1>((X ;(2?371 ; é e gz(;z_)tz )_mfi(;;m]@)
R )
O

Lemma 6. For every x € ((j — 1)t, jt|, with fixed number j € p, and ¢ > 0, we obtain

0 cirfo® _ o .
cp(/_tMt“(X S (T)dr,(p) tq:(ng(mm)/_t/c (T)dT,(P).

Proof.
q>( M t-0® dmp)
:q></i ! {HEWJF .+51W},C/<T)d7

+ Xojt [1+3W+ Lyt —r((f(j—_lit)q;i)(lf)”“T,C,(T)dn(l))
=o(| [, (148 (qsf-n +"-+|5“r((]-x_01)1§+1)> +/i_jtlﬁfr(]§qi1)]/c’<r>dw>
td)( I+ |(m|;f31) +...+M] /Ot]C/(T)dT+m/X_thC’(T)dT,q))
iq)(:”“r'(i)fl) +.. +M] /Ot]C,(T)dT-‘F%/ K'(t )dr,q;)
offe B BT ) )
- <§0 F(E%Xf >1j) j K (v)dr, 4>)
> @(Mmuamm)/i IC’(T)dr,4>>

Lemma 7. For every x € ((j—1)t,jt],j € p, E

K € C(v,R"), we get

CD(/OX(jl)t

A(x—t—1)® X
ME P K () dr + /X "

1t

= o(M(2h?) [ -0 K(Dg).
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Proof.

ftf'r)‘JS X Z(x—t—1)® )
K(t)d M K(t)dr,
of [ (et [7 | (v)d, 9

</0x = 1)t{ J gt (x ;(((ﬂ;—ll))fgfgfl}lc(r)df

j (E=2)t - 2 (m_z)t_,l.)(mfl)fpf]
+1522/ (E-1)t L;' | T'((m—2)P+P) }K(T)d'f/(l’)

z@(/ox v {): . )>£3+1m)]l€(1)d7
i (m—1)Pp—1
*) Xw [ZZ'E'm 2(@ Do )

(m-1)p - -1 .
(U Z = 2 (m )2)‘481+m%l) +/X ' 1)tlﬁlflr(((;(— 1)2;3m+;3)]K(T>dT’¢>
( /OXOC - TW’le,m( El(x - 1)¥)K(t)dx, ¢>

= (M (12i®) [ -0 K@),

| Y

| Y

Y
o

in which we apply the monotonic property of function I'(.) = J¥-1 for B > 1 that infers
(x—(G-Dt—1)F 1< (x—1)® 1 forevery x € ((j — 1)t jt]. O

2.7. Multiple Aggregate Window Maps
Letn € N, y = diag[p1,--- ,un],and p; € €. Ann-ary aggregation map is a map-
—~—

1<i<n

ping AG(") : diagM,,(e) — ¢, s.t.

. (n) .
ﬁ,nfee AG'" (u) = infe,
——

1<i<n

and

sup AGM(u) = supe,
Wi €e
~—~—

1<i<n
or, equivalently, AG(")(0) = 0 and AG(") (1) = 1.
Besides, for every u, i’ € diagMy(e),if u; < ! ,then, AU (1) < AGU (1),
—~ ~~
1<i<n  1<i<n
In case = 1, for every u € €, we get AG) (1) = p.
Note that n € N denotes the arity of the aggradation map. Also, the aggregation maps

will simply be written AG instead of AG("™),
Now, we present a small list of well-known aggregation maps AG; : diagM, (") — €,
~—

1<i<8
as follows:

. Geometric mean functions:

n 1
AGy(u) = ([ Twi)"
i=1
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Arithmetric mean functions:
1 n
MG (u) = =) i,
nia

Maximum functions:
AGs(p) = max{p1, -, pn},

Minimum functions:

AGy(p) = min{p1, -, pn},

Median of odd numbers:

AGs (diag[pr, - - -, pon—1]) = Jin, max i
\NT:n

Median of even numbers:

AGs(diag[p1, -+, pon]) = min max p;,
[N|=n

Sum functions:

n
AG7<V) = Z.ui/
i=1

Product functions:

n
AGs(u) = [ [ mi-
i=1

2.8. Second Type Kudryashov Method

@

@)

®)

@)

Let us present the algorithm of the second type Kudryashov method, as follows:
Consider the NPDE of the type:

N(x, DX, D¥'x, D2 x, DYDY, DE' DR x, -+ ) =0, 0 <Py, Fa <1, (18)

1

where x = x(t1,t2).
Transmute the NPDE (18) into an ODE via the transformations below

AP g
1= Tasgy) T Targyy M) =x0n) (19)
for every constants A and B.
Rewrite (18) as follows:
Noox', x" x",...) =0, (20)

where the ' denotes %.

Assume the general solution of (20) can be expressed by

x(7) = No+NiQ(y) + N2Q*(17) + -+ + NuQ" (1), (21)

where N; are determined later,and N € N can be computed via the homogeneous
N~
1<i<n

balance principle, and

1
a + B) cosh(r) + (« — B) sinh(n)’

Q(U) = ( (22)
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which satisfies

(Q'(m))* = Q*(n) (1 — 4apQ*(1)). (23)

(5) Making use of (20)—(22), a system of algebraic type is gained, and by solving it, the
general solutions are obtained.

3. Fox Type Stability of (1) for Case 1
Consider the following matrix valued Fox-type controller defined by

oo fams [ XIF | _ x¥
B Ry
oy <N1; —|)é|¢>,2H1 <V1/ Vo; Ny; —|é|¢)
SN - |X|q3 |X|m (Vi,W1),....(Ve,We)
1Hy (V1,N1, Ty ,cHp| — "G | (NuM1)...,(No,Mp)
ames (X, e . Cx®
CHD ( a G(P (I\]llll),-..,(]\?Drl) /CHD Vl, ey VC, Nl, ey Nc, - 64) ’

where ¢ > 0and & > 0.
In view of (24), the plots of aggregation maps AG; [31(x, S¢)] are displayed sepa-
—~
1<i<8
rately in Figure 1. As you can see, the minimum aggregation map AG4[31(x, S¢)], and
the maximum aggregation map AG3[31(x, S¢)], include the lowest and highest values
respectively, and the rest of the aggregation maps ~ AG;  [31(x, S¢)], are placed between
—~—
i=1,25678
them. Thus, we conclude that the aggregate special controller AG4[31 (), S¢)], can present
a better approximation for (1) than the others.

— Max

ol Min

1

Figure 1. The plots of aggregation maps AG; on control function 31(x, S¢). The minimum ag-
~

1<i<8
gregation map AG, and the maximum aggregation map AGz are shown in cyan and brown colors,

respectively, and the rest is between them.

Definition 6. Taking into account Case 1, the fractional order Equation (1) has the Fox type
stability with respect to 31(x, S¢) given in (24), if there exists an £ > 0, s.t for every & > 0, and
every solution F to
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P (D?J(x) - Elgoc),qb) (25)
- ding [Ac4[31<x, &) AGa[31 (0 6¢>]]

there exists a solution F to (1), with
A (700 - Fo.9) @)
= diag [AG4 [31(x, SLp)], ..., AG4[31(x, 664’)@ ’
in which ¢ > 0.
Now, consider the following matrix valued fuzzy controllers created by the Mittag—
Leffler type functions, the one parameter Supertrigonometric and Superhyperbolic Mittag—

Leffler type functions, and Supertrigonometric and Superhyperbolic Gauss-Hypergeometric
type functions, as follows:

—di x* PN v [ IF
32(x, 6¢) := diag [er ( - G(I))/Ma,r(— &P)M%T( - 647)'

MM @ MV [ w MV _ w
«,T 6¢ 4 «,T,Nq G(P 4 w,T,N7,M;q G(P 4
V1, Wy, V2 |X|m V1, Wy, V2, W |X|q3
M — M - ——
o,T,Ny,Mq ng 72w, T,Ny, My G¢ 4

33(x, S¢) := dia [ recos (_ |X|m> resin (_ﬂ)
3(X, : g|p Ny &9 P Ny o )

P B
precoshy;, < — |)é|¢), presinhy, ( — |)é|¢>]’

and
34(x, 6¢) := diag |psupercos, VerZ/Nl}—w , 2Supersing V1,V2,1\]1;_7|X|q3 ,
¢ S¢
asupercoshy V1,V2,N1;—w ,asupersinhy Vl,Vz,Nl;—w .
¢ S¢

Likewise as above, we can see that the minimum aggregation maps AG4[ 3 (x 6¢)],
N~

=234
present a better approximation for (1), than AG; .
~—~

1<i<8
i£4
In summary, we have the following important theorem:

Theorem 1. Consider the fractional-order differential Equation (1) and the inequality below
@ (Dfﬁ F(x) — &9 (x), 4>) (27)

- diag[AG4[31()(,6¢)],...,AG4[34(Xr6<P)]L K
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under the assumptions of Case 1, with zero initial condition. Then, (1) is Fox-type stable with
respect to (24).

Proof. It is easy to show that the unique solution of fractional Equation (1) is given by

Flx) = r(l,m JACERIRETIO (28)

Plus, if F is a solution of the inequality (27), then F is a solution of the following
inequality, for every ¢ > 0,

(700~ g [ -9 12i0(5)ds 0 ) @)

> diag {AG4[31(X, S, - - ,AG4[34(XrG¢)]L \

We prove the inequality (29) only for the special cases: one parameter of the Mittag—
Leffler function and the Gauss Hypergeometric function, as follows:

@ (700 - F(E;g) [foc-sPas)as, ¢>)

= (g [ 00— ¥ T sBlas, o [ or- 5% o3, 5%
S X gr-1ye %
=i Jy -9 ,;)Hkmnds’ ’

S X _gmay_ %
o Jo (=9 ,{Eor(kml)ds"”)

G 1 X
P —5)¥-1sM¥ys, ..
= (i &m0 9

G & 1 X o\ B—1ckp
o o Ty 8PS is.9)
w( 6 & U TRTkP+1)
- r(‘n)kzor(km+1)r((k+l)‘n+l)’ !

S & XTI T(Pr(kP+1) )
TP &2 TP+ D (k+ )P +1) 7

o (DR o ()P
X X
tCI’(GE (TS ((k+1>m+1)"”>
00 Xn‘B o) n‘,]3
o(S L rm S X 1)

T
|+ IB _
zdiag[oﬂl(&p; ’G’i)) ),~~~,0Hl(m; (';‘4[ )}

and
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o (700 - s [ o= 5% 16(s)ds,9)

T (%)
=9 (% -/OX (x — $)¥1oHy [V, Vo; Ny; S¥JdS, - -,
% /oX(X — 8)¥ L, Hy [Vy, Va; Ny; S¥]dS, 4’)

S [ 4 T(Ny) & T(Vi+kI(V,+k) S¥k
5@(7/ (=5 1T(V1)T1(V2) =0 1T(Nl+k2) !

6 x o T(N) BT+ RT(Va +k) SPE
'F(‘B)/O(X 5) T(Vi)F(Va) = T(Np+k) k! dS"P)

— S I(N)) &TMWi+kT(Va+k) 1 (X, o opk
_CD(F(‘W r(v)Ir(V2) = T(N; +k) k!/o (x —S)¥1sPrgs,

6 T(Ny) & TWi4KT(Va+k) 1 (X, gk
'T(P)T(W)I(Va) = T(N;i +k) k!/o(x S)*7's dS,4>)

—q>( 6 T(Ny) > T(Vi+kI(Va+k) x ¥ TP+ 1DI(P)
N T(P) T(V)I'(Vo) = T'(Ny +k) kK T((k+1)B+1)’

& T(N) &IV RI(Va k) x*FD% D(kep 4 1)I(p) 4,)
! F(‘B) F(Vl)F(Vz) P F(Nl —l—k) k! F((k+1)q3+1)'

>q>(6 I(N) STVA+KT(Va+k) X Tkp+1)
- r(v)Ir(vz) = I'(Ny +k) kU T((k+1)B+1)

N T(Ny) XTIV +KI(Va+k)xX* TEp+1) <P)
"CT(MIT(VR) & T(Np +k) kU T((k+1)P+1)

T(Ny) & TV +kT(Va+k) X T(kp +1)
ch(er(vl)rl(%)” TN R AT

I(Ny) & T(Vi+k0(Va+k) YFT(kp+1) >

U T()E (V) Kgo T'(N; + k) kU T(kB+1)

- —|x* —IxI®
= diag|,Hj | V1, Va; Ny; ,o0 o g | Vi, Vo, Np; .
S¢ S¢

A function F is a solution of (25), iff there exists a function P € C(v,R) (which
depends on F), s.t.

O(P(x), ¢) = diag[ACa[31(x, S¢)], - -, AC4[34(x, S¢)],
and
DF F(x) = 216(x) + P(x). (30)

Thus, F is a solution of the inequality below

P (f(yo - r(fm /0 “(x—9)*1EG()ds, ¢>) (31)
= diag[AGs[31(x, &9)], -, AGa[34(x, &¢)].

Making use of (28), we have that
F(X) = w7 Jo (x = S)FHELG(S) + P(S)]dS.

Then, we get
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cp(f(x) _ F(I‘B) /OX(X _ S)‘B‘lElg(S)dS,qy) (32)
- q’(r(lsm /OX(X — 5)®-1p(s)ds, <p)

= diag[AGy[31(x, &), - - -, AGs[34(x, &¢)].

O

The plots of aggregation map AGy on control special functions 3; (x, &¢), are
~—~—
i=1234
displayed in Figure 2. As you can observe, the graph of the aggregate window func-
tion AG4[31(x, S¢)], can present the best estimation among the rest of the drawn control
functions. Considering relation (32) and the above, we have that

diag[AG4[31(x, &), - -, AC4[34(), &¢)]
= diag[AG4[31(x, &¢)], - - -, AG4[31(x, &¢)].

Thus, fractional order equation (1) is Fox-type stable with respect to 31 (x, S¢).
STABILITY RESULTS

|
t

Figure 2. The plots of the aggregate window functions AG4[ 3; (x, S¢)], in colors: cyan (31), blue
~~

i=1234
(32), yellow (33), and pink (34)-

3.1. Fractional-Order Harry Dym Equation

Consider (1), when &1 = [1]1x1, & = Z = [0J1x1, x = (xu.x2), 9(x1, x2) =
F3(x1, x2) Frvxes (X1, x2), and F is a function with continuous second derivative.
Putting the above in (1), we get the following nonlinear time fractional Harry Dym

equation defined by
DLEF(xux2) = F(xux2) Foxm(xuxz), 0<P <1, (33)
2
3vbh \3
F(x1,0) = (‘1_2?(1) .

Consider the following transformations that represent novel dependent variables below
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X1 ds
M= F S0
P
y2 = - XZ 7
I'(1+%)

QV1, M) = ]:<X1(y1,y2),)(2(y1,y2)>,

in which x1 = x1(J1,)2), and x2 = x2(V1, J2).

(34)

Note that F(x1, x2) and its spatial derivative tend to zero as |x1| — co. Then, we

have that
PP, 2
axy Vi 9xF  0V2 axF
_ a<QQy1y1—%Q%;1>a
A% Q2 A%
and

) 1 0

o1 Q) oV
Thus, (33) can be expressed as follows:

3
Qy1y1y1 Q2 - 3Qy1y1 le Q+ fggﬂl N

Qy2 + o2

This time, apply the transformation below

Qy
Q
Based on (35) and (37), we obtain the Korteweg—De Vries equation defined by

L, Y0) =

3 2
ﬁyz — EE ﬁyl + ﬁylylyl =0.
Define the following new variable with constant c,

E(yllyZ) = ‘C(S)/
S: =8V, 0) =1 —cdh.

Inserting (38) in (37), we obtain the ODE below
/ 3 2 ! n
—cL _EL L'+ L7 =0.
Integration of (39) yields
1 3 "

Application of the Second Type Kudryashov Method

(35)

(36)

(37)

(38)

(39)

(40)

Balancing the highest order derivative £ in (40) with the nonlinear term L3, we

obtain N = 1.
Let the solution of (40) be given by

L(8) = No+ NQ(S5),

(41)
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where Ny, N are fixed.

Based on (40) and (41), as well as (23), we obtain a system of algebraic equations,
as follows:

1
cNi = 5No =0,
—cNy + Ny — gNSNl =0,
-3
71\101\112 =0,
1
—8Njaff — EN{' =0.

Solving the above system, we get
c=1 Nyp=0, Ny ==34/—ap. (42)
From the above results, the following solution is derived as

F(x1, x2) = 4/ —ap ! : (43)

hes ; hes
(B + &) cosh(x1 — i) + (B — &) sinh (1 — wigy)

Figures 3-8 display The 2-d with the plots of the imaginary and real parts of (43),
for diverse values of .

-1
_ ) ll
o

L

(c) (d)

Figure 3. (a—d) The 2D with the diagrams of the real part of (43), in the z-axis orientation, for
B = 0.10,0.15,0.20, 0.25.
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(0)

(d)

Figure 4. (a—d) The 2D with the diagrams of the imaginary part of (43), in the z-axis orientation,
for B = 0.10,0.15,0.20, 0.25.

- 107 - 10 U
-5 -5 :
I t U‘:
] e
. 10— T T
-10 -5 0 10 -10 -5 i 5 10
X X
(a) (b)
S0 T -10 i
t U—: t [J—:
5 5
Lo 10T L L
-0 -5 4 1o -0 -5 0 5 o
(c) (d)
Figure 5. (a—d) The contour plots of the real part of (43), in the z-axis orientation, for

B = 0.10,0.15,0.20, 0.25.
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-0 -10
_5; _5__
e Y
s 5]
I - U e e
-lo -5 5 10 -0 -5 0 5 10
.
(b)
-10 -10
4] 5]
b I
e 5
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Figure 6. (a—d) The contour plots of the imaginary part of (43), in the z-axis orientation, for
B = 0.10,0.15,0.20, 0.25.
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Figure 7. The 2D with the diagrams of the real part of (43), in the x-axis orientation (a—d,i-1) and the
y-axis orientation (e-h,m-p), for ¢ = 0.10,0.15,0.20, 0.25.
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Figure 8. The 2D with the diagrams of the imaginary part of (43), in the x-axis orientation (a—d,i-1)
and the y-axis orientation (e-h,m-p), for ¢ = 0.10,0.15,0.20, 0.25.

4. Symmetric Random Finite-Time Stability of (1) for Case 2
4.1. Explicit Formula of Solutions

Making use of [8,10], we propose the proof of the theorem below:
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. . . Ex B
Theorem 2. (i) For the delayed Mittag—Leffler matrix M;X" : R — R", we have that
= S(x—t)B
(D MF™) (x) = EMy 17, (44)

ie, Mtaxq3 is a solution of
(DFF)(x) = EF (x — 1),

with initial condition Mtaxqs = I, for every x € [—t,0].
(ii) The solution F € C([—t, T],R") of (1), has the following form

- 0 -
FOO) =M K0+ [ M )ay.

= E(y—t)B
Proof. (i) For every x € (—oo, —t], Mt“xm = Mf(x D% _o. Thus, (44) holds. For every

X € [-t,0], MtEXr’n = Jand Mta(x_i)qj = 0. Notice that D(‘ﬁl = 0 = Z0. Then, (44) also
holds. For every x € [(x — 1)t,«t], with x € p, we have the following items:

(i.a) Forx =1, and x € [0, ], we get

= Ex¥
Flx) =M =1+ 7r(q3x+ 0y
/ - ‘4337(9‘3*1
F(x) = N (45)

Now, applying the fractional-order derivative in the Caputo sense, by (45) and
Lemma 2, we get

OPMENN0 = a0 e

PEL(1 - P)T(P)
T(P+1)r(1-%)
= & (46)

(ib) Forx =2, and x € [t,2t], we obtain

XY B =p*
r(p+1) rep+1) ’
2PE2 (x — )™

r2p+1)

Fx) =M™ =1+
PELF!
TTRAD)

Now, applying the fractional-order derivative in the Caputo sense by (46) and (47)
and Lemma 2, we have

F'(x) + (47)

(DEMF™)(x) =

[1]

pE2 . ) )
’ FA-P)rp+1) /t (x—1) Pt -t)P ldr

2PE2(x —H* T(1—P)r(2P)
F[(1—9) TEE+HrEE+1)
» (x =¥

+E 71,@3_'_1).

(ic) Forx =j, x € [(j — 1)t,jt], with j € p, we have

|
[

+

|
[
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B-n  Br-2w | - (-)niUr
FeR+1) - TP+ I - DB +1)

Forx =j+1, x € [jt, (j + 1)t], through elementary computation, we obtain

2R —
(DEME™) = E+

N ‘B\Exmfl N ZmEZ(X _ t)Z‘Bfl N (] 4 1)q33j+1 (X _ jt>(j+1)q371
S TE+1) r2p+1) T((+1)P+1)

Now, applying the fractional-order derivative in the Caputo sense by (49) and Lemma 2,

F'(x) . (48)

we get
(D ME™) (%)
= g b O ey e | 0
e
= S L= D 21 (x — jt)®

Fe+1 T TeRn U ToEED
thus, (44) holds, for every x € [(j — 1)t,jt], with j € p.

(ii) Suppose matrix Op(x) = Mtgxq} satisfies (i) of Theorem 2, and every solution of (1)
satisfies the initial condition F(x) = K(x), for every x € [—t,0]. Then

() =0o(x)e+ [ @olx 1~ Ve, 49)

where ¢ is a constant vector, and € is a vector of a continuously differentiable function.
Based on O (x) being a solution of (1), thus, for arbitrary ¢ and €(.), (49) is also a solution
of (1). Then, we claim € and €(.) satisfy the initial condition F(x) = K(x), for every
X € [-t,0].

Considering x = —t, and from (16), we get ©y(—t) = I, ©g(—2t—)Y) =0, Y € [—t,0]
and ©g(—2t — Y) = I, with Y = —t. Therefore, F(—t) = K(—t) = ¢, and (49) takes the
following form

= (e
Foo) =M k(=0 + [ M ey,

For x € [—t,0], we have the following two cases:
(ii.a) For every Y € [—t, x|, s0 —t < x —t — Y < jx, the delayed Mittag—Leffler matrix is

equivalent to M?(X_t_y)m =1
(iiLb) Forevery Y € [x,0],s0 x —t < x —t — Y < —t, the delayed Mittag-Leffler matrix is
equivalent to

E(x—t-»)® 0, Ye(x0],
MEt ):{1 o
7 - X

Then, for every x € [—t,0], we get
X
KG) = k(=) + [ ey, (50)

Taking the derivative in (50), we have €(x) = K'(x). O
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4.2. Symmetric Random Stability Results

Definition 7. Fractional-order system (1) is random finite-time stable w.r.t {0,v,t, a1, a2}, iff
Yic) () = Yo, (), implies that ¥ 7\ () = Ya, (§), for every x € v, and ¢ > 0, with the
initial time of observation K(x), x € [—t,0], and every aq, 0y € RT with a < ap.

Theorem 3. (i) Let y := f_OtIC(y)dy < oo. If

2Mq3(|3\xq3) min{aq, v} < ap, (51)

for every x € v, then, (1) is random finite-time stable, w.r.t. {0,v,t, a1, a2 }.
(ii) Let x and B be constants, s.t., B < L, for every x € p. If

20 min {Mm(|3|xm),Mm(E|tm)} < ay, (52)

for every x € v, then, (1) is random finite-time stable, w.r.t. {0,v,t, a1, a2 }.

Proof. (i) In view of item (ii) of Theorem 2, the solution of fractional system (1) has the
form below:

_ 0 -
Flo) =M K= + [ M )ay. 63)

According to Lemma 1, and (51), we get

¥ L4
Frn @ = e e () OF po ey ()

Y

¥ (4
e (it ) @ s (vt ()

¥y, (wa) @T”<21\4Iq3(1|p3|x‘¥‘))

Y omyy (123%) min{ar, ) (¥)

For(9)
()

for every x € v, and by noting that MtE
(i) From integration by parts, (53) has the following form:

1Y

Y

Y

(x—t=)% Ex¥
< M

_ VER-DP /0 < IPE (x — it = V)P
Flx) =M K0 g K)dy, 54
B(x—t—Y)B i (p—it—Y)® AMEA—=Y)yp B (v —jt—Y)iB-1
by M (x—t=)% _ N (Xl"(z%-a}l)) nd (M 7 ¥ e, B (IZ((lath'_lJ;)

Making use of Lemma 1 and (52), we obtain
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Yro () ()

¥
o ery, [0, BRI gy )

4 4
= TIC(O)M?X(D ( 2 ) OTZf ) f . wdylc(x)(z )

T(iB+1)

4 Y
- ¥ =p (= (:)‘i’ ) -
= K(O)Mf"m(2> 1 e (= (1)) — -0 (2)

¥ 4
>~ = = =i ~
- TIC(O)Mme ( 2 O ‘P’C(X) Yot o )

y

tm(Z
‘PIC(())M,E"QB(E)CD‘II Kx) 11"1‘)3+1)tm(2

4
¥, (W) O¥u (qu(lplElt"U>
b 4

Y

Y

(¥)
20 min {Mm(axm)Mm(lEfm)}
Yo, (9)
|2 |

for every x € v, in which we use the relation a” — g* < (« — )%, fora > B > 0, and
€ (0,1]. O

Y

5. Representation of Solutions to (1) for Case 3

Making use of [8,10], we present the proof of the theorem below:

Theorem 4. Every solution F € C([—t, T],R") of (1), with the initial condition F(x) = 0, for
every x € [—t,0], has the following form

/M“XtT F(r)dt, x> 0.

Proof. Making use of the variation of constants method, every solution of non-homogeneous
system F (x) has the form below:

/ MY AT, x> 0. (55)

in which A(7) is a vector function for every T € [0, x], and F(0) = 0.
Applying the fractional-order derivative in the Caputo sense on both sides of (55), we
get the items below:

(i) Forevery x € (0,t], based on (1), we obtain

(DREF)(x) = EF(x—1)+6(x)
- (X E(x—2t-1)%
= d/o M A(T)dTt+G(x)
= Gx).

_)P
Here, notice that M“% 2#=)% =0.
In view of Lemma 3 and the definition of the Caputo fractional derivative, we get
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(DEF

(DX F

) =

DREF () = (EDEF)(x)

— 1 i X T E(T—t— y

_ F(l—iB)dx/o [/ MG )dy}dr

- mlmd‘i/fw /y (x— ) ¥y avar

_ 1 d X (x—1*

= sy b A0 a0 dy}”
_ 1 d xB1-%P
“Hwach ot A
= A(x)

Thus, we have A(x) = G(x).

(i) Forevery x € (jt, (j + 1)t], with j € p, based on (1), we get

)(x) = Ef()c—t)ﬂLg()
/ M2 (T)dwg( )

I
[z

- Xt()(—t—r X2 (x - 2t—r)2‘431
= H{/o B VO dT+/ = A(t)dt
ot [T ‘ft‘?m 1A<r>dr] +G().

By the definition of the Caputo fractional derivative, we obtain

DORF)(x) = (“"DEF)(x)

iy h L o)

= 1_ dx// x—1) Py A)avar

-yt | oo e

In view of Lemmas 3 and 4, we have that

(REDE F)(x)
i A i [ A [0 et g
st A1 [ I
a+z [ WA(J))W var [0 2;(2%)2%—1 AY)dY
oo +E'/Ox_jt x _];(;%)jmlA(y)dy

/ M“XZtT A(D)dT +G(x).

Thus, A(x) = G(x).
O
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Q((LF)x) - (LD)(x).¢) = CD((f(X) —Z(x)) -al

It is straightforward that every solution F of (1) for Case 3 has the form F(x) =
Fo(x) + F(x), in which Fy(x) is a solution of (1) for Case 2, with the initial condition
F(x) = K(x), forevery x € [—t,0], and F(x) is a solution of (1) for Case 3, with F(0) = 0.
Considering the above descriptions, we will present the formula of solutions to (1) for
Case 3, in the theorem below:

Theorem 5. Every solution F € C([—t, T|,R") of (1) for Case 3 is given by
= 0 By —
Flx) = M K (=) + / MEXDY e (1) 4 / MES G ().
—t

6. Fuzzy Finite-Time Stability of (1) for Case 4
Definition 8. The function F € C([—t, T],R") is a solution of (1) for Case 4, if,

Flx) = M K(—t) + / MEC Y o () / VEE 0 3 (x, F(r))dr. (56)

Let us consider the assumptions below:

(A1) The contractive mapping H € C(v, R") has the contraction property w.r.t the second
component with positive Lipschitz constant a,i.e., ®(H(x, V) — H(x, Z),¢) = ®(Y —
z, ),

(M) bi=aly),_4 W&Z)(T (m —1)t)™¥] < I, for every fixed number « € p.

(A3) Thereis a {1(.) € C(v,R%), st. D(H(x, V), ¢) = ®(C1(x),¢), for every x € v and

Y eR"
(A4) There is a {»(.) € Li(v,R%), with l + l =1land p > 1, st, CID(H()(,y),(P) =
D(02(x),¢), forevery x evand Y € R” and Z(x fo Oo(t Wdr)'? < o0.

Letc:= fﬁt |K'(T)|d.
Theorem 6. Let Ay and A hold. Then, (1) has a unique solution F € C([—t, T], R").

Proof. Consider the operator .# : C([—t, T],R") — C([—t, T],R") defined by
(ZF)(x) = MY K (—1) + / MEXO% k() dr +/ ME D (x, F (o)) de. (57)
The function . is well-defined because of A;. We prove . is a contraction mapping.
Applying Lemma 5, for every F,Z € C([—t, T|,R"), and ¢ > 0, we have that
K |E|m—1 g
—(x—(m-=1)t ;P ),
3 F iy (=00 )

which infers that

P((LF)(x) = (ZLT)(x), ¢) = ®O[F(x) = (), ¢),

Through (A;), one can use contraction mapping principle to complete the proof. [

Definition 9. Suppose F is a solution of (1). Fractional order Equations (1) and (2) is fuzzy
finite-time stable w.r.t {0,v,t, a1, 02}, iff, ®(K(x),¢) = ®(a1,¢),x € [—t,0], infers that
D(F(x),¢) = ®(ag, @), x € v, in which K(x), —t < x < 0 is the initial time, and ay, ay
are positive, with «1 < ap, and ¢ > 0.

Theorem 7. (i) Assume the assumptions (A1), (Az), and (A3) hold. For the fixed x € p, if,
forevery x € v,
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3min{min{rx c}My (|Z]x*), inf ¢ (X)[iwjl()(—('—l)t)m}} <ay XEV (58)
VTSI W LT ) J 2 ’

then the fractional order system (1)—(2) is fuzzy finite-time stable w.r.t {0,v,t, a1, ap}.
(ii) Assume the assumptions (A1), (Az), and (Ay) hold and B > 1 — % (p > 1). For the fixed

K€ p,if,

K -1 ; JB—1+
min { min{ay, ¢} Mg (|1Z[x™) EZ (pz m— 1)% <@y XEV (59)

then the fractional order system (1)—~(2) is fuzzy finite-time stable w.r.t {0, v, t, a1, ap}.
(iii) Assume the assumptions (A1), (Az), and (A3) hold and 9B > L. For the fixed x € p, if,

. . - inf _
3 min { min{ay, c} My (|2[xP), Xegl(mmemmﬂamm)} <y, XEV, (60)

then the fractional order system (1) and (2) is fuzzy finite-time stable w.r.t {0,v,t, a1, a3 }.

Proof. (i) Through the assumptions (A1) and (A;) and Theorem 6, we have that (1) has
a unique solution F € C([—t, T],R"). Making use of Lemmas 1, 5 and 6 and (56), we get

O(F(x), )
o MF K (— +/ MEXEDF et (7 dr+/ Vil Cl(r)d‘(,gb)

(k¢
@(Mf’“mlc >@q>(/ MY i (), )@qa(/ M) gl(r)dr,‘:f)
(k- >W)@q’(/ O )

O (o] /0“ Ll .

XEV

Y

Y

Y
&

2)t — 7)U-D¥-1

e (Z' e ) S)
si7) O 3w )

&yt

O2(ntam| ¥ rmr (- G- 0% = (= )0®)

Y
o
/N

w
=
I
=

NG

&2

) L_i rGe T (0P = P )] )

1

@ (saMn(2), § ) O cttm(izi®), § )

o ateco] -] 9

j=1

Y

Y

<I><3m1n {0&1Msp(| X¥), My (1E[XY), ) inf &1 (x [ZK:F];;3|J+11 (jl)t)jm]}’gb)

j=1
(D(D(z, 4))

Y
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(ii) In view of Lemma 1, 5 and 6, and (56) and (59), we get

O(F(x). )
- (MHX% >@c1>(/ MEX ! (1), "’)
QCD(/O r(g)mléz(r)dr+...+/ |E|K—l (x —(x r(1}(){;3) T)Km_léz(*r)dr,;’j)
=

(- )W)@q’</ R )
@@(Z'F R L ALY

*( sz, ) O (¢ g ) | |
©®<Z|E- (/O 1)t()(—(j—l)t—T)p(]m_l)dT>p</0X(jl)tgz(‘f)qd‘t)q, )

=

Y

SIS

= (b2, £) O o ey )

O£ ([ --m oy ([ stora)' 3
= (3m1n {aleﬂ x®), Mg (1Ex¥), ¢ ;1( e (pz(s;_—lrztjf);+;>}'¢)
= P(az ¢).

(iif) In view of Lemma 1 and 5-7, and (56) and (60), we get

@(F(x).¢)

= o(mbtp(i®), ) O (wm(zi®), § )
O (Mun(=h®) [ -0 (0§
= o(mbtp(i®), ) O (wm(zi®), § )
Oe( infa00Mn () [ -1 ar, L)
= o (uttn(2h®), L) Qo (=), §)
O (=i wugy 2y, L)
- CI><3mir1{ale(|E)(q3),chg(|E|Xm),W}(ml\/ﬂmm(mmm)}f‘f’)
= D(az, ).
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Example
Consider the fractional-order system below
DY?F(x) = EF(x —0.2) + H(x, F(x)), x €1[0,0.6], (61)
_ (XXX X X _
where & = diag[0.1,0.2,0.3,0.4,0.5], .F()() = (F), F(x), Fs(x), Fa(x), Fs(x) T,
2
and H(x, F(x)) = (X Iny/[F(x)|, &  sin 2(Fa(x)), %cos(f3(§)),7‘2arccot(f4( ),
T
X _1FWl
2 1+ Fs(x)|

The solution of fractional system (61) and (62) has the following form:

= 4.0. 0 =TV _ 05
Fx) :M5§°5K(—0.2)+/_02M3(2" 02-7) ( -, ) dr+/xM0“(2"05°2 U (x, Flx))dr.

Now, we have that

Y
S

Y
o

Y
S

Y
4

Y
&

1Y
o
N N 7 N N Ve VN N N N
5
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|
)
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Y
S
:'“1
i‘l
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Y
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Y
o
7 N 7 N 7 N 7N
3
J
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2
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(
(25 (5
2
- <I><sin(}'3(?2€)2}'3(72()>,2Sm(fj;;);rm))
- @(Fa()zc) ;]?3(}2(),2 . (g(ﬁ);%(’f))')
= o(Aw-Aw L),
@(arccot (Fa(x)) — arccot(F4(x)), (P)

- cp(arccot Fin) - Fi0lo )

= —Jf“4<x>1,¢)

N

and

B0l 1FW)
GI)<1+|F5(;c)l 1+f5(x)|’¢>

= o700 - B0 4 )

where ¢ >0, M; > 0,i=1,2,3,4,5and F;, < M < F.
Making use of the above inequalities, we get

<1>(H<x,fi<x>> - H(x,fi(x)),qb)
- ¢(X2[ﬂ<x>—ﬁ<x>1,ﬁi), i=1,2,3,4,5.

Here, we let {1(x) = Ca(x) = (% x5 x5 x5 x%) "

Making use of the arithmetric mean aggregation map AG, and the maximum aggrega-
tion map AGz, we calculate the numerical results of finite-time stability for fractional-order
system (61) and (62) (see Table 1). In view of the required conditions in cases (i), (ii), (iii) of
Theorem 7, we obtain the relative optimal thresholds AGz(a2) = 0.70, and AGy (ap) = 0.04.
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Table 1. Stability results of Example 1.

Theorem 7 (i) (ii) (iii)
P 0.50 0.50 0.50
T 0.60 0.60 0.60
t 0.20 0.20 0.20
AG3 () 0.10 0.10 0.10
AG3 (aq) 0.10 0.10 0.10
AG3 (F) 0.7539 0.6992 0.9094
AG3 (ap) 0.76 0.70 0.91
AGy (K) 0.02 0.02 0.02
AGy (aq) 0.02 0.02 0.02
AG; (F) 0.0746 0.0398 0.0971
AGy (a3) 0.08 0.04 0.10

7. Conclusions

The main target of this paper is to provide a new interpretation of Ulam type stability
with the application of classical, well-known special functions and aggregation maps.
This new notion of stability not only covers the previous notions but also considers the
optimization of the problem. This stability allows us to get the best approximation error
estimates for different fractional-order systems. In addition, we will be able to obtain
maximal stability with minimal error which leads to calculate the optimal solution.
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