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Abstract: The design of aerospace systems is recognized as a complex interdisciplinary process.
Many studies have shown that the exchange of information among multiple disciplines often results
in strong coupling and nonlinearity characteristics in system optimization. Meanwhile, inevitable
multi-source uncertainty factors continuously accumulate during the optimization process, greatly
compromising the system’s robustness and reliability. In this context, uncertainty-based multidisci-
plinary design optimization (UMDO) has emerged and has been preliminarily applied in aerospace
practices. However, it still encounters major challenges, including the complexity of multidisciplinary
analysis modeling, and organizational and computational complexities of uncertainty analysis and
optimization. Extensive research has been conducted recently to address these issues, particularly
uncertainty analysis and artificial intelligence strategies. The former further enriches the UMDO
technique, while the latter makes outstanding contributions to addressing the computational com-
plexity of UMDO. With the aim of providing an overview of currently available methods, this paper
summarizes existing state-of-the art UMDO technologies, with a special focus on relevant intelligent
optimization strategies.

Keywords: uncertainty-based multidisciplinary design optimization; aerospace system; uncertainty
analysis; artificial intelligence; UMDO technology

1. Introduction

In various engineering practices, designers are always facing a formidable challenge:
establishing engineering systems with satisfactory precision under limited cost. The design
of aerospace systems is a complex and inherently multidisciplinary process, encompassing
disciplines such as aerodynamics, thermodynamics, and structures [1]. These disciplines
may have conflicting objectives, necessitating the adoption of appropriate design tools to
integrate the inherent constraints of each discipline and facilitate compromised exploration.

Multidisciplinary design optimization (MDO) is a collection of methodologies for
dealing with the design of multidisciplinary engineering systems, which aims to exploit
the coupling and synergy among disciplines to achieve globally optimal designs [2]. In
recent years, various MDO methods have flourished and have been successfully applied
in different fields [3]. Based on the number of optimization levels, they can generally
be classified into single-level and multi-level approaches [4]. Each method has its own
advantages and limitations, and it is often challenging to determine which method is the
best due to variations in research cases.

Various uncertainty factors are widely present during the optimization design phase of
structures, such as material variability and load fluctuations. In traditional design processes,
the safety factor method is often used to handle uncertainty, but it can lead to some design
redundancy [5]. In this context, it is necessary to propose and develop uncertainty-based
multidisciplinary design optimization (UMDO) methods.
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Quantifying uncertainty is a primary step during an UMDO execution. In single-
discipline analysis, various uncertainty theories have made rapid progress. Probabilistic
models have always been the most popular approach for addressing aleatory uncertainty [6].
In the presence of scarce samples, several non-probabilistic theories, such as fuzzy theory,
interval theory, and evidence theory, have been developed to capture epistemic uncer-
tainty [7,8]. However, in many engineering problems, different types of uncertainty may
exist simultaneously. Under such cases, single modeling strategies become incompetent.
To enhance the quantification accuracy, the development of a universal hybrid framework
has become a major research direction [9].

In addition to analyzing the uncertainty of disciplinary systems, design variables, ob-
jective functions, and constraint functions in UMDO also need to be considered. Generally,
UMDO problems encompass three main aspects: multidisciplinary coupling, uncertainty
propagation, and optimization [1]. Multidisciplinary coupling refers to coordinated compu-
tation among disciplines under uncertain factors. Uncertainty propagation aims to analyze
the cross-transmission of uncertainty across multiple disciplines. In terms of uncertainty
optimization, it is common to transform the originally deterministic constraint functions
into reliability or robustness constraints. Therefore, a comprehensive UMDO framework
typically exhibits a nested-loop characteristic [10]. Recently, UMDO has gained increasing
attention among researchers. Li et al. proposed a multi-objective MDO with an interval
model, which achieved the reliability optimization analysis with three nested loops [11].
Based on the representation of hybrid uncertainty using random and interval models, Meng
et al. achieved efficient analysis of UMDO by utilizing sequential design and uncertainty
evaluation methods [12]. Nevertheless, due to the coupling between multiple disciplines
and the consistency of uncertainty analysis among multiple disciplines, UMDO still en-
counters challenges related to both organizational and computational complexities, and
how to improve the solve efficiency is the work emphasis of many fields.

In recent years, the rapid development of artificial intelligence and computers has
provided assistance in achieving a fast solution in UMDO. This is primarily evident in the
following three aspects: (1) For the distribution and high-dimensional features of uncertain
parameters and design variables, unsupervised learning methods not only can separate the
uncertainty space to improve the accuracy of uncertainty, but they can also screen the key
parameters to improve the efficiency of uncertainty propagation and optimization [13,14].
(2) Based on limited data, supervised learning methods can construct numerical models to
replace complex and time-consuming multidisciplinary analysis models, thereby greatly
alleviating the computational cost. (3) In view of the strong nonlinearity of UMDO archi-
tectures, intelligent algorithms can quickly and accurately obtain a global optimal solution.
Therefore, intelligence-assisted UMDO techniques have gained significant attention in
recent years.

A large number of research studies related to UMDO for aircraft have emerged. How-
ever, there is currently a lack of comprehensive description of these studies, particularly in
the field of intelligent strategies. This paper aims to provide an overview of the advance-
ments in UMDO and its intelligent solving strategies that have emerged over the past two
decades. The remainder of this paper is arranged as follows: The basic mathematical formu-
lations and disciplinary analysis strategies for MDO are reviewed in Section 2. Moreover,
Section 2 also discusses the role of symmetry in MDO. To reveal the impact of uncertainty,
research advances regarding the essential steps of UMDO are subsequently summarized in
Section 3, including uncertainty modeling, sensitivity analysis, propagation, and multidis-
ciplinary optimization. Intelligent optimization strategies for alleviating computational
complexity are investigated and discussed in Section 4 from the perspective of machine
learning and intelligent algorithms. Finally, conclusions are drawn and future research
trends and prospects are suggested in Section 5.
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2. State-of-the-Art Strategies for MDO

In this section, basic concepts and mathematical formulations for multidisciplinary
design optimization are first reviewed. Considering the complex mutual coupling among
multidisciplinary systems, various MDO methods, including single-level, multi-level,
and hybrid ones, are reviewed, with a focus on their recent achievements. Meanwhile,
symmetry in multidisciplinary analysis is also discussed and reviewed to improve both the
accuracy and efficiency of multidisciplinary analysis.

2.1. Statement of MDO Problems

MDO focuses on the simultaneous optimization of various disciplines in a complex
system. Before introducing the general MDO formulation with its various architectures, it is
necessary to provide a definition of the terms used in this article. In MDO problems, design
variables typically consist of local and shared design variables. Local design variables
belong to a single discipline, whereas shared design variables are common to multiple
disciplines. Discipline analysis refers to simulating the performance of a single discipline in
a multidisciplinary system, wherein the solutions to the equations in the discipline analysis
are called state variables. Furthermore, some variables are both state variables in some
disciplines and design variables in others, which are known as coupled variables.

Objective functions and constraints are the functions of design variables, state vari-
ables, and coupled variables. Like design variables, the objective functions, constraints, and
state variables in MDO can all be categorized into local or shared properties. The general
mathematical form of a typical MDO problem can be expressed as follows [2]:

min f (x, y, z)
w.r.t. x = {xl , xsh}
s.t. g(x, y, z) ≤ 0

h(x, y, z) = 0
∀i, ∀j 6= i, yi = cij

(
xj, yj, zj

)
∀i, Ri(xi, yi, zi) = 0

(1)

where x, y, z represent the vectors of a design variable, a state variable, and a coupled
variable, respectively; xl and xsh are the local and shared design variable vectors, respec-
tively. The functions f , g, h denote the objective function, inequality constraint, and equality
constraint, respectively. The state variable vector yi of the ith subsystem can be calculated
using the coupling function cij(xj, yj, zj). The residual functions Ri(xi, yi, zi) can quantify
the satisfaction of the state equations. Moreover, the disciplinary equations can also be
formulated in the non-residual form yi = Yi(xi, zi).

Multidisciplinary analysis (MDA), which aims to find the variables yi to satisfy the
state equations of all subsystems, is a process that ensures consistent coupling between
different subsystems in a unified system [15].

The overall process of a multidisciplinary optimization design is shown in Figure 1.
MDO entails considering multiple complex disciplines with different sets of variables,
constraints, and objectives. In this context, managing the complexity that arises from
disciplinary interdependence becomes a pivotal challenge in MDO. Meanwhile, difficulties
in communication between experts in different fields and expensive computational cost
seriously restrict the application of MDO in practical engineering design problems [16].
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Figure 1. Structure of an MDO problem.

2.2. Classification of MDO Architectures

In recent years, substantial advances have been made in the application of MDO
architectures to aircraft design practices [17,18]. Generally speaking, these architectures
can be divided into two main groups: single-level and multi-level approaches.

Single-level approaches utilize a single optimizer for the whole design problem, which
is easy to implement for small MDO problems but may encounter difficulties in integrating
all the disciplines together when dealing with complicated systems [19]. The common
single-level approaches include multidisciplinary feasible (MDF), individual discipline
feasible (IDF), all-at-once (AAO), and simultaneous analysis and design (SAND). A multi-
level or distributed architecture of MDO enables interdisciplinary consistency through
system-level coordination by decomposing complex design optimization problems into
disciplines. These coordination methods include concurrent subspace optimization (CSSO),
collaborative optimization (CO), bi-level integrated system synthesis (BLISS), and analytical
target cascading (ATC). Compared to single-level approaches, this kind of architecture
promotes discipline autonomy and enables designers across disciplines to focus on their
own fields with their own discipline’s issues.

There are several surveys of MDO approaches that have been carried out in the lit-
erature [2,4,20]. In this section, we provide a brief overview of the characteristics and
advantages of each method and summarize the latest extension methods with their engi-
neering applications. The current MDO architectures are summarized in Figure 2.
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The all-at-once (AAO) approach is the most rudimentary method for MDO, which
optimizes all disciplines and objectives simultaneously by utilizing a single optimization
algorithm. The subsystem- and system-level designs and evaluations are conducted concur-
rently [21]. Although the residual equations and coupling equations may not be satisfied at
each iteration, they must converge to a solution that satisfies these equations. This method-
ology has been widely implemented in the aircraft design realm [22,23]. Nevertheless,
several challenges must be addressed when using this approach, including a significant
increase in the number of variables being managed by the optimizer and deficient out-
come robustness.

By introducing a single group of coupling variables to replace separate target and
response groups, the consistency constraints cc

i = ŷi − yi = 0 can be eliminated, and the
AAO architecture is then transformed into a simultaneous analysis and design (SAND)
architecture [4]. Instead of iteratively solving the analysis within each optimization iter-
ation, SAND treats the response variables as the design variables and adds an equality
constraint to ensure individual discipline feasibility. Further details and applications of
this conversion can be found in reference [24]. Although beneficial, the SAND architecture
has three significant issues: problem size, potential premature termination of the opti-
mizer in infeasible designs, and dependence of the optimizer on the residual values Ri and
their derivatives.

A multidisciplinary feasible (MDF) architecture can be achieved by removing both
the analysis constraints and consistency constraints from SAND. This architecture uses
MDA to ensure interdisciplinary coupling satisfaction at each iteration of the system-level
optimizer [25]. It should be noted that the candidate solutions are multidisciplinary feasible
at each iteration. The main advantage of the MDF method lies in its simplicity and universal
architecture, which can be adapted to all types of multidisciplinary systems. However, the
MDF method also has disadvantages, including increased computational costs due to the
multidisciplinary analysis executed at each iteration.

By eliminating the discipline-analysis constraints Ri(xi, yi, zi) = 0 from the AAO
approach, an individual discipline feasible (IDF) architecture can be obtained. Compared
to MDF, IDF introduces additional input coupling variables to ensure coordination among
different disciplines [26]. The removal of the MDA process increases the difficulty of
ensuring multidisciplinary feasibility at each iteration until the entire MDO problem con-
verges. Furthermore, discipline parallelization can improve the efficiency of IDF, but using
gradient-based optimization algorithms is not feasible as the feasibility analysis of gradi-
ents is expensive and unreliable. Further details and applications of IDF can be found in
reference [27].

Table 1 provides a concise summary of the characteristics of single-level architectures.
Furthermore, multi-level architectures, which utilize dedicated discipline-level optimizers
to streamline system-level optimization, have gained significant attention and applications
in recent years.

Table 1. The characteristics of traditional single-level frameworks.

AAO MDF IDF

Disciplinary feasibility of
the solution At convergence At each iteration At each iteration

Multidisciplinary feasibility of
the solution At convergence At each iteration At convergence

Optimized variables {x, y, z} {x, z} {x}
Convergence speed Fast Slow Medium

Advantage Simple model;
able to parallel Suitable for complex issues Discipline decoupling;

able to parallel

Disadvantage Multiple variables;
poor robustness Need system decomposition Poor properties in complex issues

Application [21,28,29] [25,30,31] [27,32,33]
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The collaborative optimization (CO) method is a bi-level optimization approach, which
gives more autonomy to each subsystem to satisfy the compatibility constraints of MDO
problems [34]. In each subsystem optimizer, local design variables are controlled to satisfy
local constraints, while the variables and constraints of different subsystems do not interfere
with each other [2]. In a system-level optimizer, the coordination of the whole optimization
process can be guaranteed, and a global objective function is obtained.

Compared to single-level optimization methods, the CO method presents significant
advantages, such as the most suitable optimization method for each subproblem can be
implemented. Moreover, some subsystems can be added or modified without changing
the whole design process. The CO architecture has been widely applied in aircraft [35,36].
However, it still has some limitations, such as instability of convergence and decreased
efficiency when there are more coupling variables [37]. To overcome these difficulties, many
improved CO methods, including enhanced collaborative optimization (ECO) and modified
collaborative optimization (MCO), have been proposed and applied to MDO [38–41].

The quasi-separable decomposition (QSD) architecture has been proposed to solve
quasi-separable optimization issues. When the system objective and constraints are depen-
dent only on shared design variables and coupling variables, the MDO problem can be
transformed into a quasi-separable issue. However, such situations rarely occur in actual
engineering designs. Its detailed calculation principle can be found in references [42,43].

Similar to the CO architecture, the CSSO method is also based on a system decomposi-
tion strategy, which allows subsystems to independently participate in the optimization
process [44]. However, the CSSO method differs from the CO method in the control of
coupled variables. At each iteration, the global sensitivity equation is used to calculate
the coupling sensitivity information, and then, linear approximation is performed for each
discipline MDA. Further details can be found in reference [45]. The main advantage of
the CSSO method is the use of an approximate model to replace the complex discipline
analysis, which significantly improves the calculation efficiency. However, the accuracy of
optimization highly depends on the approximate model used. In recent years, the CSSO
method has been extended to solve robust multi-objective optimization problems and
applied to various aircraft design issues [46,47].

The BLISS architecture, like CSSO, is a method that decomposes an MDF problem
along discipline lines [4]. However, different from the CSSO method, local design variables
and shared design variables in BLISS are assigned to discipline subproblems and system
subproblems, respectively. The basic principle is to construct a path in the design space and
adopt a series of approximations to approach the original design problem [48]. Moreover,
gradient calculation and MDA are indispensable. The former is used to evaluate the
contribution of design variables to the goals, while the latter ensures the feasibility of
multiple disciplines. Further details and application in aircraft design can be found in
references [49,50].

The BLISS-2000 method is an improved version of BLISS, which achieves multidisci-
plinary consistency by using coupled variable replicas instead of MDA [51]. Information
exchange between the system and discipline subproblems occurs through approximations
of the discipline optima [52]. Compared to the classical BLISS, the optimization process
of BLISS-2000 is more flexible to implement and easier to understand. Meanwhile, due to
the utilization of approximation models for each discipline, the calculation of BLISS-2000
can be parallel. However, since weight coefficients attached to the discipline status are
introduced in this architecture, the impact of these coefficients on convergence needs to be
further determined. In fact, the applications of BLISS do not seem to be as widespread as
the traditional BLISS.

The ATC architecture is a multi-level MDO method that propagates targets at the
system and subsystem levels hierarchically. Several studies have proved that the ATC
architecture can guarantee convergence to a global optimal solution of a distributed system.
By splitting the MDO process into a series of sub-optimization levels, ATC can be applied
to reduce the complexity of optimization and solve large-scale systems. Meanwhile, the
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hierarchical structure of ATC enables traceability of the design process. Therefore, ATC has
been widely used in the optimization design of aircraft in recent years [53].

Asymmetric subspace optimization (ASO) is a new distributed MDF architecture. It
has been widely used to solve aerodynamic structure optimization due to the obvious
disciplinary solution time apparent in fluid–structure interactions [54]. To improve the
efficiency of aerodynamic analysis, the structure analysis is combined with structural
optimization inside the MDA [4]. In addition, when a large number of design variables
exist, the coupled-adjoint sensitivity equation is adopted to obtain gradient information to
ensure the optimality of the final solution [55]. Further details and application in aircraft
design can be found in references [56,57].

Exact penalty decomposition (EPD), inexact penalty decomposition (IPD), and MDO
of independent subspace (MDOIS) architectures have some limitations in multidisciplinary
optimization. They can only be performed without systemwide constraints or objectives,
and the MDOIS method also requires that no shared design variables exist in the prob-
lem [58,59]. As a result, they are not as widely used as other architectures.

To help readers understand these MDO architecture more clearly, Table 2 summarizes
the characteristics and applications of the common architectures mentioned above. In
recent years, a variety of hybrid framework strategies, such as MDF-CSSO, BLISS-CO, and
BLISS-MDF, have increasingly attracted attention due to their unique advantages that are
not present under single frameworks [60].

Table 2. The characteristics of typical multi-level architectures.

CO CSSO ATC BLISS

Efficiency Low Fast Medium Fast
Gradient No No No Yes

Approximate model Permissible Necessary Permissible Necessary
Advantage Flexible Parallelizable Parallelizable Flexible

Drawback Convergence instability Accuracy depends on
approximate models

Not suitable for small
problems

Accuracy depends on
approximate models

Application [35,36] [46,47] [53] [49,50]

2.3. Symmetry in Multidisciplinary Analysis

Symmetry is an important property in aircraft optimization design. In addition to its
crucial theoretical importance, which allows the development of deeper insights into opti-
mal solutions, the exploration of symmetrical properties when finding optimal designs can
also provide significant computational value, thus saving the computational effort. In MDO,
there are two main aspects to consider: structural symmetry and analytical symmetry.

For problems that satisfy some specific restrictions, at least one optimal design is
symmetric if the external loads, design domain, and boundary support conditions are all
symmetric. Reference [61] reviews the symmetry properties of optimal solutions from a
more general point of view. It shows that under some invariant assumptions, for a large
class of structural optimization problems that can be formulated as convex programs, there
exists at least one symmetric global optimal solution. Reference [62] extends the results to
more general cases, which relax the convex conditions to quasi-convexity and ensure the
existence of symmetric global optima. In recent years, these kinds of symmetry properties
have been applied to various practical structural optimization examples, especially in terms
of topology optimization.

Furthermore, according to the above MDO architectures, a disciplinary analysis is
necessary and crucial. As is known to all, most physical mechanisms can be described
by differential equations. However, it is difficult to solve partial differential equations
with nonlinear properties. Symmetry and conservation laws have received considerable
attention for these situations. In theory, symmetry can be mathematically described as
the invariance of a certain quantity under the action of an infinitesimal transformation
group. Symmetry can be classified into three different types, Noether’s symmetry [63],
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Lie symmetry [64], and Mei symmetry [65], which represent the invariance of action inte-
gral, the invariance of differential equations, and the invariance of the form of dynamic
equations, respectively. By utilizing these symmetries, differential equation systems can
be transformed into symmetric forms, and the corresponding optimizer can then be con-
structed. So far, significant progress has been made in the study of symmetries in linear
elasticity, fluid mechanics, and general mechanics [66,67]. However, few discoveries are
reported on the symmetries and invariants in MDO.

3. Uncertainty-Based Multidisciplinary Design Optimization (UMDO)

In engineering practices, uncertainty analysis has received significant attention, with
numerous studies demonstrating the crucial role that multi-source uncertainty plays in
optimizing and designing both structures and multidisciplinary systems. In this con-
text, conventional multidisciplinary design optimization approaches are evolving into
uncertainty-based multidisciplinary design optimization. In terms of UMDO of aircraft,
the introduction of uncertainty brings about new problems that primarily manifest in
three aspects:

(1) Modeling complexity. Uncertainties exhibit multifarious sources and diverse distri-
bution characteristics, making it challenging to perform uncertainty modeling using
appropriate mathematical tools and distribution models.

(2) Computational complexity. Under existing MDO frameworks, accurate analyses in
various disciplines require time-consuming simulation tools, resulting in a rapid
increase in computational burden in the coordination optimization of multiple dis-
ciplines as the size of the optimization problem grows. On this basis, UMDO not
only needs to consider the propagation effects of uncertainties in multidisciplinary
coupling, but also conduct complex, nested uncertainty analyses during optimiza-
tion iterations to guarantee design safety. Therefore, the solution of UMDO is more
complicated and difficult than MDO.

(3) Organizational complexity. The organization of UMDO encompasses multiple funda-
mental computational units, including single-discipline analysis and optimization,
multidisciplinary coupling analysis and coordination optimization, as well as un-
certainty analysis. A crucial challenge in UMDO organization involves reasonably
organizing these units to create executable computer programs and to efficiently
decouple and coordinate discipline analysis and optimization.

To address the above issues, this section conducts a systematic review of UMDO methods,
including uncertainty modeling, sensitivity analysis, propagation, and design optimization.

3.1. Uncertainty Modeling

According to the development process (design, manufacturing, and operations) of
aircraft, the uncertainty source can be roughly divided into four categories: structural loads,
material properties, component dimensions and shapes, and computational models. To
reasonably characterize the above uncertainties, a multitude of uncertainty theories have
been proposed and their effectiveness has been verified in engineering practices. Among
them, the commonly used theories mainly include the probability theory [6], evidence
theory [68], fuzzy set theory [69], interval analysis [11], rough set theory [70], and hybrid
approaches [71].

The probability theory is more prevalent or better known to engineers than other
theories, which represents uncertainty as a random variable, a random process, or a
random field. For discrete random variable a, firstly, a sample space Ω = {a1, a2, . . .} is
defined that relates to the set of all possible outcomes. The probability function f (a) of
each random variable satisfies the following condition:

f (a) ∈ [0, 1] for all a ∈ Ω; and ∑
a∈Ω

f (a) = 1 (2)
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When the uncertain variable a belongs to the continuous real number space <, the
function F(a), known as a cumulative distribution function (CDF), exists, which is defined
as F(a) = P(x ≤ a) and represents the probability of the event that X is less than or equal
to a. According to the calculus theory’s probability density function (PDF), f (a) can be
yielded via differential operation of F(a).

The evidence theory provides a framework for handling uncertainty and reasoning
under incomplete and conflicting information, which combines and updates uncertain
pieces of evidence from multiple sources to arrive at a degree of belief or probability of
an event.

Let Ω be a universal set including all possible states. The elements of power set 2Ω

can serve as the representations for the propositions related to the current state of the sys-
tem [72]. The core concept of the evidence theory is the basic probability assignment (BPA)
function m : 2Ω → [0, 1] which has two basic properties: m(∅) = 0 and ∑A∈2Ω m(A) = 1.
The mass m(A) represents the proportion of all relevant evidence supporting the sub-
set A. Based on mass assignments, the probability interval of set A can be defined as
[Bel(A), Pl(A)], where the belief function Bel(A) and the plausibility function Pel(A)
are the summation of all evidence that fully supports A and partly or fully supports A,
respectively [73]. They are calculated as follows:

Bel(A) = ∑B⊆A m(A); Pl(A) = ∑B∩A 6=∅ m(A) (3)

Subsequently, the cumulative belief function (CBF) and the cumulative plausibility
function (CPF) can be defined as follows:

CBF = {[a, Bel(va)] : a ∈ Ω}, where va = {ã : ã ∈ Ω and ã ≤ a}
CPF = {[a, Pl(va)] : a ∈ Ω}, where va = {ã : ã ∈ Ω and ã ≤ a} (4)

The fuzzy set theory, proposed by Zadeh, can be used to model uncertainty when
there is poor information or there are sparse data. Different from the traditional set (crisp
set), the degree of membership of an element a belonging to a fuzzy set Ã can be described
by a membership function µÃ(a) that ranges between 0 and 1. On this basis, the fuzzy set
Ã can be defined as follows:

Ã =
{
(a, µÃ(a))

∣∣∣a ∈ Ã, µÃ(a) ∈ [0, 1]
}

(5)

A wide variety of membership functions exist in current research literature, among
which the most frequently used are Gaussian, triangular, and trapezoidal functions [74].
Meanwhile, scholars are showing an increased interest in various extensions of fuzzy sets,
including intuitionistic fuzzy sets and hesitant fuzzy sets.

In the interval theory, uncertain variables are quantified by utilizing both their upper
and lower bounds. For a variable a, the interval term can be described as

aI = [a, a] = ac + ∆ac (6)

where a and a represent the lower and upper bound, respectively. ac = (a + a)/2 and
∆ac = (a− a)/2 represent the center and radius of interval aI . For an extensive explanation
of the interval theory and its potential applications, readers can consult reference [75].

Convex models offer a more general approach to quantifying uncertainties using
convex sets, such as interval sets, ellipsoid sets, and parallelepiped sets [76]. The typical
explicit mathematical formula of an ellipsoid model Ωe can be defined as

Ωe =

{
a
∣∣∣∣(a− a0

)T
We

(
a− a0

)
≤ 1

}
(7)

where We is a positive definite matrix; a0 represents the coordinates of the ellipsoid’s
midpoint; and Ωe is an ellipsoid, rather than a hypercube, defined by the lower and upper
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bounds of each component of the object. This seems justified because it is improbable that
the uncertain components are independent, and it is more probable that the bounds of the
object’s components can be reached simultaneously. Theoretically, an optimal ellipsoid
model should envelop all sample points of the uncertain variables with minimum volume.
Several common approaches for constructing an ellipsoid model include the rotation matrix
method, correlation approximation methods, and data-driven methods. A comprehensive
introduction to this theory and its applications can be found in [77].

The rough set theory is an important mathematical tool to deal with imprecise, incon-
sistent, and incomplete information. By using the equivalence classes constructed based on
an equivalence relationship, two approximation operations are introduced to describe the
vagueness of a bounded set as follows:

R(A) = {a ∈ U|[a]R ∩ A 6= ∅}; R(A) = {a ∈ U|[a]R ⊆ A} (8)

where R(A) and R(A) represent the upper and lower approximation set of set A; U is
the smallest closed set (universe) containing all possible values of the uncertain variable;
[a]R is the equivalence class with respect to element a; and the subscript ‘R’ denotes the
equivalence relationship. However, the above relationship R is too restrictive. Researchers
have introduced extended versions of rough sets, such as probabilistic-rough and fuzzy
rough sets, for engineering applications [78].

In addition to the aforementioned methods, other popular approaches have also been
widely used, such as the Bayesian method under the probability framework [79], the
possibility theory [80], and the gray theory [81] under the non-probability framework. To
intuitively demonstrate the characteristics of various uncertainty modeling techniques,
Table 3 summarizes the usage conditions and advantages of some commonly used theories,
and Figure 3 shows the uncertainty representation of these theories.

Table 3. Comparison of uncertainty models.

Uncertainty Modeling Advantages Drawbacks

Probability theory
Adapted to represent aleatory uncertainty Need information on each singleton of

the subset

Combination of information using Bayesian approach Handle mainly aleatory uncertainty

Evidence theory

Handle both aleatory and epistemic uncertainties Might be difficult to interpret for design

No hypothesis needed on the uncertainty distribution
inside subsets

Might be difficult to obtain information
from experts

Fuzzy set theory

Concept of membership function and fuzzy set Difficult to interpret for design

Express confidence in uncertainty modeling information Might be difficult to obtain information
from experts

Interval theory Simplicity of modeling Limitations in uncertainty description

Convex theory
Consider the correlation between
uncertainty parameters

Need a reasonable method for
constructing convex model

Minimize samples for uncertainty quantification

Rough set theory Describe arbitrary bounded-but-irregular uncertainty set Uncertainty propagation analysis is
influenced by model approximation
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Single strategies for modeling uncertainty have made significant progress and devel-
opment. However, in many engineering problems, different types of uncertainty may exist
simultaneously. Under such cases, single modeling strategies become incompetent [69,82].
In this context, a hybrid uncertainty analysis framework integrating the merits of different
modeling strategies has more practical significance and has been extensively investigated
in recent years. According to different mixing components, such a framework is mainly
divided into two categories: parallel and embedded [83]. Popular hybrid models include
probability–interval, probability–fuzzy, interval–fuzzy, and fuzzy–evidence models [71].
Here, the fuzzy theory and interval theory are used to provide explanations. In parallel
models, the uncertain variables {a, b} independently coexist in the system, where a and b
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are, respectively, represented by Equations (5) and (6). In embedded hybrid models, the
system uncertainty is described as

aI = [a, a], where a ∈ Ã1, µÃ1
(a) ∈ [0, 1] and a ∈ Ã2, µÃ2

(a) ∈ [0, 1] (9)

The boundaries of the interval are characterized by fuzzy membership degrees instead
of precise values. All hybrid strategies have their own strengths and characteristics in
capturing uncertainty [84]. However, they may encounter technical challenges when
applied to practical engineering practices, especially to MDO problems. With the increasing
complexity of uncertainty in MDO practices, it is promising but remains mostly unexplored
to study UMDO methods using hybrid frameworks.

3.2. Uncertainty Sensitivity Analysis

Sensitivity analysis (SA), also called uncertainty importance analysis, investigates the
allocation of uncertainty from the model output to the various sources of uncertainty in the
input. This technique enables a systematic analysis of the uncertainty factors to determine
their impact on the system output and then removes insignificant factors to simplify the
UMDO process. Thus, this subsection presents a concise overview of this methodology.

Various methods have been widely proposed for sensitivity analysis under uncertain-
ties, particularly within the framework of the probability theory. Generally, sensitivity
analysis can be categorized into two types: local sensitivity analysis and global sensitivity
analysis [85]. Local sensitivity analysis aims to analyze the impact of local changes of a
parameter in a system, and its main approach is based on the partial derivative method,
i.e., calculating the partial derivatives ∂ f (a)/∂ai(i = 1, 2, . . . , m) of system response with
respect to uncertain parameters. However, for complex systems with interdisciplinary
couplings, solving the partial derivatives is challenging, and selecting excessively large or
small parameter perturbations ∂ai can significantly affect the accuracy of sensitivity calcu-
lations. Another method for computing sensitivity coefficients is the direct method, with
the decoupled direct method being commonly used. For detailed explanations, readers can
consult [86]. Despite its versatility, the direct method still encounters the challenge of com-
putational complexity. Therefore, the Green’s function method, which represents sensitivity
coefficients in the integral form, is developed to improve computational efficiency [87]. For
large-scale systems with the number of parameters exceeding that of responses, the method
of adjoint sensitivity analysis is the most effective. Detailed instructions on this method
can be found in [88].

Global sensitivity analysis methods aim to evaluate the entire parameter space and
measure the contribution of the input variables to the output from an average perspective.
They can overcome the limitations of local methods (linear and normality assumptions).
Within the probabilistic framework, commonly used global sensitivity analysis methods in-
clude variance-based methods (such as the Sobol method and Fourier amplitude sensitivity
test), response surface methodology, and sampling-based methods. A comprehensive com-
parison study of these approaches can be found in reference [89]. Among these methods,
sampling-based methods are widely used due to their flexibility and ease of implemen-
tation. Based on the sampling results, different metrics and analysis methods can be
employed to quantify the contribution of each uncertainty factor, such as scatter plots, re-
gression analysis, and nonparametric regression analysis [72]. Currently, various methods
of sensitivity analysis under uncertainty have been extensively employed in the field of
aircraft structural design. For specific applications, please refer to reference [90].

3.3. Multidisciplinary Uncertainty Propagation

Uncertainty propagation (UP) aims to quantitatively evaluate the impact of perturba-
tions in the input variables on the system output. By using appropriate methods, engineers
can compare the uncertainties generated by different models and identify key factors in
the diffusion of uncertainty in complex multi-physics coupled systems [86]. Unlike SA,
which primarily focuses on ranking the importance of the inputs, UP emphasizes the
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propagation of errors in the system and their impact on system stability. It is worth noting
that uncertainty propagation methods vary depending on the representation of uncertainty
knowledge. Numerous uncertainty propagation methods within the probabilistic frame-
work have been developed to a mature stage, such as sampling techniques (Monte Carlo
sampling and Latin hypercube sampling), numerical integration, and surrogate models
(polynomial chaos expansion and Taylor series methods) [1]. Different methods have also
been proposed for the interval and evidence theory frameworks [91]. In this section, we
provide a brief discussion of the most widely used uncertainty propagation methods.

Monte Carlo simulation (MCS) is a computational algorithm that obtains statistical
data of the response variable through repeated sampling and simulation, where the simula-
tion can be finite element calculations or experimental tests. In theory, as long as there is a
sufficient number of samples, the MCS method can obtain statistical results with arbitrary
precision [71]. Therefore, it is frequently used as a benchmark for evaluating the accuracy of
other propagation analysis methods. However, for UMDO problems, achieving consistency
between system responses of multiple coupled disciplines often requires iterative calcula-
tions. The complexity and time-consuming nature of a single simulation render the MCS
method inapplicable. To overcome this issue, several improved MCS methods have been
developed based on different sampling techniques, such as importance sampling and Latin
hypercube sampling [92,93]. These improved methods have been proven to be effective
and require fewer sampling points compared to the traditional MCS method, thereby
enhancing their efficiency. Furthermore, the MCS method can also be applied to other types
of uncertainties. Reference [94] provides a detailed introduction to the application of the
MCS method under different uncertainty analysis theories, such as the evidence theory
and interval theory.

Taylor series approximation methods can be used to estimate statistical moments of
the system output by considering the partial derivatives of the output f with respect to the
elements of the random input vector a [72]. The basic formula can be found in [95]. In con-
sideration of the coupling relationships between multiple disciplines in UMDO problems,
various propagation analysis methods that combine first-order Taylor series approximation
with sensitivity analysis have been proposed to assess the cross-characteristics of uncer-
tainty in system output [96]. These methods have been proven to be applicable even under
the quantification conditions of convex models. Taylor series approximation is easy to
understand and implement. However, it still has some limitations: (1) its inherent local
nature cannot guarantee global propagation accuracy; (2) the computational complexity
rapidly increases with the order of the Taylor series expansion increasing; and (3) the
calculation of built-in partial derivatives for complex systems is extremely difficult.

Approximation of the discipline black-box function f (·) may be used to replace the ex-
act function [1]. These mathematical approximations are commonly referred to as surrogate
models or metamodels. In contrast to the MCS methods and Taylor series approximation
methods, they can provide relatively accurate estimations of the statistical characteristics of
the system response by utilizing a small number of multi-disciplinary output samples [97].
In recent years, surrogate-based methods have emerged as a key technique for uncertainty
propagation analysis. The common surrogate models include Kriging model, polynomial
chaos expansions, support vector machines, and neural network. Numerous studies have
extensively examined and reviewed these methods in the context of uncertainty-based
design optimization for aircraft [1,71,98].

3.4. Optimization under Uncertainty

Optimization design under uncertainty refers to optimizing a system’s performances
while ensuring its safety. Therefore, assessing the safety of a complex system with uncer-
tainty propagation is the primary issue for UMDO.

Let us assume that the performance function of a considered complex system is
denoted by G(a), where a is a d-dimensional stochastic input from the uncertain domain
Ω with a known probability distribution function p(a). When the value of G(a) is below
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0, it is generally considered a system failure. Therefore, the probability of failure can be
calculated with the integral as follows:

Pf =
∫

Ω f

p(a)da (10)

where Ω f represents the failure domain as G(a) < 0, as shown in Figure 4. The reliability
R of the system can be calculate as Re = 1− Pf . However, the calculation of the integral in
Equation (10) presents significant challenges. This is primarily attributed to the fact that
the joint probability distribution functions and the failure domain Ω f are rarely precisely
defined in explicit mathematical forms. In addition, multidimensional integration can be
computationally prohibitive, particularly for complex systems that involve time-consuming
analysis models [72].
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To tackle the aforementioned challenge, a range of approximation methods have been
extensively employed, including sampling methods (MCS and directional sampling [99]),
surrogate model methods (adaptive Kriging model [100], etc.), and integration approxima-
tion methods specifically designed for reliability analysis, such as the first/second-order
reliability method (FORM/SORM) [101], as well as methods based on fast Fourier trans-
form (FFT) [102]. Among these, FORM and SORM are widely used in the engineering
field, and their detailed construction processes and related variants can be found in refer-
ences [103,104]. Furthermore, the construction of reliability metrics differs across different
uncertainty quantification models, such as convex models and the evidence theory [105,106].
These aforementioned approximation methods have also been extended to various reliabil-
ity analysis frameworks [105,107].

On the basis of reliability analysis, reliability-based optimization design (RBDO) aims
to optimize the objective while ensuring that reliability stays within an acceptable range.
The following typical RBDO model formulates the trade-off between a higher reliability
and a lower cost:

minv(d, a)
s.t. Pr{Gi(d, a) ≤ 0} ≥ Rei, i = 1, 2, . . . , nG

gj(d, a) < 0, j = 1, 2, . . . , ng

(11)

where v is an objective function of cost; d is the vector of deterministic design variables;
a is the vector of random or interval design variables; Gi(d, a) is a performance function
that is subjected to the reliability requirement; Rei is the required reliability for Gi(d, a);
gj(d, a) is a deterministic constraint function; and nG and ng are the number of Gi(d, a) and
gj(d, a), respectively.

There are currently two main types of solving strategies for Equation (11). Firstly, some
alternative approximation methods are utilized to translate the constraints with uncertainty
into quasi-deterministic constraints with simplifications and assumptions [72], such as
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worst-case analysis method [108] and variation pattern formulation [109], which can greatly
reduce computational costs. However, the results of these methods need to be confirmed
through reliability analysis because the reliability of constraint is not calculated precisely
during the solving process. Obviously, RBDO in Equation (11) is a double-loop optimization
problem involving both inner-loop reliability analysis and outer-loop optimization analysis.
To enhance computational efficiency, several approaches have been proposed to transform
this double-loop algorithm into a single-loop architecture, such as single-level approach
(SLA), single-level double-vector (SLDV) method, and single-loop single-vector method
(SLSV). Details regarding these computational methods for solving RBDO problems are
thoroughly discussed in [72,110].

Robust design optimization (RDO) is another optimization method that considers
uncertainty, aiming to optimize the objective performance and reduce the system’s sen-
sitivity to uncertainty. The difference in the emphasis of RBO and RBDO is illustrated in
Figure 5. In general, the goal of RDO is to locate a constrained optimum that is insensitive
to variations in both the objective function and constraints. The robustness of the objective
function ensures that the system performance remains insensitive to changes in design
variables and parameters, while the robustness of the constraints ensures that the optimal
design always stays within the feasible region. Regarding the characterization of objective
robustness, numerical approximations of statistical moments, such as mean and variance,
are widely used under the probabilistic framework, while in the case of interval uncertainty
description, the midpoint and range of the performance function interval are often used as
measures of robustness. In the case of probability–interval mixed uncertainty description,
the mean and variance of the performance function exhibit interval characteristics.
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Obviously, RDO is a typical multi-objective, multi-constraint optimization problem.
Several highly efficient robust optimization strategies have been developed to allow design-
ers to make optimal trade-offs among performance, robustness, and reliability, including
the weighted sum method, compromise programming method, physical programming
method, normal boundary intersection method, and evolutionary multi-objective optimiza-
tion method. For more detailed implementations of these approaches in RDO, readers can
refer to [10]. In recent years, RBDO and RDO frameworks have been widely applied in
aircraft structural design [111–113].

Considering the impact of uncertainty factors, a general UMDO model can be de-
scribed as follows:

min f (x, y, z, a)
w.r.t. x = {xl , xsh}
s.t. P{gi(x, y, z, a)} ≥ Rei

∀i, ∀j 6= i, yi = cij

(
xj, yj, zj, a

)
∀i, Ri(xi, yi, zi, a) = 0

(12)
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where {x, y, z} could be uncertain and a is the system’s uncertain parameter vector. Com-
pared to MDO architectures, the involvement of uncertain parameters in the computation
of coupled state variables among multiple disciplines adds complexity to the solution of
UMDO. Similar to solving RBDO problems, a conventional approach to solving UMDO
problems is to employ a double-loop strategy as shown in Figure 6.

Symmetry 2023, 15, x FOR PEER REVIEW 17 of 39 
 

 

Obviously, RDO is a typical multi-objective, multi-constraint optimization problem. 
Several highly efficient robust optimization strategies have been developed to allow de-
signers to make optimal trade-offs among performance, robustness, and reliability, in-
cluding the weighted sum method, compromise programming method, physical pro-
gramming method, normal boundary intersection method, and evolutionary mul-
ti-objective optimization method. For more detailed implementations of these ap-
proaches in RDO, readers can refer to [10]. In recent years, RBDO and RDO frameworks 
have been widely applied in aircraft structural design [111–113]. 

Considering the impact of uncertainty factors, a general UMDO model can be de-
scribed as follows: 

{ }
( ){ }

min   ( )
. . .  ,

. .   P , , ,
       , , ( , , , )
       , ( , , , ) 0

l sh

i i

i ij j j j

i i i i

f , , ,
w r t

s t g Re

i j i c
i R

≥

∀ ∀ ≠ =

∀ =

x y z a
x = x x

x y z a

y x y z a
x y z a

  (12)

where { }, ,x y z  could be uncertain and a  is the system’s uncertain parameter vector. 
Compared to MDO architectures, the involvement of uncertain parameters in the com-
putation of coupled state variables among multiple disciplines adds complexity to the 
solution of UMDO. Similar to solving RBDO problems, a conventional approach to 
solving UMDO problems is to employ a double-loop strategy as shown in Figure 6. 

 
Figure 6. The conventional double-loop UMDO procedure. 

In the outer loop, the optimization algorithm performs the optimal search. For each 
iteration point in the outer loop, it is necessary to call the inner loop for reliability or ro-
bustness analysis to assess the safety of the current system design. The calculation of re-
liability can refer to previous text. Additionally, due to the coupling between disciplines, 
an iteration of the multidisciplinary analysis (MDA) is also required to achieve consistent 
results. Therefore, the above dual-loop strategy is time-consuming and labor-intensive 
for complex multidisciplinary systems, especially for spacecraft systems. 

In order to enhance computational efficiency, parallel computing techniques and 
approximation methods are widely applied in uncertainty propagation, sensitivity anal-
ysis, and multidisciplinary analysis [114]. Furthermore, another strategy that has gained 
significant attention among scholars is the reorganization of organizational structure of 
UMDO, including multidisciplinary analysis, disciplinary analysis, and uncertainty 

Figure 6. The conventional double-loop UMDO procedure.

In the outer loop, the optimization algorithm performs the optimal search. For each
iteration point in the outer loop, it is necessary to call the inner loop for reliability or
robustness analysis to assess the safety of the current system design. The calculation of
reliability can refer to previous text. Additionally, due to the coupling between disciplines,
an iteration of the multidisciplinary analysis (MDA) is also required to achieve consistent
results. Therefore, the above dual-loop strategy is time-consuming and labor-intensive for
complex multidisciplinary systems, especially for spacecraft systems.

In order to enhance computational efficiency, parallel computing techniques and ap-
proximation methods are widely applied in uncertainty propagation, sensitivity analysis,
and multidisciplinary analysis [114]. Furthermore, another strategy that has gained signifi-
cant attention among scholars is the reorganization of organizational structure of UMDO,
including multidisciplinary analysis, disciplinary analysis, and uncertainty analysis, aim-
ing to achieve a faster optimization process. Broadly, this strategy can be classified into
two categories:

(1). Single-level procedure: According to the information derived from the uncertainty
analysis in the previous iteration, the reliability constraints are transformed into equivalent
deterministic constraints, thereby transforming the UMDO problem into a deterministic
one. On this basis, deterministic MDO processes such as AAO and SAND can be directly
employed for organized solving. The commonly used single-level procedures include
sequential optimization and reliability assessment (SORA) [115,116], SLSV, and SLDV [117].
These single-level procedures decouple the UMDO problem into two independent sequen-
tial steps: deterministic MDO and uncertainty analysis. This decoupling significantly
reduces the computational costs associated with nested loops. Moreover, utilizing existing
methods to solve the deterministic MDO problem can further enhance computational effi-
ciency. However, this decoupling process leads to a delayed impact of uncertainty analysis
on MDO optimization, resulting in low convergence efficiency. Additionally, the deter-
ministic constraints used in deterministic MDO have limited precision in approximating
the equivalent uncertainty constraints and tend to be too conservative. Consequently, it
becomes a challenging issue to guarantee the effectiveness and efficiency of optimization.

(2). Decomposition and coordination-based approach: Drawing on the principles
of conventional MDO decomposition methods described in Section 2.2, the uncertainty
analysis and nest optimization of UMDO is decomposed into several discipline-specific un-
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certainty optimization problems, and then solved using distributed computing techniques.
McAllister et al. proposed an uncertainty-based CO optimization process by integrating
the CO framework and utilizing the Taylor expansion method to estimate the expected
value and variance of parameters [118]. Inspired by the CSSO approach, Pandmanab-
han and Batill hierarchically decomposed the UMDO problem into various uncertainty
optimization subproblems and employed parallel solving to enhance the computational
efficiency of UMDO [119]. Kokkolaras applied an ATC extension to multi-level UMDO
problems with stochastic variables [120]. On this basis, Liu and Xiong further improved
the probabilistic analytical target cascading (PATC) method [121,122]. The decomposition
and coordination-based approach divides the overall UMDO problem into disciplinary
subproblems, thereby controlling the cost of the uncertainty optimization design within
an acceptable range. Moreover, this approach can leverage distributed parallel computing
techniques to improve optimization efficiency. For large and complex multidisciplinary op-
timization systems, the decomposition and coordination-based approach offers a precision
advantage over single-level procedures.

For a comprehensive understanding of the above two strategies, readers can consult
references [72,123]. UMDO has been applied in the field of aircraft design, as shown
in Figure 7. Meng utilized a CO architecture to achieve a flow–solid reliability-based
optimization design of centrifugal compressor blades [124]. Wang proposed an ATC method
with fuzzy uncertainties and applied it to the design of a launch vehicle powered by hybrid
rocket motors [125]. Jafarsalehi applied the MDF and CO techniques to an uncertainty-
based multi-objective optimization design of remote sensing satellites. Furthermore, a
comparison was made to analyze the advantages of these two methods [126]. Ahn and
Kwon utilized the BLISS method within the RBDO framework to design a simplified
supersonic transportation problem. By combining the worst-case analysis method with the
MDF framework, Hosseini achieved a multi-disciplinary conceptual design of unmanned
aerial vehicles (UAVs) [127]. Park employed probabilistic modeling to quantify uncertain
variables and utilized the CO technique to achieve RBDO and RDO predictions for the
A300-600 aircraft [128]. In terms of theoretical research, the field of UMDO has not yet
established a comprehensive theoretical framework. Meanwhile, regarding its application
research, UMDO is predominantly at the conceptual stage and lacks compelling real-world
case studies. Therefore, research on UMDO is still in its preliminary stage.
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4. Artificial Intelligent Strategies for UMDO

With continuous improvement in the integration and complexity of aircraft structures,
solving UMDO architectures with multiple variables, multiple constraints, and strong
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nonlinearity has become a significant challenge [2]. In recent years, numerical analysis
methods, such as finite element analysis and computational fluid dynamics, have been
commonly used to construct solvers for disciplinary analysis. However, the optimization
iterations for the overall structure require thousands of simulations, which is impractical
in engineering [129]. The development of artificial intelligence (AI) has provided new
strategies for the rapid solution of UMDO problems. Machine learning techniques, as
an important component of AI, have now been widely introduced in various aspects of
UMDO. A general double-loop nested UMDO architecture with the assistance of artificial
intelligence methods is illustrated in Figure 8. The introduction of AI methods can greatly
alleviate the computational complexity of UMDO. Therefore, this section reviews the
applications and developments of AI in UMDO over the past few decades.
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4.1. Unsupervised Learning Method for Data Processing

Machine learning (ML) aims to accurately and generally predict and describe underly-
ing physical phenomena via the learning of data [130]. Therefore, data are crucial for the
application of machine learning techniques. Fortunately, despite the limited availability
of interdisciplinary designed example data, multiple studies have proven its practical
effectiveness. However, for complex engineering problems, the distribution and high-
dimensional features of such data make it extremely challenging to acquire key knowledge.
Unsupervised learning techniques in machine learning are key to solving such problems,
as they automatically establish learning rules by analyzing data models without class
labels [131]. This characteristic makes these techniques widely applicable to data clus-
tering [132,133] and dimensionality reduction [134,135] during the UMDO design phase,
which will be discussed in detail in this section.

Cluster analysis aims to automatically separate data into different groups based on
their similar features, with the data between different groups exhibiting high dissimilar-
ity [136]. In the context of an UMDO framework, cluster analysis not only can help partition
the design space for multidisciplinary optimization, but can also separate the parameter
uncertainty space [13]. The former enables the construction of individual supervised regres-
sion models, while the latter improves the accuracy of uncertainty analysis [137]. Therefore,
this section provides a brief overview of commonly used cluster analysis methods.

k-means algorithm: The k-means method is the most famous clustering method [138].
It groups objects into a specified number of ‘k’ clusters based on the minimum distance
between the objects and the cluster centers as specified by the user. That is, given a set of
data, it can be divided into k mutually exclusive groups C = {c1, c2, . . . , ck}, where ci 6= ∅
and such that ∪k

1ci = X; ci ∩ cj = ∅, i, j = 1, . . . , k and i 6= j. The above partitioning process



Symmetry 2023, 15, 1875 19 of 37

can be regarded as an optimization problem, with the fitness measure as the objective
function, such as by minimizing the distance between data objects or by maximizing the
correlation between data objects [139]. The k clusters constructed by the former can be
described as

J(ck) = ∑
xi∈ck

‖xi − µk‖
2 (13)

where µk is the centroid of the kth cluster, which is achieved through iterative optimization
to minimize the sum of squared errors on all k clusters, i.e., minimizing

J(C) =
K

∑
k=1

∑
xi∈ck

‖xi − µk‖2 (14)

The K-means algorithm is fast, robust, and straightforward to understand. When sam-
ples are distinct and separated from each other, the traditional k-means algorithm is highly
suitable. However, in the context of multidisciplinary optimization design processes, data
are often scattered, complex, and diverse. Additionally, specifying the number of cluster
centers directly is challenging, which limits the performance and accuracy of the clustering
results [140]. To address these challenges, several studies have combined heuristic algo-
rithms with the traditional k-means method to achieve automatic cluster analysis [141].
Jose-Garcia provides an overview of the latest research on all major metaheuristic algo-
rithms for solving automatic clustering problem [142]. Ezugwu et al. present a summary
and bibliometric analysis of trend and progress in metaheuristic clustering methods, with a
focus on automatic clustering algorithms [143]. Furthermore, it is worth mentioning that
cluster analysis is of great significance for quantifying uncertainty. As shown in Figure 9,
the quantification accuracy improves significantly before and after clustering, which aids
in enhancing the reliability of the final design.
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Gaussian mixture model (GMM): GMM is a distribution-based clustering algorithm [144].
Compared to the k-means method, it considers both the mean and covariance of data fea-
tures. Given a dataset with Gaussian distribution characteristics, its probability density
function is described as follows:

f (x|µ, Σ) =
1√

2π|Σ|
exp[−1

2
(x− µ)TΣ−1(x− µ)] (15)

where µ is the mean vector of length d and Σ is a d× d covariance matrix. After defin-
ing the initial cluster centers as k, the expectation–maximization algorithm (EM) [145] is
employed to calculate the expected values of the point assignments for all clusters; then,
the distribution parameters are re-estimated and the logarithm of the likelihood function
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is computed. This process continues until a predefined convergence criterion is reached,
which commonly involves maximizing the likelihood function.

Compared to the k-means algorithm, GMM only maximizes the likelihood value and
does not bias the means toward zero or the cluster sizes toward specific structures that
may or may not be applicable, such as circular clusters [14]. However, the GMM method
is not applicable when the available data are insufficient to ensure an accurate estimation
of variances. Liem et al. [146] utilized the GMM method to perform cluster analysis on
aerodynamic data, further combining it with gradient-enhanced Kriging models to achieve
aircraft performance demonstrations.

In addition to the k-means and GMM methods, there are many other types of partition-
based clustering algorithms. For example, centroid-based algorithms like centroid-based
algorithm with KL-divergence clustering [147], graph-based clustering algorithms with
spectral clustering [148] and robust continuous clustering [149], and density-based algo-
rithms, such as density-based spatial clustering of applications with a noise algorithm [150].
Each of these algorithms has its own advantages and disadvantages. For more detailed
information, please refer to [151].

Dimensionality reduction aims to encode high-dimensional data into a lower-dimensional
representation while preserving the crucial attributes of the original data. For the UMDO
problem with highly correlated high-dimensional inputs, dimensionality reduction can
alleviate the ‘curse of dimensionality’ issue by reducing the input dimensionality [14,79].
Common dimensionality reduction methods for UMDO include principal component
analysis (PCA) and nonlinear manifold learning.

Principal component analysis: PCA is a mathematical algorithm that reduces the
dimensionality of high-dimensional data while maintaining relevant information from the
original data. It achieves such a process primarily by identifying the directions of maximum
data variation, known as principal components, as shown in Figure 10. The identification of
principal components can be viewed as the problem of finding singular values and singular
vectors, which can be solved using singular value decomposition (SVD). The singular
values measure the variance retained by each principal component, while the eigenvectors
with the highest singular values are the principal components. Detailed steps of the typical
PCA algorithm can be found in [152].
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PCA algorithms are easy to implement. However, the standard PCA algorithm is
linear and only suitable for linearly separable datasets. In an UMDO framework, strong
nonlinearity in the correlations between uncertain parameters or design variables leads to
limitations in the standard PCA method. By introducing kernel functions (such as Gaussian
kernel k(x, x′) = exp(−||x− x′||2/2σ2)) that measure the distances between data points,
the PCA algorithm can be extended to efficient nonlinear dimensionality reduction. In
view of the advantages of PCA in dimensionality reduction, it has been widely applied to
optimize the design of aircraft structures [153,154].

Nonlinear manifold learning: Manifold learning is based on the assumption of em-
bedding high-dimensional data into low-dimensional nonlinear manifolds. In this con-
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text, several algorithms have been proposed to extract geometric information from high-
dimensional data, such as local linear embedding (LLE), Laplacian eigenmap [129], and
isometric feature mapping (ISOMAP) [155]. Among them, ISOMAP is the most popular
and commonly used method for solving UMDO problems. ISOMAP enhances the classical
multidimensional scaling method by combining geodesic distances calculated by using
a weighted graph. Specifically, it constructs a neighborhood graph by connecting data
points ai and aj if point ai is one of the k-nearest neighbors of point aj. The lengths of the
edges are set to di,j, and the shortest paths between the points are then calculated [14]. By
utilizing multidimensional scaling to calculate low-dimensional embeddings, it achieves
the ultimate goal of nonlinear dimensionality reduction.

LLE is another manifold learning approach. Unlike ISOMAP, which attempts to pre-
serve the distances between samples in the neighborhood, LLE aims to preserve the linear
relationships between samples within the neighborhood. Detailed construction process
of LLE can be found in [156]. Compared to ISOMAP, LLE exhibits higher computational
efficiency. In a study comparing PCA, ISOMAP, and LLE for dynamic aircraft shape de-
sign [157], it was concluded that manifold learning methods perform better near shock
waves and discontinuous regions, while PCA excels in steady-state prediction.

4.2. Supervised Learning Methods for Discipline Solver

UMDO requires not only disciplinary analysis but also system reliability analysis.
However, achieving a high precision in the optimization design necessitates complex and
expensive numerical calculations. Machine learning algorithms, in particular supervised
learning algorithms, use datasets containing both input and output variables to train models
that can effectively simulate the relationships between the input and output variables [158].
Consequently, these models (referred to as metamodels) can be introduced into the UMDO
framework to reduce computational costs and enhance design efficiency. Therefore, this
section focuses on the metamodel techniques under the UMDO framework.

Traditional metamodels, such as the classical quadratic response surface models [159],
polynomial chaos expansion (PCE) [160], and the Kriging model, have been extensively
studied [70]. In recent years, artificial intelligence methods, such as artificial neural net-
works, support vector machines, k-nearest neighbors, decision trees, and random forests,
have shown remarkable performance in UMDO.

Artificial neural networks (ANNs): Artificial neural networks, which emulate the
functioning of biological neurons, are widely recognized as one of the most popular
algorithms in supervised learning [161]. The overall structure of an artificial neural network
consists of an input layer, hidden layer(s), and an output layer, as shown in Figure 11a.
Depending on the complexity of the task, multiple hidden layers can be superimposed
(named multilayer perceptron (MLP) at this time). The behavior of each neuron is defined by
the weight allocation wi. During the propagation of the input data xi from the upper layer
to the current layer, the data are multiplied by the corresponding weights wi. Subsequently,
the sum of the linearly weighted values and the bias b is calculated, which is further used
to induce nonlinearity using activation functions f (such as sigmoid, tanh, and softmax)
and transmit the data to the output layer.

The training process described above involves optimizing several hyperparameters,
including the selection of the architecture (number of hidden layers and nodes, activation
function types) and training variables (learning rate, number of epochs, etc.). These crucial
parameters need to be optimized for each specific problem to mitigate the risk of overfitting
and underfitting.

In addition, artificial neural networks have various variants, such as deep neural
networks (DNNs) [162], radial basis function neural networks (RBFNNs) [163], convolu-
tional neural networks (CNNs) [164,165], and recurrent neural networks (RNNs) [166]. The
schematic diagrams of their structures are shown in Figure 12. These variants of artificial
neural networks have different application scenarios. For example, convolutional neural
networks have advantages in processing image and grid topology data, and evaluating the
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dynamic response of steel beams, while recurrent neural networks are suitable for solving
time-dependent regression problems. Several studies have successfully applied neural
network models to solve the RBDO problem of aircraft [167].
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Support vector machine (SVM): Depending on the task type, SVM can be categorized
into support vector classification (SVC) and support vector regression (SVR). SVR is widely
used in optimization design due to its accuracy and simplicity, which aims to find a linear
regression function that best fits the samples, as depicted in Figure 13a. The optimal fitting
line is the hyperplane that maximizes the number of sample points within a given threshold.

However, in practical engineering, the strong nonlinearity between the data points
poses a challenge in finding the appropriate hyperplane. The introduction of penalty
parameters and kernel functions provides an effective solution to overcome this challenge.
When the decision boundary misclassifies data points, a penalty parameter (i.e., slack
variable ξ in Figure 13b) is introduced to balance the maximization of hyperplane margin
and the minimization of total distance ∑ ξi of slack variables. This improvement enhances
the algorithm’s fault tolerance. Moreover, kernel functions, such as nonlinear polynomial
functions, radial basis functions (RBFs), and sigmoid functions, can be employed to map
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nonlinear data into a linearly separable space, as shown in Figure 13c. Reference [168] pro-
vides detailed explanations regarding the selection and application of penalty parameters
and kernel functions.
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K-nearest neighbors (KNN): The KNN method is a non-parametric method that pre-
dicts based on the distance between an untested sample point and its k-nearest neigh-
bors [169]. The common distance calculations include Euclidean, Manhattan, and Ham-
ming algorithms. Among them, the commonly used Euclidean distance in regression
analysis is as follows:

δknn =

√
m

∑
i=1

(x1,i − x2,i)
2 (16)

where δknn represents the distance; x1 and x2 are two adjacent data points; and m denotes
the data dimension. The system response of the prediction point can be calculated based on
the average of k-nearest sample points, as shown in Figure 14. Additionally, the prediction
step can also utilize distance-based biased weights, where closer sample points have a
greater contribution. The KNN method is simple and flexible; however, its prediction
accuracy depends heavily on the chosen number of k-nearest neighbors. Typically, k is
often taken as

√
n, where n is the number of samples, but it is still not guaranteed to

obtain optimal predictions. Based on the KNN algorithm, Wang achieved wind speed
estimation using flight data from a rotor drone, with an average error of 3.3% compared to
experimental results [170].

Decision tree (DT) and random forest (RF): DT is a recursive algorithm used for
partitioning the input data (i.e., features represented by the input variables) and creating a
localized model within each partitioned region. A typical DT structure includes a root node,
two or more branches, several internal nodes, and a leaf node, as shown in Figure 15a. The
internal nodes can be further split at the current level, whereas the leaf node represents a
prediction that cannot be further divided. It should be noted that the important parameters
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in the DT, such as the maximum number of features for splitting, the minimum number of
samples for the internal nodes, the minimum number of samples for the leaf nodes, and
the number of levels for tree splitting, determine the prediction accuracy of the algorithm.
Although these parameters can be adjusted finely, overfitting remains a challenge for the
DT algorithm.
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To address the issues of overfitting and underfitting associated with DT, various
extension algorithms based on ensemble techniques have been proposed, such as RF and
gradient boosting trees (GBTs), as shown in Figure 15b,c. RF is a parallel decision tree
structure that includes weak learners and can randomly select subsets of the dataset for
aggregation, following certain rules. GBT is a tandem structure consisting of multiple DT
models that continuously reduces the prediction error by establishing a model between the
residual of the previous tree and the input variables. Both algorithms are widely used in
the risk assessment and design of structures [171,172].

Multiple studies have shown that different ML methods are widely applied based
on their advantages in computational efficiency and accuracy. However, there is no ML
algorithm that is universally superior to others. The key lies in how to match these
ML methods appropriately with the target problem. Chojaczyk [173] provides a brief
overview of the application of ANNS in the reliability analysis of steel structures. Sajad [174]
conducted a comprehensive review comparing the advantages and disadvantages of ANNS,
SVM, Bayesian methods, and active learning Kriging models in the evaluation of structural
reliability. In the context of structural design, Kicinger [175] conducted a concise study on
various ML methods and elucidated their applicability.

Moreover, when a single ML model is insufficient to accurately describe the opti-
mization problems, an ensemble of ML models can alleviate the limitations of a single
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model. The common ensemble strategies include weighted combination, embedding, and
multi-level mixing. For instance, Li [176] proposes a multi-level metamodel by employing
a local model to modify the Kriging model to improve the accuracy of global optimization.
By combining the Kriging model and the PCE method, Denimal [177] accurately predicts
the bucking load of a complex beam system. While ensemble algorithms do increase the
complexity of construction to some extent, their ability to provide more accurate response
predictions makes them an important development trend.

4.3. Intelligent Optimization Algorithms

Practical UMDO problems face numerous complex optimization phenomena, includ-
ing multimodal functions, mixed-design variables, and multiple optimization objectives. In
this context, intelligent optimization algorithms with versatility present excellent prospects
for application. In the past decade, many metaheuristic optimization algorithms have
received wide attention, among which, various evolutionary algorithms and swarm in-
telligence algorithms have been developed rapidly. This section aims to provide a brief
overview of these algorithms to assess their accuracy and efficiency in UMDO.

It is worth noting that within the UMDO framework of nested-loop optimization, a
comprehensive metaheuristic algorithm requires reliability analysis for each individual
particle, which incurs substantial computational cost. Therefore, single-level procedures,
such as SLA and SORA, are often implemented initially to separate the reliability analysis
from the outer-loop optimization process. In this way, particles in the metaheuristic
algorithms solely undergo the deterministic analysis, thus bolstering the computational
efficiency. For more detailed information, please refer to reference [178].

Evolutionary algorithms: Genetic algorithm (GA) is one of the most renowned evolu-
tionary algorithms, functioning as a stochastic algorithm that emulates the natural evolution
process through three operators: selection, crossover, and mutation. Detailed algorith-
mic description can be found in reference [179]. Figure 16a,b provide illustrations of the
fundamental steps and the flowchart of the GA, respectively.
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GA has been extensively applied to solve a wide range of static optimization prob-
lems. To further enhance its effectiveness, several extended genetic algorithms have been
proposed, including improved genetic algorithm (IGA), multi-island genetic algorithm
(MIGA), self-adaptive migration genetic algorithm (SAMGA), and improved dynamic GA
(IDGA) [180]. These optimization algorithms have been extensively applied to UMDO
problems [125,181].

Swarm intelligence (SI) algorithms refer to optimization algorithms inspired by the
collective intelligent behavior of social animals or insects in nature. These algorithms utilize
the interactions among simple individuals as well as the interactions between individuals
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and the environment to continuously adjust the collective decision-making process to solve
complex optimization problems. As a result, this research field has experienced substantial
growth and development in recent years.

Particle swarm optimization (PSO): PSO is a swarm-based global optimization ap-
proach that allows numerous independent solutions, referred to as particles, to move
through the hyper-dimensional search space to locate the optimal solution. Each particle
has a position vector and a velocity vector, which are adjusted in the iteration by learning
the optimal local vector of the particle itself and the current optimal global vector of the
whole population [182]. The optimization process is shown in Figure 17.
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PSO is easy to implement and does not require gradient information. Recent research
on PSO improvement has mostly focused on modifying model coefficients, considered the
population structures, and altered the interaction modes. Detailed extensions and UMDO
applications can be found in [183,184].

Artificial bee colony (ABC) algorithm: ABC refers to the collaborative completion
of honey-gathering tasks (optimization) by bees through individual division of labor
and information exchange, as depicted in Figure 18. Despite the limited capabilities of
individual bees, the entire bee colony consistently finds high-quality nectar sources without
the need for centralized control [182]. In contrast to the classical optimization methods, this
algorithm imposes minimal requirements on the objective function and constraints, relying
solely on the fitness function as the basis for evolution.
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Artificial fish swarm (AFS) algorithm: In natural environments, fish are capable
of identifying more nutrient-rich areas through individual exploration or by following
other fish. Typically, areas with a higher concentration of fish tend to indicate greater
nutritional abundance. The AFS algorithm aims to simulate fish behavior, including
hunting, grouping, and following, by locally searching for individuals in order to generate a
global optimum [185]. Compared to the GA, the AFS algorithm exhibits faster convergence
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speed and requires fewer parameter adjustments [183]. The basic flowchart of the AFS
algorithm is shown in Figure 19.
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Ant colony optimization (ACO) algorithm: The ACO algorithm aims to simulate the
communication among ants through the exchange of pheromones, which enables them
to find the shortest path from the ant colony to food sources [186]. This algorithm is
characterized by distributed computation, positive feedback information, and heuristic
search. The specific optimization process is shown in Figure 20.
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Firefly algorithm (FA): The FA draws inspiration from the flickering behavior of
fireflies, using points in the search space to simulate individual fireflies in nature [187]. The
search process is simulated as the attraction and movement of these firefly individuals.
In this algorithm, the quality of a solution is determined by its objective function value,
and survival of the fittest occurs through iterations where better feasible solutions replace
poorer solutions in the search and optimization process [182]. The basic flowchart of the FA
is shown in Figure 21.

Cuckoo search (CS): The CS algorithm is inspired by the reproductive behavior of
cuckoos and the Levy flight search pattern. It was proposed by the British scholar Yang in
2009 as a novel heuristic algorithm based on swarm intelligence technology [188]. The CS
algorithm is widely applied in engineering optimization due to its simplicity, use of few
parameters, and ease of implementation. The specific optimization process is shown in
Figure 22.
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In recent years, intelligent optimization algorithms have played an increasingly signif-
icant role in solving UMDO architectures. To facilitate comparison and provide a reference
for readers, Table 4 summarizes the advantages, limitations, and relevant applications of
the aforementioned swarm intelligence algorithms.

Table 4. Summary of swarm intelligence algorithms.

Algorithm Characteristics Advantages Disadvantages Application

PSO
Bubble-net

hunting strategy
Solid robustness Poor property in solving

multidimensional issues [184,189]
High accuracy Inefficient

ABC

Role-switching
mechanism

Strong ability to jump out of
local optima Dependence on solid parameters

[178]
Influenced by
pheromone

Good property in solving
multidimensional issues Slow convergence speed

AFS Preying, following,
random behaviors

Fast convergence speed
Easy to fall into local optima

[190]
Dependence on solid parameters

ACO
Influenced

by pheromone
Good property in solving

traversal problems
Easy to fall into local optima

[191]
Slow convergence speed
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Table 4. Cont.

Algorithm Characteristics Advantages Disadvantages Application

FA
Attracted by

fluorescence intensity
Solid robustness Weak ability in reaching

global optimum [192,193]
High accuracy Slow convergence speed

CS Cuckoo’s nest
parasitic behavior Fast convergence speed Easy to fall into local optima [194]

5. Conclusions

Over the past few decades, there has been a significant focus on the optimization
design of structures and multidisciplinary systems under uncertainty. With increasing
complexity of coupled systems and the influence of multiple sources of uncertainty, how-
ever, MDO still faces challenges such as organizational complexity and computational
complexity. In this context, how to improve the efficiency of MDO becomes the research
topic of current and future research. Firstly, this paper provides an overview of the architec-
ture of MDO design and presents a comprehensive summary of MDO practices under the
influence of uncertainty. Subsequently, considering the potential of artificial intelligence to
enhance optimization efficiency, this paper reviews the application of intelligence strategies
in UMDO, especially in data processing, disciplinary analysis, and nested optimization.
Based on this review, we can draw the following conclusions and make recommendations
for future studies:

(1) This paper provides an overview of various existing deterministic MDO architectures,
which are classified based on the interdisciplinary coupling techniques used and
number of optimization levels (single or multiple). In general, multi-level architectures
provide higher autonomy for each discipline, but they also have relatively complex
organizational structures, making them suitable for optimization design of large-scale
systems. Although single-level architectures are easy to implement, they are somehow
prone to non-convergence.

(2) Symmetry is a common characteristic in structural optimization design, which helps
guide the acquisition of optimal solutions. Under the UMDO framework, symmetry
and conservation laws can be applied to transform the partial differential equations of
disciplinary analyses into symmetrical forms, thereby enhancing analytical efficiency.
Currently, this strategy has been validated in simple disciplinary analyses, but further
exploration is needed for complex multidisciplinary optimization designs.

(3) Probability theory remains the most popular method for handling uncertainty, and a
significant portion of reliability optimization designs are examined under a probabilis-
tic framework. As a supplement in scenarios with scarce samples, non-probabilistic
techniques have shown superiority in dealing with cognitive uncertainty. Due to
the broad range of uncertain factors in multidisciplinary coupled systems, hybrid
modeling of multiple uncertainty models holds superior potential for quantifica-
tion. However, reliability optimization design within this framework is still in its
preliminary stage.

(4) For UMDO architectures with nested loops, restructuring their organization can accel-
erate the optimization process. Both single-level procedures and the decomposition
and coordination-based approach can achieve efficiency improvements. However,
the implementation process of the former is more concise, although the effectiveness
of optimization cannot be guaranteed. Additionally, when using metaheuristic algo-
rithms to solve UMDO problems, single-level procedures can avoid the repetition of
reliability analysis of particles in the algorithm.

(5) Although metamodels constructed based on various supervised learning algorithms
are widely utilized in multidisciplinary analyses, weighted blending of different
metamodels, instead of solely focusing on the performance improvement of a single
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model, is considered an easy-to-implement and superior analysis approach. Moreover,
data preprocessing (dimensionality reduction and clustering), as well as intelligent
optimization algorithms, can also enhance the computational efficiency of UMDO.
Future developments should place more emphasis on rapid solving techniques of
UMDO that apply these three strategies simultaneously.
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Abbreviations

MDO multidisciplinary design optimization
MDA multidisciplinary analysis
IDF individual discipline feasible
SAND simultaneous analysis and design
CO collaborative optimization
ATC analytical target cascading
SA sensitivity analysis
MCS Monte Carlo simulation
SORM second-order reliability method
SLDV single-level double-vector method
RDO robust design optimization
AI artificial intelligence
GMM vGaussian mixture model
LLE local linear embedding
ANN artificial neural network
KNN K-nearest neighbors
RF random forest
PSO particle swarm optimization
AFS artificial fish swarm
FA firefly algorithm
UMDO uncertainty-based MDO
MDF multidisciplinary feasible
AAO All-at-once
CSSO concurrent subspace optimization
BLISS bi-level integrated system synthesis
QSD quasi-separable decomposition
UP uncertainty propagation
FORM first-order reliability method
RBDO reliability-based optimization design
SLSV single-loop single-vector method
SORA sequential optimization and reliability assessment
ML machine learning
PCA principal component analysis
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ISOMAP isometric feature mapping
SVM support vector machine
DT decision tree
GA genetic algorithm
ABC artificial bee colony
ACO ant colony optimization
CS cuckoo search
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