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Abstract: In this work, we consider a Timoshenko-type system in a bounded one-dimensional
domain under Dirichlet conditions with time-varying delay and internal friction damping acting in
the displacement. First, we show that the system is well-posed using semi-group theory. Then, under
appropriate assumptions on the weights of the delay, the stability of system is obtained via a suitable
Lyapunov functional.
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1. Introduction

In 1921, Timoshenko [1] introduced the problem of a thick beam given by the following
system of coupled hyperbolic equations:

ρutt(x, t)− (Kux − ϕ)x(x, t) = 0, (x, t) ∈ (0, L)×]0,+∞[,
Iρ ϕtt(x, t)− (ELϕx)x − K(ux − ϕ)(x, t) = 0, (x, t) ∈ (0, L)×]0,+∞[,

(1)

where u is the transverse displacement of the beam and ϕ is the rotation angle of the
filament of the beam. The coefficient ρ is the density, Iρ is the polar moment of inertia of a
cross section, E is Young’s modulus of elasticity, I is the moment of inertia of a cross section,
and k is the shear modulus.

In the late 19th century, researchers became interested in studying the deformations
in elastic structures such as beams, plates, and shells when rotational inertia and shear
deformation form the main hypotheses. With the beginning of the 21st century, authors’
interest in studying the system in (1) increased and results related to existence and asymp-
totic behavior were achieved. The stability of the Timoshenko system with different types
of damping has been studied—we refer the reader to [2–6] and their references.

Problem (1) has been studied by Kim and Renardy [2] under the following two
boundary conditions:

Kϕ(L, t)− Kux(L, t) = αut(L, t), ∀t > 0,
EIϕx(L, t) + βϕt(L, t) = 0, ∀t > 0,

as they proved the exponential decay of the natural energy of (1) by multiplier techniques.
Soufyane and Wehbe in [7] showed that Problem (1) with unique locally distributed

feedback is uniformly stable if and only if the wave speeds are equal; otherwise, it is
asymptotically stable. Shi and Feng [8] studied a nonuniform Timoshenko beam and
showed that the beam’s vibration decays exponentially under some locally distributed
controls. This was carried out using the frequency multiplier method.
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In this article, we study a more general Timoshenko problem than the problems that
have been studied, with the delay term appearing as the control term in the first equation.

The introduction of the term delay µut(t− τ(t)) makes the problem different from
that addressed in the literature.

Many works have shown that the presence of a delay in a partial differential equation
problem is a source of instability unless additional control terms or conditions are used;
see, for example, references [9–12].

Several researchers treated the Timoshenko system with internal constant delay acting
in one equation or in two equations; as we mention here, one of the first results was
obtained by Said-Houari and Laskri [13]. They studied the following Timoshenko system:

ρ1 ϕtt(x, t)− K(ϕx + ψ)x(x, t) = 0,
ρ2ψtt(x, t)− bψxx(x, t)− K(ϕx + ψ)(x, t) + a0ψt(x, t) + aψt(x, t− τ) = 0,

(2)

In (0, 1) × R+, the authors of [13] proved the stability of (2) in the case of the equal-
speed propagation under the condition (a < a0 ). Moreover, Said-Houari and Rahali [14]
studied System (2) in the presence of a viscoelastic damping of the form

∫ t
0 g(s)ψxx(t− s)ds

acting on the second equation. They proved that the energy total of this problem decays
exponentially in the case of equal wave speeds, and 0 < a = µ1 ≤ a0 = µ2.

In 2013, Muhammad Kafini et al. [15] considered the following Timoshenko system of
thermoelasticity of type III with constant delay:

(ρ1 ϕtt − K(ϕx + ψ)x)(x, t) = 0, in ]0, 1[×]0,+∞[,
(ρ2ψtt − bψxx − K(ϕx + ψ) + βθtx)(x, t) = 0, in ]0, 1[×]0,+∞[,
(ρ3θtt − δθxx + γψtx + µ1θtxx)(x, t) + µ2θtxx(x, t− τ) = 0, in ]0, 1[×]0,+∞[,
θ(x, 0) = θ0, θt(x, 0) = θ1, ψ(x, 0) = ψ0, ψt(x, 0) = ψ1, in ]0, 1[,
ϕ(x, 0) = ϕ0, ϕt(x, 0) = ϕ1, in ]0, 1[,
θtx(x, t− τ) = f0(x, t− τ), in ]0, 1[×]− τ, 0[,
ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = 0, on ]0,+∞[,
θx(0, t) = θx(1, t) = 0, on ]− τ,+∞[.

The authors in this article showed that the energy decreases exponentially in the case of
equal wave speeds and polynomially otherwise (under suitable conditions on the coeffi-
cients and the initial data). A one-dimensional linear thermoelastic system of Timoshenko
type with delay is considered in [16]. Well-posedness and stability of the system are estab-
lished by using the well known Lyapunov functional. The results in our article are obtained
using the Lyapunov functional, as in [16], but with another choice for the functions, i.e.,
constructing the Lyapunov functional. This choice is imposed by the nature of our system,
which is totally different from the one previously studied.

Almeida Junior et al. [17] studied the asymptotic behavior of solutions for two
dissipative Bresse–Timoshenko systems without a “second spectrum” and with a delay
term in the internal feedback, one on the vertical displacement and the other on angular
rotation, which are given by

ρ1ytt − K(yx + ψ)x + µ1yt + µ2yt(x, t− τ) = 0, in ]0, L[×]0,+∞[,
−ρ2ψttx − bψxx − K(yx + ψ) = 0, in ]0, L[×]0,+∞[,

(3)

and

ρ1ytt − K(yx + ψ)x = 0, in ]0, L[×]0,+∞[,
−ρ2ψttx − bψxx − K(yx + ψ) + µ1ψt + µ2ψt(x, t− τ) = 0, in ]0, L[×]0,+∞[.

(4)

The result of System (2) was extended to the case of time-varying delay by Kirane et al. [14].
Systems (3) and (4) were studied by Feng et al. [18] with time-dependent delay terms.

The authors used the appropriate Lyapunov function to demonstrate the exponential
decay results.
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We mention here that the nonlinear Timoshenko system subject to variable delay and
internal feedback was considered by Xin-Guang Yang et al. [19] as follows:

ρ1 ϕtt(x, t)− K(ϕx + ψ)x(x, t) = h(x), in ]0, 1[×]0,+∞[,
ρ2ψtt(x, t)− bψxx(x, t)− K(ϕx + ψ)(x, t) + µ1ψt(x, t)

+µ2ψt(x, t− τ(t)) + f (ψ(x, t)) = g(x), in ]0, 1[×]0,+∞[,

with the Dirichlet boundary condition:

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = 0, ∀t > 0.

After proving that the problem is well-posed, the authors demonstrated the existence of the
finite-dimensional global and exponential attractors by using the concept of quasi-stability
used by Lasiecka and Chueshov in [20,21].The motivation to introduce a time-dependent
delay is that, in previous papers, fixed delays have mostly been considered, except for a
few works—see [22–26], which can be considered as the most widely cited papers that
deal with these types of problems. However, to show the influence of a time-dependent
delay, we should make a comparison to previous results. With time-varying weight and
time-varying delay, the authors in [22] studied the global well-posedness and exponential
stability for a Rao–Nakra sandwich beam equation (see [25,26]). The aim of [23] was to
consider the Timoshenko system in thermoelasticity of second sound with a time-varying
delay, where the questions of well-posedness and stability were investigated; one can also
see the results in [24].

For systems with two internal time delays, we mention the work of Said Houari and
Sofiane [27]:

ρ1ytt − K(yx + ψ)x + a1yt(x, t− τ) = 0, in ]0, L[×]0,+∞[,
ρ2ψtt − bψxx + K(yx + ψ) + a2ψt(x, t− τ) = 0, in ]0, L[×]0,+∞[,

with the following boundary controls:

k(yx + ψ)(L, t) = −αyt(L, t), bψx(L, t) = −µψt(L, t).

The stability of this Timoshenko system was proven under some smallness conditions on L
and the weights of the delays.

In [28], Aissa Guesmia and Abdelaziz Soufyane considered a Timoshenko-type system
with delay terms:

ρ1 ϕtt(x, t)− k1(ϕx + ψ)x(x, t) + λ1 ϕt(x, t) + µ1 ϕt(x, t− τ1) = 0,
ρ2ψtt(x, t)− k2ψxx(x, t) + k1(ϕx + ψ)(x, t) + λ2ψt(x, t) + µ2ψt(x, t− τ2) = 0,
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),
ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),
ϕt(x,−ρτ1) = f1(x,−ρτ1), ψt(x,−ρτ2) = f2(x,−ρτ2),

(5)

under the Dirichlet–Dirichlet boundary conditions:

ϕ(0, t) = ϕ(L, t) = ψ(0, t) = ψ(L, t) = 0, (6)

or the Dirichlet–Neumann boundary conditions:

ϕ(0, t) = ϕ(L, t) = ψx(0, t) = ψx(L, t) = 0, (7)

for x ∈]0, L[, t > 0, ρ ∈]0, 1[, µj ∈ R, L, ρj, k j, τj > 0, λj ≥ 0, (j = 1, 2),
(ϕ, ψ) :]0, L[×]0,+∞[−→ R2 is the state of (5) with (6) or (7), ϕ0, ϕ1, ψ0, ψ1 :]0, L[−→ R,
and f j :]0, L[×]− τj, 0[−→ R, (j = 1, 2). The authors of this article have demonstrated the
well-posedness and asymptotic behavior of (5) with (6) or (7) in the case of equal-velocity
wave propagation as well as in the opposite case. Precisely, they proved the exponential
stability in the case of equal-speed wave propagation and the polynomial stability in the
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opposite case. It is known, at least in this field of research, that, if we add more damping
terms to evolutionary systems, this weakens the scientific value of the problem, particularly
from a mathematics point of view, which is not our case. This makes the problem weak,
and the stabilization process can be facilitated despite the presence of some positive points,
which are mainly represented by the interactions between the different parameters of the
damping terms. This case is in [29], where a system similar to (5) is considered with three
damping terms (discrete delay, complementary frictional damping, and infinite memory).

The continuation of this work is organized as follows: In Section 2, we introduce the
problem and we consider the hypotheses for the coefficients present in (8). In Section 3,
we present some preliminaries, and our main results are presented in Section 4, using the
semi-group theory of linear operators found in [30,31] to prove the well-posedness result.
Then, the exponential decay of the energy of our problem is obtained in Section 5.

2. Position of Problem and Hypothesis

A new mathematical model of a Timoshenko-type system is constructed, taking
into account internal friction damping, in which the effects of time-dependent delay are
considered. This generalization is analyzed in the process of thermomechanical loading.

Now, we propose to study the exponential stability of the following Timoshenko-type
system subject to a time-dependent delay term acting on the following equation:

[ρ1u1tt − k(u1x + pu2)x − k0(u1x + pu2)tx + (αu1 − γβu2)xxxx](x, t)
+µ1u1t(x, t) + µ2u1t(x, t− τ(t)) = 0 in ]0, l[×]0,+∞[,

[ρ2u2tt − bu2xx + pk(u1x + pu2) + pk0(u1x + pu2)t](x, t)
+β(u2 − γu1)xxxx(x, t) = 0 in ]0, l[×]0,+∞[,

(8)

where u1(x, t) and u2(x, t) are the unknowns, which represent the transverse displacement
of the plate and the rotation angle of a filament of the plate, respectively, l is the curvature
of the beam, µ1u1t represent frictional damping, τ(t) represents time-varying delay to
the system, ρi; (i = 1; 2), µ1, k, α, β, and γ are strictly positive constants, and µ2 is a
real number.

From now on, we consider for System (8) the following initial conditions:

ui(x, 0) = u0
i (x), ui t(x, 0) = u1

i (x), (i = 1; 2), in ]0, l[
u1t(x, t− τ(0)) = f0(x, t− τ(0)), in ]0, l[×]0, τ(0)[,

(9)

and the Dirichlet boundary conditions:

ui(x, t) = 0, (i = 1; 2), x ∈ {0, l}, ∀t ≥ 0. (10)

First, we consider the following hypotheses.

Hypothesis 1. The delay function τ(t) is a C1(R+) continuous function which satisfies

τ ∈W2,∞([0, T]), ∀T > 0, (11)

and there exist positive constants τ0, τ1, and d > 0, such that

0 < τ0 ≤ τ(t) ≤ τ1, ∀t > 0, (12)

and
0 < τ′(t) ≤ d < 1, ∀t > 0. (13)

Hypothesis 2. There exists a constant d > 0, such that

|µ2| ≤
√

1− dµ1, ∀t > 0. (14)
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Remark 1. If we look at the function f (t) = t− τ(t), Condition (12) implies that f is a strictly
increasing function. This means that the delayed information arrives in chronological order.

3. Preliminaries and Main Results

Due to Datko et al. [12] and also [32], we consider the following changes of variables:

z(x, ρ, t) = u1t(x, t− ρτ(t)), (x, ρ, t) ∈]0, l[×]0, 1[×]0,+∞[. (15)

We can easily check that z satisfies the following relationship:

τ(t)zt(x, ρ, t) + (1− ρτ′(t))zρ(x, ρ, t) = 0, (x, ρ, t) ∈]0, l[×]0, 1[×]0,+∞[. (16)

Using these new variables, System (8) is converted to the following equivalent form:

[ρ1u1tt − k(u1x + pu2)x − k0(u1x + pu2)tx + (αu1 − γβu2)xxxx](x, t)
+µ1u1t(x, t) + µ2z(x, 1, t) = 0 in ]0, l[×]0,+∞[,

[ρ2u2tt − bu2xx + pk(u1x + pu2) + pk0(u1x + pu2)t](x, t)
+β(u2 − γu1)xxxx(x, t) = 0 in ]0, l[×]0,+∞[,

τ(t)zt(x, ρ, t) + (1− ρτ′(t))zρ(x, ρ, t) = 0, in ]0, l[×]0, 1[×]0,+∞[.

(17)

System (17) is equipped with the following initial and boundary conditions:

ui(x, 0) = u0
i (x), ui t(x, 0) = u1

i (x), (i = 1; 2), in ]0, l[
u1t(x, t− τ(0)) = f0(x, t− τ(0)), in ]0, l[×]0, τ(0)[,
z(x, ρ, 0) = f0(x,−ρτ(0)), in ]0, l[×]0, 1[,
z(x, 0, t) = u1t(x, t), in ]0, l[×]0,+∞[,
ui(x, t) = 0, (i = 1; 2), x ∈ {0, l}, ∀t ≥ 0.

(18)

From now on, we use the following symbols:

ui := ui(x, t), (i = 1; 2) and z(ρ) := z(x, ρ, t).

To announce our stability results, we define the energy function associated with (8) by

E(t) = 1
2

[
k‖u1x + pu2‖2 +

(
α− βγ2)‖u1xx‖2 + β‖γu1xx − u2xx‖2

+b‖u2x‖2 + ∑2
i=1 ρi‖ui t‖

2 + µ1ξτ(t)
∫ 1

0

∥∥z2(ρ)
∥∥2dρ

]
.

(19)

The main goal of our problem is to prove the following result.

Theorem 1. Assume that Hypothesis 1 and Hypothesis 2 hold.
Then, for any U0 = (u0

1, u1
1, u0

2, u1
2, f0)

T ∈ H, there exist positive constants ζ and ω, in-
dependent of t, such that the solution U = (u1, u1t, u2, u2t, z)T of Problems (8) and (9) satisfies

E(t) ≤ ζe−ωt ∀t ∈ R+. (20)

In the next section, we are concerned with the existence, uniqueness, and smoothness
of the solution of (17) and (18) based on the classical Lumiere–Phillips theory, which is
found in [31,33].

4. Well-Posedness

We also use h′ to denote the derivative when the function h has only one variable. The
notation ∂y denotes the derivative with respect to y and wy denotes the derivative of w
with respect to y.

We introduce the following notations. We note ‖.‖X as the usual norm defined on
the Banach space X and 〈.〉 and ‖.‖ as the inner product and the norm defined on L2(0, l),
respectively.
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First, we transform Systems (17) and (18) to the first-order differential system in (28)
below. For this, we adopt the technique in [9–34]. Then, we prove that the operator A,
given in (25), generates a contraction semi-group on the Hilbert spaceH given in (21).

Now, we introduce φi = ui t, (i = 1; 2) and consider the following energy space:

H =
(

H1
0(0, l)× L2(0, l)

)2
× L2((0, l)× (0, 1)). (21)

The spaceH is equipped with the inner product, which is defined as follows:〈
U, Ũ

〉
H
=

∫ l
0

(
α− βγ2)∂xxu1∂xxũ1 + ∑2

i=1 ρiφiφ̃idx

+
∫ l

0 β(γ∂xxu1 − ∂xxu2)(γ∂xxũ1 − ∂xxũ2)dx
+
∫ l

0 k(∂xu1 + pu2)(∂xũ1 + pũ2) + b∂xu2∂xũ2dx
+
∫ l

0 µ1ξτ(t)
∫ 1

0 z(ρ)z̃(ρ)dρdx,

(22)

for any U = (u1, φ1, u2, φ2, z), Ũ =
(
ũ1, φ̃1, ũ2, φ̃2, z̃

)
inH.

Moreover, by Hypothesis 1 and Hypothesis 2, we also assume that there is a positive
constant ξ that, for any t > 0, satisfies

|µ2|
(1− τ′(t))µ1

< ξ < 2− |µ2|√
1− dµ1

. (23)

And from there, we deduce the norm associated with this space:

‖U‖H = k‖u1x + pu2‖2 +
(
α− βγ2)‖u1xx‖2 + ∑2

i=1 ρi‖φi‖2

+b‖u2x‖2 + β‖γu1xx − u2xx‖2 + µ1ξτ(t)
∫ 1

0 ‖z(ρ)‖
2dρ.

(24)

Now, we define the differential operator A : D(A) ⊂ H −→ H by the following matrix:

0 I 0 0 0

1
ρ1

(
−α∂4

x + k∂2
x
) k0

ρ1
∂2

x −
µ1
ρ1

I βγ
ρ1

∂4
x +

pk
ρ1

∂x
pk0
ρ1

∂x − µ2
ρ1

I|ρ=1

0 0 0 I 0

βγ
ρ2

∂4
x −

pk
ρ2

∂x − pk0
ρ2

∂x − β
ρ2

∂4
x +

b
ρ2

∂2
x −

p2k
ρ2

I − p2k0
ρ2

I 0

0 0 0 0 δ1(t)∂ρ


(25)

where δ1(t) =
ρτ′(t)−1

τ(t) , with the domain

D(A) =
{

U ∈ H; ∂ρz ∈ L2(0, l; L2(0, l)
)

and z(0) = u1t
}

, (26)

where
H =

((
H2(0, l) ∩ H1

0(0, l)
)
× H1(0, l)

)2 × L2(0, l; L2(0, l)
)
. (27)

Under the above definitions, for any U = (u1, φ1, u2, φ2, z)T and U0 =
(
u0

1, u1
1, u0

2, u1
2, f0(.,−ρτ(0))

)T

inH, System (17) can be written as the following Cauchy problem inH:

AU(t) = U′(t), in ]0,+∞[,
U(0) = U0.

(28)

Observe that D(A(t)) is independent of the time t. This means that

D(A(t)) = D(A(0)), ∀t > 0.

By the classical semi-group theory, we obtain our well-posedness result in the following theorem.

Theorem 2. Assume that Hypothesis 1 and Hypothesis 2 are satisfied and (23) holds; then, for any U0 ∈ H
Problem (8), has a unique solution

U ∈ C([0,+∞[,H).
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Moreover, if U0 ∈ D(A), then

U ∈ C([0,+∞[, D(A)) ∩ C1([0,+∞[,H).

Proof. In order to prove Theorem 2, we show that the operator A generates a C0 semi-group inH.
In this step, we prove that the operator A is dissipative.

For U = (u1, φ1, u2, φ2, z)T ∈ D(A), we have

〈AU, U〉 =
(
α− βγ2)〈φ1xx, u1xx〉 − k〈u1x + pu2, φ1x〉 − k0〈φ1x + pφ2, φ1x〉

−α〈u1xx, φ1xx〉+ βγ〈u2xx, φ1xx〉 − µ1‖φ1‖2 − µ2〈z(1), φi〉

−pk〈u1x + pu2, φ2〉 − pk0〈φ1x + pφ2, φ2〉 − β〈u2xx, φ2xx〉

+βγ〈u1xx, φ2xx〉+ β〈γφ1xx − φ2xx, γu1xx − u2xx〉

+k〈φ1x + pφ2, u1x + pu2〉 − µ1ξ
∫ 1

0
〈
(1− ρτ′(t))∂ρz(ρ), z(ρ)

〉
dρ

= −k0‖φ1x + pφ2‖2 − µ1‖φ1‖2 − µ2〈z(1), φ1〉

−ξµ1
∫ 1

0
〈
(1− ρτ′(t))∂ρz(ρ), z(ρ)

〉
dρ

≤ −k0‖φ1x + pφ2‖2 − µ1‖φ1‖2 + |µ2|
2ε1
‖φ1‖2 +

ε1|µ2|
2 ‖z(1)‖

2

− ξµ1
2

[
(1− τ′(t))‖z(1)‖2 − ‖φ1‖2 + τ′(t)

∫ 1
0 ‖z(ρ)‖

2dρ
]

= −k0‖φ1x + pφ2‖2 −
(

µ1 −
|µ2|
2ε1
− µ1ξ

2

)
‖φ1‖2

−
(

µ1ξ(1−τ′(t))
2 − ε1|µ2|

2

)
‖z(1)‖2 − ξµ1τ′(t)

2
∫ 1

0 ‖z(ρ)‖
2dρ.

(29)

We can choose ε1 =
√

1− d and, from (13), (14), and (23), for all t > 0, we obtain

λ1 = µ1 −
|µ2|
2ε1
− µ1ξ

2
≥ 0,

and

λ2 =
µ1ξ(1− τ′(t))

2
− ε1|µ2|

2
≥ 0.

Hence, from (29) we deduce that the operator A is dissipative.
Next, we prove that λI −A is surjective for λ > 0.
For this, we seek a solution U = (u1, φ1, u2, φ2, z)T ∈ D(A) of the equation (λI −A)U = F,

where F = ( f1, f2, f3, f4, f5)
T , that is,

λu1 − φ1 = f1

λφ1 −
1
ρ1

[k(u1xx + pu2x) + k0(φ1xx + pφ2x) + (βγu2 − αu1)xxxx

−µ1φ1 − µ2z(1)] = f2
λu2 − φ2 = f3

λφ2 −
1
ρ2

[−pk(u1x + pu2)− pk0(φ1x + pφ2) + bu2xx + β(γu1 − u2)xxxx] = f4

λz + 1−ρτ′(t)
τ(t) zρ = f5.

(30)

Then, from the first and third equations in (30), we have{
φ1 = λu1 − f1
φ2 = λu2 − f3.

(31)

The last equation in (30) is equivalent to

g(t, ρ)z(ρ) + zρ(ρ) =
1
λ g(t, ρ) f5, (32)

where

g(t, ρ) =
λτ(t)

1− ρτ′(t)
.
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Then, by solving the ordinary differential Equation (32) and noting that z(0) = φ1 = λu1 − f1,
we obtain

z(ρ) = λeG(t,ρ)u1 −
(

f1 − 1
λ

∫ ρ
0 g(t, y) f5(x, y)e−G(t,y)dy

)
eG(t,ρ), (33)

where {
G(t, ρ) = −

∫ ρ
0 g(t, σ)dσ, if τ′(t) 6= 0,

G(t, ρ) = −ρλτ(t), if τ′(t) = 0.
(34)

Substituting (31) and (33) into the second and fourth equations in (30), we have

λϑ1(t)u1 − (k + k0λ)(u1x + pu2)x + (αu1 − βγu2)xxxx

= ϑ1(t) f1 + ρ1 f2 − k0(∂x f1 + p f3)x + µ2 f7

λ2ρ2u2 + p(k + k0λ)(u1x + pu2)− β(γu1 − u2)xxxx − bu2xx

= ρ2λ f3 + pk0(∂x f1 + p f3) + ρ2 f4,

(35)

where
ϑ1(t) = λρ1 + µ1 + µ2eG(t,1),

and  f7 =
(

1
λ

∫ 1
0 g(t, y) f5(x, y)e−G(t,y)dy

)
eG(t,1), if τ′(t) 6= 0,

f7 =
(

τ(t)
∫ 1

0 f5(x, y)eλτ(t)dy
)

e−λτ(t), if τ′(t) = 0,

with {
G(t, 1) = ln(1− τ′(t))

λτ(t)
τ′ (t) , if τ′(t) 6= 0,

G(t, 1) = −λτ(t), if τ′(t) = 0,

We use these in order to solve the following equations:

λϑi(t)ui + (−1)i pi−1(k + k0λ)∂2−i
x (∂xu1 + pu2) + ((2− i)α + (i− 1)β)∂4

xui − γβ∂4
xu3−i

= ϑi(t) f2i−1 + ρi f2i + (−1)ik0 pi−1∂2−i
x (∂x f1 + p f3) + (2− i)µi fi, i = 1; 2.

(36)

where ϑi(t) = ρiλ + (2− i)(µ1 + µ2eG(t,1)), i = 1; 2.
We use a standard procedure for these, multiplying (36) by ϕ1 if i = 1 and by ϕ2 if i = 2, where

ϕi ∈ H1
0(]0, l[). By summing the resulting equations and then integrating by parts with respect to x,

we obtain the following variational formulation:

a((u1, u2), (ϕ1, ϕ2)) = L(ϕ1, ϕ2), (37)

where the bi-linear form a :
(

H1
0(]0, l[)

)2×
(

H1
0(]0, l[)

)2 −→ R and the linear formL :
(

H1
0(]0, l[)

)2 −→
R are given by

a((u1, u2), (ϕ1, ϕ2)) = λϑ1〈u1, ϕ1〉+ (k + k0λ)〈u1x + pu2, ϕ1x + pϕ2〉

+α〈u1xx, ϕ1xx〉 − βγ〈u2xx, ϕ1xx〉 − βγ〈u1xx, ϕ2xx〉

+β〈u2xx + ϕ2xx〉+ λ2ρ2〈u2, ϕ2〉+ b〈u2x, ϕ2x〉,

and
L(ϕ1, ϕ2) = ϑ1〈 f1, ϕ1〉+ k0〈 f1x + p f3, ϕ1x + pϕ2〉+ µ2〈 f7, ϕ1〉

+ρ1〈 f2, ϕ1〉+ ρ2λ〈 f3, ϕ2〉+ ρ2〈 f4, ϕ2〉.

It is easy to check that a is coercive; by choosing the test functions ϕ1 = u1 and ϕ2 = u2, we obtain

a((u1, u2), (u1, u2)) = (k + k0λ)〈u1x + pu2, u1x + pu2〉+ α〈u1xx, u1xx〉

−2βγ〈u2xx, u1xx〉+ β〈u2xx, u2xx〉+ λϑ1〈u1, u1〉

+λ2ρ2〈u2, u2〉+ b〈u2x, u2x〉
= (k + k0λ)‖u1x + pu2‖2 +

(
α− βγ2)‖u1xx‖2

+β‖γu1xx − u2xx‖2 + λϑ1‖u1‖2 + λ2ρ2‖u2‖2 + b‖u2x‖2.
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Moreover, it is not difficult to show that the operators a and L are continuous linear. Thus, by Lax–
Milgram theorem, we have proven that the problem (37) admits a unique solution (u1, u2) ∈

(
H1

0(0, l)
)2

for all (ϕ1, ϕ2) ∈
(

H1
0(0, l)

)2. This means that the operator λI −A is surjective for any fixed t > 0 and
λ > 0. Thus, by applying the Lumer–Phillips theorem (see [31]) to Problem (28), we have proven that
operator A generates a strongly continuous semigroup of S(t) onH.

5. Exponential Stability
In this section, we are interested in studying asymptotic behavior. We show that the solution to

Problems (8)–(10) is exponentially stable. To achieve this goal, we construct a functional L(t) that is
equivalent to the energy E(t), such that ∂tL has a negative multiple of E. For this, we consider the
following lemmas.

Our objective in the first result indicates that the energy is a non-increasing function and is
uniformly bounded above by E(0).

Lemma 1. Assume that Hypothesis 1 and Hypothesis 2 hold. Then, for any regular solution of Problems (17)
and (18) and for any t ≥ 0, the derivative of energy E(t) satisfies the following estimate:

d
dt E(t) ≤ −k0‖u1xt + pu2t‖2 − λ1‖u1t‖2 − λ2‖z(1)‖2. (38)

Proof. First, by multiplying the first and second equations of (17) by u1t and u2t, respectively, and
then integrating by parts over [0, l], we obtain

1
2

d
dt

[
k‖u1x + pu2‖2 +

(
α− βγ2)‖u1xx‖2 + b‖u2x‖2 + β‖(γu1 − u2)xx‖

2

+∑2
i=1 ρi‖ui t‖

2
]
= −k0‖u1xt + pu2t‖2 − µ1‖u1t‖2 − µ2

∫ l
0 z(1)u1tdx.

(39)

Then, multiplying the third equation in (17) by ξµ1z(ρ) and then integrating by parts over [0, l]× [0, 1],
we obtain

µ1ξ
2

d
dt

(
τ(t)

∫ l
0

∫ 1
0 z2(ρ)dρdx

)
=

µ1ξ
2 τ′(t)

∫ l
0

∫ 1
0 z2(ρ)dρdx

− µ1ξ
2
∫ 1

0
d

dρ (1− ρτ′(t))
∫ l

0

∫ 1
0 z2(ρ)dρdx

− µ1ξτ′(t)
2

∫ l
0

∫ 1
0 z2(ρ)dρdx

= − µ1ξ(1−τ′(t))
2

∫ l
0 z2(1)dx +

µ1ξ
2
∫ l

0 u1
2
t dx.

(40)

Then, adding up (39) and (40), we have
d
dt E(t) = −k0‖u1xt + pu2t‖2 −

(
µ1 −

µ1ξ
2

)
‖u1t‖2

− µ1ξ(1−τ′(t))
2

∫ l
0‖z‖

2(1)dx− µ2
∫ l

0 z(1)u1tdx.
(41)

Using Young’s inequality, the last term in the above equality can be estimated as follows:

−µ2
∫ l

0 z(1)u1tdx ≤ |µ2|
2ε2
‖u1t‖2 +

ε2|µ2|
2 ‖z(1)‖

2. (42)

Plugging the above results into (41) and taking into account (23) and (H2), we obtain (38), and
E(t) ≤ E(0) for all t ≥ 0.

This completes the proof of Lemma 1.

Now, we have Lemma 2.

Lemma 2. Let (u1, u1t, u2, u2t, z) be the solution of (17) and (18); then, the functional G, defined by

G(t) = k0
2

∫ l

0
(u1x + pu2)

2dx +
µ1
2

∫ l

0
u2

1dx +
2

∑
i=1

∫ l

0
ρiuiui tdx, (43)

satisfies the following estimate:

d
dtG(t) ≤ −k‖u1x + pu2‖2 − β‖γu1xx − u2xx‖2 + ∑2

i=1 ρi‖ui t‖
2

−b‖u2x‖2 −
(
α0 − ε1Cp

)
‖u1xx‖2 +

µ2
2

4ε1
‖z(1)‖2,

(44)
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where α0 = α− βγ2 > 0.

Proof. Multiplying the first equation in (17) by u1 and then integrating over [0, l] using integration
by parts and zero boundary condition for u1 and u2, we obtain

d
dt
∫ l

0 ρ1u1tu1 +
µ1
2 u2

1dx = ρ1‖u1t‖2 − α‖u1xx‖2 + βγ
∫ l

0 u2xxu1xxdx− µ2
∫ l

0 z(1)u1dx
−
∫ l

0 k0(u1tx + pu2t)u1x + k(u1x + pu2)u1xdx.
(45)

Similarly, multiplying the second equation in (17) by u2, we have

d
dt
∫ l

0 ρ2u2tu2dx = ρ2‖u2t‖2 − β‖u2xx‖2 + βγ
∫ l

0 u1xxu2xdx
−b‖u2x‖2 − p

∫ l
0 k0(u1tx + pu2t)u2 + k(u1x + pu2)u2dx.

(46)

And adding up (45) and (46), we obtain

d
dtG(t) = −k‖u1x + pu2‖2 − α‖u1xx‖2 − β‖u2xx‖2 − b‖u2x‖2

+2βγ
∫ l

0 u2xxu1xxdx− µ2
∫ l

0 z(1)u1dx + ∑2
i=1 ρi‖ui t‖

2

= −k‖u1x + pu2‖2 −
(
α− βγ2)‖u1xx‖2 − β‖γu1xx − u2xx‖2

−b‖u2x‖2 − µ2
∫ l

0 z(1)u1dx + ∑2
i=1 ρi‖ui t‖

2.

(47)

Finally, for the last integral, applying Young’s and Poincaré’s inequalities, we have

µ2
∫ l

0 z(1)u1dx ≤ ε1‖u1‖2 +
µ2

2
4ε1
‖z(1)‖2

≤ ε1Cp‖u1xx‖2 +
µ2

2
4ε1
‖z(1)‖2.

(48)

where Cp is the Poincaré’s constant. Substituting (48) into (47), we obtain (44).

Next, let us introduce the functional

I(t) =
2

∑
i=1

γi−1ρi

∫ l

0
ui t(γu1 − u2)dx, ∀t ≥ 0. (49)

Lemma 3. Let (u1, u1t, u2, u2t, z) be a solution of (17) and (18); then, the functionalH satisfies

d
dtI(t) ≤ −

(
γρ2 − ε′0

)
‖u2t‖2 + 1

4ε′1
‖u1xx‖2 +

k2
0

4

(
1
ε′7
+ (pγ)2

ε′8

)
‖u1xt + pu2t‖2

+
(

α2
0ε′1 + (bγ)2ε′4 + CpC(ε)

)
‖γu1xx − u2xx‖2

+

(
γρ1 +

γ2(γρ2−ρ1)
2

4ε′0
+

µ2
1

4ε′2

)
‖u1t‖2 + 1

4

(
1
ε′5
+ 1

ε′6

)
‖u1x + pu2‖2

+
µ2

2
4ε′3
‖z(1)‖2 +

Cp
4ε′4
‖u2x‖2,

(50)

where C(ε) = ε′2 + ε′3 + k2
(

ε′5 + (pγ)2ε′6

)
+ ε′7 + ε′8.

Proof. Multiplying the first and second equation in (17) by γu1 − u2 and γ(γu1 − u2), respectively,
then adding the two results, integrating over (0, l) with respect to x, and using integration by parts
and the boundary conditions (18), we obtain

d
dtI(t) = −

∫ l
0 [k(u1x + pu2) + k0(u1xt + pu2t)][γu1x − u2x + γp(γu1 − u2)]dx

−α0
∫ l

0 (γu1xx − u2xx)u1xxdx + γ ∑2
i=1(−1)i−1ρi

∫ l
0 u2

i tdx

+γ(γρ2 − ρ1)
∫ l

0 u2tu1tdx− µ1
∫ l

0 u1t(γu1 − u2)dx
−µ2

∫ l
0 z(1)(γu1 − u2)dx + bγ

∫ l
0 u2(γu1xx − u2xx)dx.

(51)

By Young’s and Poincaré’s inequalities and (18), we arrive at (50).

Now, we define the functional K by

K(t) =
2

∑
i=1

∫ l

0
γi−1ρiui tu1 +

µ1
2
(2− i)u2

i dx, ∀t ≥ 0. (52)
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Lemma 4. Let (u1, u1t, u2, u2t, z) be a solution of (17) and (18); then, the functional K satisfies

d
dtK(t) ≤ −

(
α0 − ε′′4(bγ)2 − C′(ε)Cp

)
‖u1xx‖2 +

(
ρ1 +

(γρ2)
2

4ε′′3

)
‖u1t‖2

+ε′′3‖u2t‖2 +
k2

0
4

(
(pγ)2

ε′′6
+ 1

ε′′1

)
‖u1xt + pu2t‖2

+ 1
4

(
1
ε′′0

+ 1
ε′′5

)
‖u1x + pu2‖2 +

Cp
4ε′′4
‖u2x‖2 +

µ2
2

4ε′′2
‖z(1)‖2,

(53)

where C′(ε) = ε′′1 + ε′′2 + k2
(

ε′′0 + (pγ)2ε′′5

)
+ ε′′6 .

Proof. Multiplying the first and second equation in (17) by u1 and γu1, respectively, then adding the
two results, integrating over (0, l) with respect to x, and using integration by parts and the boundary
conditions (18), we obtain

d
dtK(t) = ρ1

∫ l
0 u2

1tdx−
∫ l

0 [k(u1x + pu2) + k0(u1xt + pu2t)]u1xdx

−α0
∫ l

0 u2
1xxdx− µ2

∫ l
0 z(1)u1dx + γρ2

∫ l
0 u2tu1tdx

−pγ
∫ l

0 [k(u1x + pu2) + k0(u1xt + pu2t)]u1dx + bγ
∫ l

0 u2u1xxdx,

(54)

and, by using Young’s and Poincaré’s inequalities, we conclude the proof of this lemma.

As in [35], in this last lemma, we introduce the functional

J(t) = ξτ(t)
∫ l

0

∫ 1

0
e−2ρτ(t)z2(ρ)dρdx. (55)

Lemma 5. Let (u1, u1t, u2, u2t, z) be a solution of (17) and (18); then, the functional J(t) satisfies the
following estimate:

d
dt J(t) ≤ −ξ(1− τ′(t))e−2τ(t)‖z(1)‖2 + ξ‖u1t‖2 − 2ξτ(t)e−2τ(t) ∫ 1

0 ‖z(ρ)‖
2dρ. (56)

Proof. Deriving the functional J(t) and using the last two equations of (17), we obtain

d
dt J(t) = ξτ′(t)

∫ 1
0 e−2ρτ(t)‖z(ρ)‖2dρ− 2ξτ′(t)τ(t)

∫ 1
0 ρe−2ρτ(t)‖z(ρ)‖2dρ

−ξ
∫ 1

0 (1− ρτ′(t))e−2ρτ(t) d
dρ‖z(ρ)‖

2dρ

= ξτ′(t)
∫ 1

0 e−2ρτ(t)‖z(ρ)‖2dρ− 2ξτ′(t)τ(t)
∫ 1

0 ρe−2ρτ(t)‖z(ρ)‖2dρ

−ξ
[
(1− ρτ′(t))e−2ρτ(t)‖z(ρ)‖2

]ρ=1

ρ=0

+ξ
∫ 1

0 ‖z(ρ)‖
2∂ρ

(
(1− ρτ′(t))e−2ρτ(t)

)
dρ

≤ −ξ
[
(1− ρτ′(t))e−2ρτ(t)‖z(ρ)‖2

]ρ=1

ρ=0
− 2ξτ(t)e−2τ(t) ∫ 1

0 ‖z(ρ)‖
2dρ.

(57)

The proof is, therefore, finished.

Now, we are in a position to prove our main result.

Proof of Theorem 1. Let us define the Lyapunov functional:

L(t) = NE(t) + G(t) + N1I(t) + N2K(t) + J(t),

where N and Ni, i = 1, 2, are positive constants that will be chosen later.
First, we check that the function L satisfies the following relationship:

ω1E(t) ≤ L(t) ≤ ω2E(t), ∀t ≥ 0, (58)

where all values of ωi, i = 1, 2, are positive constants.
From (19), (43), (49), (52), and (55), we have
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|L(t)− NE(t)| ≤
[

k0
2
∫ l

0 (u1x + pu2)
2dx +

µ1
2
∫ l

0 u2
1dx + ∑2

i=1
∫ l

0 ρi|ui||ui t|dx
]

+N1

[
ρ1
∫ l

0 |u1t||(γu1 − u2)|dx + γρ2
∫ l

0 |u2t||(γu1 − u2)|dx
]

+N2

[
ρ1
∫ l

0 |u1t||u1|dx + γρ2
∫ l

0 |u2t||u1|dx +
µ1
2
∫ l

0 u2
1dx
]

+ξτ(t)
∫ l

0

∫ 1
0 e−2ρτ(t)z2(ρ)dρdx.

(59)

Applying Young’s and Poincaré’s inequalities and from the facts that τ(t) ≤ τ1, ∀t ≥ 0, and
e−2τ(t)σ ≤ 1, ∀(t, σ) ∈]0,+∞[×[0, 1], we have

|L(t)− NE(t)| ≤ c′3‖γu1xx − u2xx‖2 + c′4 ∑2
i=1‖ui xx‖

2 + ∑2
i=1 ci‖ui t‖

2

+c5
∫ 1

0 ‖z(ρ)‖
2dρ + c6‖u1x + pu2‖2.

(60)

Note that ∫ l

0
u2

2xxdx ≤ 2
∫ l

0
(γu1xx − u2xx)

2dx + 2γ2
∫ l

0
u2

1xxdx. (61)

Inserting (61) into (60), we have

|L(t)− NE(t)| ≤ c3‖γu1xx − u2xx‖2 + c4‖u1xx‖2 + ∑2
i=1 ci‖ui t‖

2

+c5
∫ 1

0 ‖z(ρ)‖
2dρ + c6‖u1x + pu2‖2

≤ CE(t),

(62)

where all values of ci, i = 1, 6, are positive real numbers and

C = 2 max
{

c1
ρ1

,
c2
ρ2

,
c3
β

,
c4
α0

,
c5

µ1ξτ(t)
,

c6
k

}
.

Thus, we can choose N large enough, such that ω1 = N − C > 0 and ω2 = N + C. This shows that
Relation (58) is true.

By combining (38), (44), (50), (53), and (56), we obtain the following estimates:

d
dt L(t) ≤ −

[(
γρ2 − ε′0

)
N1 − ρ2 − ε′′3 N2

]
‖u2t‖2

−
[(

α0 − ε1Cp
)
+
(

α0 − ε′′4(bγ)2 − C′(ε)Cp

)
N2 − 1

4ε′1
N1

]
‖u1xx‖2

−
[

β−
(

α2
0ε′1 + (bγ)2ε′4 + C(ε)Cp

)
N1

]
‖γu1xx − u2xx‖2

−
[
k− 1

4

(
1
ε′5
+ 1

ε′6

)
N1 − 1

4

(
1
ε′′0

+ 1
ε′′5

)
N2

]
‖u1x + pu2‖2

−
[

k0N − k2
0

4

(
1
ε′7
+ (pγ)2

ε′8

)
N1 −

k2
0

4

(
1
ε′′1

+ (pγ)2

ε′′6

)
N2

]
‖u1xt + pu2t‖2

−
[

λ1N − ρ1 −
(

γρ1 +
µ2

1
4ε′2

+
γ2(γρ2−ρ1)

2

4ε′0

)
N1 − ξ

−
(

ρ1 +
(γρ2)

2

4ε′′3

)
N2

]
‖u1t‖2

−
[
b− Cp

4ε′4
N1 −

Cp
4ε′′4

N2

]
‖u2x‖2

−
[
λ2N + ξ(1− τ′(t))e−2τ(t) − µ1

2
4ε1
− µ2

2
4ε′3

N1 −
µ2

2
4ε′′2

N2

]
‖z(1)‖2

−2ξτ(t)e−2τ(t) ∫ 1
0 ‖z(ρ)‖

2dρ.

First, we take

ε′′3 =
ρ2
N2

, N1 =
5

2γ
,

then, if we pick

ε1 <
α0
Cp

,
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we obtain

d
dt L(t) ≤ −

[
1
2 ρ2 − 5

2γ ε′0

]
‖u2t‖2

−
[
α0(1 + N2)− ε1Cp − 5

8γε′1
− ε′′4(bγ)2N2 −

(
k2ε′′0 + (pkγ)2ε′′5 + δ0

)
Cp N2

]
‖u1xx‖2

−
[

β− 5b2γ
2 ε′4 −

5α2
0

2γ ε′1 −
(

k2ε′5 + (pkγ)2ε′6 + δ1

)
5Cp
2γ

]
‖γu1xx − u2xx‖2

−
[
k− 5

8γ

(
1
ε′5
+ 1

ε′6

)
−
(

1
4ε′′0

+ 1
4ε′′5

)
N2

]
‖u1x + pu2‖2

−
[
b− 5Cp

8γε′4
− Cp

4ε′′4
N2

]
‖u2x‖2

−
[

k0N − 5k2
0

8γ

(
1
ε′7
+ (pγ)2

ε′8

)
− k2

0
4

(
1
ε′′1

+ (pγ)2

ε′′6

)
N2

]
‖u1xt + pu2t‖2

−
[

λ1N − ρ1 − 5
2γ

(
γρ1 +

µ2
1

4ε′2
+

γ2(ρ1−γρ2)
2

4ε′0

)
− ξ −

(
ρ1 +

(γρ2)
2

4ε′′3

)
N2

]
‖u1t‖2

−
[
λ2N − µ2

1
4ε1
− 5µ2

2
8γε′3
− µ2

2
4ε′′2

N2 + ξ(1− τ′(t))e−2τ(t)
]
‖z(1)‖2

−2ξτ(t)e−2τ(t) ∫ 1
0 ‖z(ρ)‖

2dρ,

where δ0 = max
{

ε′′1 , ε′′2 , ε′′6
}

and δ′1 = max
{

ε′2, ε′3, ε′7, ε′8
}

.
Next, by setting

ε′5 = ε′6 =
5(1+λ)
2γλk3d , ε′′0 = ε′′5 = (1+λ)N2

λk3d , where d =
(

1 + (pγ)2
)

Cp and λ > 0,

ε′4 =
5Cp(1+λ)

8γλb2 , ε′′4 =
(1+λ)Cp N2

λ(bγ)2 , and ε′1 =
5(1+λ)

8γλα0(1+N2)
,

we have

d
dt L(t) ≤ −

[
1
2 ρ2 − 5

2γ ε′0

]
‖u2t‖2

−
[
− 1+λ

λ Cp N2
2 +

(
α0

1+λ −
1+λ

λ

)
N2 +

α0
1+λ − 3δ0Cp N2

]
‖u1xx‖2

−
[

β− 25
4

1+λ
λ (κ1 + κ2)−

20Cp
2γ δ1

]
‖γu1xx − u2xx‖2

−
(

k− dλk3

1+λ

)
‖u1x + pu2‖2

−
[

b
4(1+λ)

(
4(1 + λ)− λ

(
4 + γ2)b)]‖u2x‖2

−
[

k0N − 5k2
0

8γ

(
1
ε′7
+ (pγ)2

ε′8

)
− k2

0
4

(
1
ε′′1

+ (pγ)2

ε′′6

)
N2

]
‖u1xt + pu2t‖2

−
[

λ1N − ρ1 − 5
2γ

(
γρ1 +

µ2
1

4ε′2
+

γ2(ρ1−γρ2)
2

4ε′0

)
− ξ −

(
ρ1 +

(γρ2)
2

4ε′′3

)
N2

]
‖u1t‖2

−
[
λ2N − µ2

1
4ε1
− 5µ2

2
8γε′3
− µ2

2
4ε′′2

N2 + ξ(1− τ′(t))e−2τ(t)
]
‖z(1)‖2

−2ξτ(t)e−2τ(t) ∫ 1
0 ‖z(ρ)‖

2dρ,

(63)

where λ0 = (1+λ)
λ , α1 = α0

1+λ − λ0, κ1 =
Cp
4 + 1

γ2k , and κ2 = α0
4γ2(1+N2)

.

Obviously, for 0 < N2 <
α1+
√

α2
1+4λ0Cp(α1+λ0)

2λ0Cp
, α1 + λ0 + α1N2 − λ0Cp N2

2 > 0.
Then, we take small enough values of κ1 and κ1, such that

β− 25
4

1 + λ

λ
(κ1 + κ2) > 0.

After that, we pick ε′0 small enough that

η1 =
1
2

ρ2 −
5

2γ
ε′0 > 0,

and pick ε1, δ0, and δ′1 small enough that
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η2 = −λ0Cp N2
2 + α1N2 + α1 + λ0 − 3δ0Cp N2 > 0,

η3 = β− 25
4

λ0(κ1 + κ2)−
20Cp

2γ
δ1 > 0.

Finally, we choose N large enough so that

k0N −
5k2

0
8γ

(
1
ε′7

+
(pγ)2

ε′8

)
−

k2
0

4

(
1
ε′′1

+
(pγ)2

ε′′6

)
N2 > 0,

η4 = λ1N − ρ1 −
5

2γ

(
γρ1 +

µ2
1

4ε′2
+

γ2(ρ1 − γρ2)
2

4ε′0

)
− ξ −

(
ρ1 +

(γρ2)
2

4ε′′3

)
N2 > 0,

η5 = λ2N −
µ2

1
4ε1
−

5µ2
2

8γε′3
−

µ2
2

4ε′′2
N2 + ξ

(
1− τ′(t)

)
e−2τ(t) > 0.

Therefore, from (19), we can conclude that there exists a positive constant K0 > 0, such that (63) becomes
d
dt

L(t) ≤ −K0E(t), ∀t > 0, (64)

By (64) and L ∼ E, we deduce that

d
dt

L(t) ≤ −k1L(t), ∀t ≥ 0.

By integrating this differential inequality, we obtain

L(t) ≤ L(0)e−k1t, ∀t > 0.

Consequently, using (58), we find (20) with λ = L(0)
N−C and ω = k0

N+C . This completes the proof of
Theorem 1.

6. Conclusions
It is well known that most researchers discussed the study of the Tymoshenko system with a

delay in one of its equations or with two fixed delays. That is why we decided to propose this type of
one-dimensional system for Tymoshenko under Dirichlet–Dirichlet conditions, which differs from
others in that it contains internal frictional damping, a time-dependent delay acting on the vertical
displacement in symmetrical point of view.

In this work, we showed the existence of a unique solution by using the semigroup theory. By
introducing an appropriate Lyapunov functional, the exponential stability of the system is obtained if
the weights of the time delays are small.

We can conclude that the application of this type of problem is very rich. It is found in
all areas of modern physics and in many branches of applied science. Our novelty is located in the
following points:

1. We considered a new non-classical model on the Timoshenko-type system with a time-varying
internal delay in the displacement;

2. The existence, uniqueness, and smoothness of the solution are shown based on the classical
Lumiere–Phillips theory;

3. We have clearly outlined and minimized the impact of the weight of the time-varying delay
compared to the weight of the frictional term;

4. Our results can be seen as an extension of many recent related works.
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