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Abstract: In this paper, we first study the uniqueness and symmetry of solution of nonlinear
Schrödinger–Kirchhoff equations with constant coefficients. Then, we show the uniqueness of
the solution of nonlinear Schrödinger–Kirchhoff equations with the polynomial potential. In the
end, we investigate the asymptotic behaviour of the positive least energy solutions to nonlinear
Schrödinger–Kirchhoff equations with vanishing potentials. The vanishing potential means that
the zero set of the potential is non-empty. The uniqueness results of Schrödinger equations and the
scaling technique are used in our proof. The elliptic estimates and energy analysis are applied in the
proof of the asymptotic behaviour of the above Schrödinger–Kirchhoff-type equations.
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1. Introduction

In this paper, we first show the uniqueness and symmetry of solution of the following
nonlinear Schrödinger–Kirchhoff equation:− (a + b

∫
R3
|∇v|2)∆v + cv = dvp in R3,

v > 0, v ∈ H1(R3),
(1)

where 1 < p < 5. The coefficients a, b, c and d in the equation are positive constants. Then,
we prove a uniqueness result of the following nonlinear Schrödinger–Kirchhoff equation
with potential |x|m: − (a + b

∫
R3
|∇v|2)∆v + |x|mv = vp in R3,

v > 0, v ∈ H1(R3),
(2)

where m > 0 and 3 < p < 5.
In the second part of this paper we deal with the asymptotic behaviour of least energy

solutions of the following Schrödinger–Kirchhoff equations:−
(

ε2a + εb
∫
R3
|∇v|2

)
∆v + V(x)v = vp in R3,

v > 0, v ∈ H1(R3),
(3)

where 3 < p < 5 and ε > 0 is small. Furthermore, the equation has a vanishing potential
V(x) in the following sense:

(V1) V(x) : R3 → R is nonnegative and continuous,V∞ := lim inf
|x|→∞

V(x) > 0.

(V2) The potential V can vanish, i.e., the set Z := {x ∈ R3|V(x) = 0} is non-empty.
Moreover, 0 ∈ Z .
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The above equations are related to the stationary analogues of the following equation
proposed by Kirchhoff [1]:

utt −
(

a + b
∫

Ω
|∇u|2

)
∆u = g(x, t). (4)

Equation (4), with a nonlocal term
∫

Ω |∇u|2 in it, extends the classical D’Alembert’s wave
equation. Concerning (4), early studies were Bernstein [2], Pohozaev [3] and Lions [4].
These years, an enormous amount of research on the elliptic Kirchhoff equations has been
done. Perera and Zhang [5], using the Yang index, proved the existence of nontrivial
solutions of Kirchhoff equations. In [6], using the method of invariant sets of descent flow,
sign changing solutions were obtained by Zhang and Perera. The uniqueness result was
proven in [7] by Anello. Since we can not give a comprehensive list of references here, we
merely refer to [8–15].

Recently, many authors studied the following Schrödinger–Kirchhoff equations with a
small parameter ε > 0:− (ε2a + εb

∫
R3
|∇u|2)∆u + V(x)u = f (u) in R3,

u > 0, u ∈ H1(R3).
(5)

In [16], He and Zou proved the existence and concentration of least energy solutions of
(5) with subcritical nonlinearity. In [17], Wang et al. treated (5) with critical nonlinearity.
In [18], Figueiredo et al. considered the Schrödinger–Kirchhoff Equation (5) with the almost
optimal Berestycki–Lions nonlinearity. In [19], Sun and Zhang obtained the existence and
concentration results of least energy solutions with competing potentials. More results are
in [20–24], etc. From these papers, we can see that either problem (1) or (2) is often related
to the limiting equations of (5). Thus, the uniqueness results of (1) or (2) are important
when one studies the asymptotic behaviour of (5) as ε→ 0+.

In [19], we studied the uniqueness of the ground state solution of (1) for the case
3 < p < 5. In [25], the authors proved the uniqueness of solutions of (1) when c =
d = 1 and 1 < p < 5. In this paper, we take a different approach from [25] to obtain
the uniqueness results for (1), which also allows us to obtain the symmetry result for
the solution. Furthermore, the uniqueness for Schrödinger–Kirchhoff Equation (2) with
potential |x|m is also considered in this paper.

We first prove the following uniqueness result:

Theorem 1. The solution of Equation (1) is unique (up to translation) and radially symmetric.

Theorem 2. Let a, b, m > 0, 3 < p < 5, then Equation (2) admits a unique solution.

In [26], Sun and Zhang treated the nonlinear Schrödinger–Kirchhoff equations with
a critical frequency. They obtained the existence results of least energy solutions for (3).
But the paper [26] only concerns the asymptotic behaviour of least energy solutions for the
finite case. In this paper, we deal with the asymptotic behaviour for problem (3) for the flat
case and the infinite case:

(V3) The flat case:

int(Z) is not empty,Z = int(Z), int(Z) is a connected domain,

where int(Z) is the set of interior points of Z ; Z is defined in (V2).
(V4) The infinite case: we assume that for |x| ≤ 1,

V(x) = exp(− 1
|x| ).



Symmetry 2023, 15, 1856 3 of 10

Consider the following problem:
− a∆u = up in int(Z),
u > 0 in int(Z),
u = 0 on ∂int(Z).

(6)

Then problem (6) has a least energy solution U with the least energy IU :

IU =
1
2

∫
int(Z)

a|∇U|2 − 1
p + 1

∫
int(Z)

Up+1.

In [26], we have proved the existence of least energy solutions vε of nonlinear Schrödinger–
Kirchhoff Equation (3). Now, concerning the asymptotic behaviour of the least energy
solutions vε for the flat case, we have the following result:

Theorem 3. Assume that (V1), (V2) and (V3) hold. Let Γε denote the energy functional associated
to (3), then

lim
ε→0

ε−2(p+1)/(p−1)Γε(vε) = IU . (7)

Furthermore, up to a subsequence, the function ε−2/(p−1)vε converges pointwise to some least
energy solution U of (6) on int(Z) and to 0 on R3 \ int(Z) as ε→ 0. For each δ > 0, ε−2/(p−1)vε

converges uniformly on {x ∈ R3|dist(x, ∂int(Z)) ≥ δ}.

In the end, we deal with the asymptotic behaviour for problem (3) for the infinite case.
Consider the following problem:

− a∆u = up in B1,

u > 0 in B1,

u = 0 on ∂B1,

(8)

where B1 := {x ∈ R3||x| < 1}. We have the following result:

Theorem 4. Assume that (V1), (V2) and (V4) hold. Let vε be the least energy solutions of nonlinear
Schrödinger–Kirchhoff Equation (3) proven in [26], and let Γε denote the energy functional associated
to (3), then

lim
ε→0

(εg(ε))−2(p+1)/(p−1)g(ε)−3Γε(vε) = I(B1), (9)

where g(ε) := −logε2 and I(B1) is the ground energy of (8). Moreover, for each δ > 0 and
up to a subsequence, the function (εg(ε))−2/(p−1)vε(

x
g(ε) ) converges uniformly to W̄ on {x ∈

R3|dist(x, ∂B1) ≥ δ} as ε→ 0, where W is a least energy solution of (8) and

W̄(x) =

{
W(x) for x ∈ B1,

0 for x 6∈ B1.

We organize this paper as follows. In Sections 2 and 3, the uniqueness results in Theo-
rems 1 and 2 are proved. In Section 4, we study the asymptotic behaviour of least energy
solutions of nonlinear Schrödinger–Kirchhoff Equations (3) for the flat case. In Section
5, we study the asymptotic behaviour of least energy solutions of nonlinear Schrödinger–
Kirchhoff Equations (3) for the infinite case.

2. Uniqueness Result for Equations with Constant Coefficients

In this section, we will use a scaling technique to obtain the uniqueness result in
Theorem 1.
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Proof of Theorem 1. Assume that v is a solution of (1), let v(x) = λu(µx), with µ2 =

c, λ = (c/d)
1

p−1 , then u(x) satisfies

−(a +
bλ2

µ

∫
R3
|∇u|2)∆u + u = up in R3. (10)

Therefore, to prove the uniqueness of the solution of Equation (1), it is equivalent to prove
the uniqueness for (10), and without a loss of generality, it suffices to consider the case
c = d = 1 in (1): − (a + b

∫
R3
|∇v|2)∆v + v = vp in R3,

v > 0, v ∈ H1(R3),
(11)

where 1 < p < 5, a, b are positive.
First, we can know that (11) has a positive solution v1 from [27]. Now, by elliptic

estimates (see Theorem 4.1 in [28], for example), v1(x)→ 0 as |x| → ∞. Then, by translation,
we know that v1 satisfies

v1 > 0, v1(∞) = 0, v1(0) = max v1(x). (12)

Next, we prove that v1 is unique. Otherwise, if v2 is another solution which satisfies
(11); let

K1 := a + b
∫
R3
|∇v1|2, K2 := a + b

∫
R3
|∇v2|2.

Then, vi(i = 1, 2) satisfies the following problem:

−∆v +
1
Ki

v =
1
Ki

vp in R3.

Let ūi(x) := ui(
√

Kix), then ūi(x) is a solution of:{
− ∆u + u = up in R3,

u > 0, u(∞) = 0, u(0) = max u(x).
(13)

From [29], the problem (13) has a unique solution. Thus, ū1(x) ≡ ū2(x), i.e., v1(
√

K1x) =
v2(
√

K2x). Therefore,

v2(x) = v1(

√
K1

K2
x). (14)

Then

K2 = a + b
∫
R3
|∇v2|2 = a + b

√
K2

K1

∫
R3
|∇v1|2.

It implies that K2 = a +
√

K2
K1
(K1 − a), i.e.,

(K2 − a)2

K2
=

(K1 − a)2

K1
. (15)

Let us define that f (x) := (x−a)2

x , x > 0, then f ′(x) = x2−a2

x2 . Thus, for x > a, f (x) is strictly
increasing function. As K1, K2 > a, from (15), we have that K1 = K2. Then, by (14), we can
imply that u1 = u2.

Furthermore, by [30], the solution ū1(x) of (13) is radially symmetric, and ū1(x) =
v1(
√

K1x) implies that v1 is also radially symmetric.
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3. Uniqueness Result for Equations with Potential |x|m

In this section, we consider problem (2) and prove the result in Theorem 2.

Proof of Theorem 2. First, the existence of solutions of (2) can be seen in [31] for example.
We denote a positive solution of (2) by u1. By elliptic estimates, u1(x) → 0 as |x| → ∞.
Now, we prove that u1 is the unique solution of (2). Otherwise, let u2 is another solution
of (2). Let

K1 := a + b
∫
R3
|∇u1|2, K2 := a + b

∫
R3
|∇u2|2.

Then ui(i = 1, 2) satisfies

−∆u +
|x|m
Ki

u =
1
Ki

up.

Let wi(x) := βiui(αix), where αi = K
1

m+2
i , βi = K

−m
(m+2)(p−1)
i . Then, wi(x) is the solution of{

− ∆w + |x|mw = wp, x ∈ R3,

w > 0, w(∞) = 0.
(16)

Now, by [32], we know that the solution of (16) is unique. It yields that w1(x) ≡ w2(x), i.e.,

β1u1(α1x) = β2u2(α2x).

Therefore,

u2(x) =
β1

β2
u1(

α1

α2
x). (17)

Then,

K2 = a + b
∫
R3
|∇u2|2

= a + b
β2

1
β2

2

α2

α1

∫
R3
|∇u1|2

= a + (
K2

K1
)

p−1+2m
(m+2)(p−1) (K1 − a).

From above, we can determine that

(K2 − a)
(m+2)(p−1)

p−1+2m

K2
=

(K1 − a)
(m+2)(p−1)

p−1+2m

K1
. (18)

For simplicity, we define k := (m+2)(p−1)
p−1+2m , and let

f (x) :=
(x− a)k

x
, x > 0.

Then

f ′(x) =
(x− a)k−1((k− 1)x + a)

x2 . (19)

Since

k− 1 =
(p− 3)m + p− 1

p− 1 + 2m
> 0,

we get that f (x) is strictly increasing for x > a. Now, by K1, K2 > a, we can know K1 = K2
from (18). Then, by the definition of αi, βi and from (17), we know that u1 = u2. This
completes our proof that u1 is the unique solution of (2).



Symmetry 2023, 15, 1856 6 of 10

4. Asymptotic Behaviour of Ground State Solutions for the Flat Case

Let vε be the least energy solution of (3), which is proved in [26]. Now, let

wε(x) := ε
− 2

p−1 vε(x),

then, wε is a least energy solution of the problem

−(a + εαb
∫
R3
|∇wε|2)∆wε +

1
ε2 V(x)wε = wp

ε , (20)

where α = 5−p
p−1 > 0 by the assumption 3 < p < 5.

Assume that Iε is the energy functional associated to problem (20); then, by direct
computations,

Iε(wε) =
1
2

∫
R3

a|∇wε|2 +
1
ε2 V(x)w2

ε + εα b
4
(
∫
R3
|∇wε|2)2 − 1

p + 1

∫
R3

wp+1
ε

= ε−2(p+1)/(p−1)Γε(vε),

where Γε is the energy functional associated to (3). We have

Lemma 1.
lim sup

ε→0
Iε(wε) ≤ IU ,

where IU is the least energy of Equation (6).

Proof. Given R > 0, let ϕR ∈ C∞
0 (R3) be such that ϕR ≡ 1 on BR(0) = {x ∈ R3||x| ≤ R},

ϕR ≡ 0 in R3\BR+1(0), 0 ≤ ϕR ≤ 1, |∇ϕR| ≤ c, where c is a positive constant. Define
vR := ϕRw0, where w0 is the least energy solution of (6) (we regard w0 ≡ 0 on R3 \ int(Z)).
Then, we can get a unique θ > 0 such that θvR ∈ N̄ε, where N̄ε is the Nehari manifold with
respect to (20), i.e.,

θp−1
∫
R3

vp+1
R =

∫
R3
(a|∇vR|2 +

1
ε2 V(x)v2

R) + θ2εαb(
∫
R3
|∇vR|2)2,

which implies that

θp−1 =

∫
R3 a|∇vR|2∫
R3 vp+1

R

+
1
ε2

∫
R3 V(x)v2

R∫
R3 vp+1

R

+ θ2 εαb(
∫
R3 |∇vR|2)2∫
R3 vp+1

R
=: I1 + I2 + θ2 I3.

(21)

Since w0 is a least energy solution of (6), then I1 → 1 as R→ ∞. As w0 ≡ 0 on R3 \ int(Z)
and V(x) ≡ 0 on int(Z), it yields that∫

R3
V(x)v2

R = 0

and so, I2 = 0. By α > 0, I3 → 0 for fixed R > 0 and ε→ 0+. Now, define the function

h(m, n, θ) = θp−1 − θ2m− n.

We have that h(0, 1, 1) = 0 and ∂h
∂θ (0, 1, 1) 6= 0. Then, the implicit function theorem tells

us that there exists a function θ = θ(m, n), which satisfies that h(m, n, θ) = 0 near (0, 1, 1),
and θ(m, n) is continuous near (0, 1). Thus, θ(m, n) → θ(0, 1) = 1, as m → 0 and n → 1.
Therefore by (21), for fixed and sufficiently large R > 0, θ is just close to 1 as ε→ 0+.
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Now

Iε(wε) = infv∈N̄ε
Iε(v) ≤ Iε(θvR)

= θ2[ 1
2

∫
R3(a|∇vR|2 + 1

ε2 V(x)v2
R) + θ2εα b

4 (
∫
R3 |∇vR|2)2 − θp−1

p+1

∫
R3 vp+1

R ]

= θ2[ 1
2

∫
R3 a|∇vR|2 − 1

p+1

∫
R3 vp+1

R + θ2εα b
4 (
∫
R3 |∇vR|2)2 + 1−θp−1

p+1

∫
R3 vp+1

R ].
(22)

As 1
2

∫
R3 a|∇vR|2 − 1

p+1

∫
R3 vp+1

R → IU when R → ∞, we can get that the last quantity
in (22) is just close to IU if R is sufficiently large. Then letting ε→ 0+, we have proven that
lim sup

ε→0
Iε(wε) ≤ IU .

Now, by Lemma 1 and

Iε(wε) =
1
4

∫
R3

a|∇wε|2 +
1
ε2 V(x)w2

ε + (
1
4
− 1

p + 1
)
∫
R3

wp+1
ε ,

by our assumption 3 < p < 5, we have that
∫
R3 |∇wε|2 and

∫
R3 wp+1

ε are bounded for
small ε > 0. Thus, by combining (iii) of Theorem 1.1 in [26], we know that ‖wε‖H1(R3) is
bounded for small ε > 0. Now, we have some w ∈ H1(R3) such that up to a subsequence,
wε converges weakly in H1(R3) and pointwise to w. Moreover, from (iii) of Theorem 1.1
in [26], we see that w = 0 on R3 \ int(Z) and that wε → w in Lp+1(R3). Now, we test
φ ∈ C∞

0 (int(Z)) on Equation (20),

0 =
∫
R3

a∇wε∇φ− wp
ε φ + εαb

∫
R3
|∇wε|2

∫
R3
∇wε∇φ.

Thus, letting ε→ 0, we have 
− a∆w = wp in int(Z),
w ≥ 0 in int(Z),
w = 0 on ∂int(Z).

(23)

Now, by Lemma 1, we can get that 1
2

∫
int(Z) a|∇w|2 − 1

p+1

∫
int(Z) wp+1 = IU , and

hence, w = U on int(Z), where U is a least energy solution of (23). Moreover, by elliptic
estimates, we can show that for any compact subset A ⊂ int(Z), the convergence is
uniform. Thus, for each δ > 0, wε → w uniformly on {x ∈ R3|dist(x, ∂int(Z)) ≥ δ}. By
now, we have proven Theorem 3.

5. Asymptotic Behaviour of Ground State Solutions for the Infinite Case

In this section, we consider the asymptotic behaviour of the least energy solutions of
nonlinear Schrödinger–Kirchhoff Equation (3) for the infinite case. Here suppose that (V1),
(V2) and (V4) hold. Let vε be the least energy solutions to problem (3) proven in [26], and
let Γε denote the energy functional associated to (3), i.e.,

Γε(vε) =
1
2

∫
R3
(ε2a|∇vε|2 + V(x)v2

ε ) +
b
4

ε(
∫
R3
|∇vε|2)2 − 1

p + 1

∫
R3

K(x)|vε|p+1.

Define g(ε) := −logε2 and wε(x) := (εg(ε))−2/(p−1)vε(
x

g(ε) ). Then, wε satisfies that

−(a + ε
p+5
p−1 g

7p−1
p−1 (ε)b

∫
R3
|∇wε|2)∆wε + (εg(ε))−2V(

x
g(ε)

)wε = wp
ε .

From the definition of g(ε) and direct computations, one can obtain

ε
p+5
p−1 g

7p−1
p−1 (ε)→ 0, (24)
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as ε→ 0. Thus, for |x| ≤ g(ε), by (V4), we have

−(a + ε
p+5
p−1 g

7p−1
p−1 (ε)b

∫
R3
|∇wε|2)∆wε + (εg(ε))−2exp(−|g(ε)||x| )wε = wp

ε .

By the definition of g(ε), it is

−(a + ε
p+5
p−1 g

7p−1
p−1 (ε)b

∫
R3
|∇wε|2)∆wε + (εg(ε))−2ε

2
|x|wε = wp

ε , (25)

for |x| ≤ g(ε). Thus, for each compact set Br ⊂ B1, we have

lim
ε→0

max
x∈Br

(εg(ε))−2ε
2
|x| = 0. (26)

Moreover, for any d > 1,

lim
ε→0

min{(εg(ε))−2ε
2
|x| |d ≤ |x| ≤ g(ε)} = ∞. (27)

Now, we consider the problem:
− a∆w = wp in B1,

w > 0 in B1,

w = 0 on ∂B1.

(28)

From the estimations (24) and (26), we can determine that

lim sup
ε→0

Γ̃ε(wε) ≤
1
2

∫
B1

a|∇W|2 − 1
p + 1

∫
B1

Wp+1 =: I(B1),

where W is a ground state solution of (28) and

Γ̃ε(wε) =
1
2

∫
R3
(a|∇wε|2 + (εg(ε))−2V(

x
g(ε)

)w2
ε ) + ε

p+5
p−1 g

7p−1
p−1 (ε)

b
4
(
∫
R3
|∇wε|2)2 −

1
p + 1

∫
R3

wp+1
ε = (εg(ε))−2(p+1)/(p−1)g(ε)−3Γε(vε).

Then, by elliptic estimates and (27), we can know that

lim
ε→0
||wε||L∞({x∈R3|d<|x|≤g(ε)}) = 0.

Moreover, from Theorem 1.1 in [26], we can deduce that

lim
ε→0
||wε||L∞({x∈R3||x|≥g(ε)}) = 0.

Therefore, by similar arguments used in the flat case and the finite case, we can determine
that

lim
ε→0

(εg(ε))−2(p+1)/(p−1)g(ε)−3Γε(vε) = I(B1).

Furthermore, for each δ > 0, the function (εg(ε))−2/(p−1)vε(
x

g(ε) ) converges (up to a subse-

quence) uniformly to W̄ on {x ∈ R3|dist(x, ∂B1) ≥ δ} as ε→ 0, where W is a ground state
solution of (28) and

W̄(x) =

{
W(x) for x ∈ B1,

0 for x 6∈ B1.
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By now, we have proven Theorem 4.
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