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Abstract: The present analysis deals with the study of the f (Q, T) theory of gravity, which was
recently considered by many cosmologists. In this theory of gravity, the action is taken as an arbitrary
function f (Q, T), where Q is non-metricity and T is the trace of the energy–momentum tensor for
matter fluid. In this study, we took two different forms of the function f (Q, T) as f (Q, T) = a1Q+ a2T
and f (Q, T) = a3Q2 + a4T, and discussed the physical properties of the models. Also, we obtained the
various cosmological parameters for the Friedmann–Lemaître–Robertson–Walker (FLRW) universe
by defining the transit form of a scale factor that yielded the Hubble parameter in redshift form, as
H(z) = H0

(λ+1)

(
λ + (1 + z)δ

)
. We obtained the best-fit values of model parameters using the least

squares method for observational constraints on available datasets, like Hubble H(z), Supernova
SNe-Ia, etc., by applying the root mean squared error formula (RMSE). For the obtained approximate
best-fit values of model parameters, we observed that the deceleration parameter q(z) shows a
signature-flipping (transition) point within the range of 0.623 ≤ z0 ≤ 1.668. Thus, it shows the
decelerated expansion transiting into the accelerated universe expansion with ω → −1 as z→ −1 in
the extreme future.

Keywords: FLRW; transit universe; f (Q, T) gravity; RMSE; energy conditions

PACS: 98.80-k; 98.80.JK; 04.50.Kd

1. Introduction

Einstein’s theory of general relativity is considered the most successful theory; how-
ever, it has some limitations, such as explaining phenomena like the Big Bang singularity,
ring singularity, black hole dynamics, a consistent quantum gauge field theory of gravity, etc.
Modern cosmological observational data, such as type Ia supernovae [1–3], Wilkinson mi-
crowave anisotropy probe (WMAP) [4], and baryon acoustic oscillations (BAOs) [5,6], have
confirmed that our universe is accelerating and expanding. This expansion may be driven
by some unknown type of energy with negative pressure, referred to as dark energy (DE).
The matter in our universe is dominated by dark energy (68%) and dark matter (26.8%) [7].
The remaining (4.5%) is occupied by other ordinary matter. The problems with dark energy
and dark matter are among the most difficult and unsolved problems in modern cosmology.
In recent years, in order to solve these problems, different methods have been proposed by
researchers, but they remain mysteries of the universe to this day. Dark energy is described
by the equation of state (EoS) parameter ω = p

ρ , where p and ρ represent the pressure
and energy density of dark energy, respectively. The cosmological constant is widely used
to discuss the accelerated phenomenon of the universe, which represents energy density
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associated with vacuum (ω = −1). However, this simple dark energy model has serious
issues with fine-tuning and cosmic coincidence [8,9]. Because of this, different DE models
have been proposed, such as quintessence [10,11], K-essence [12,13], phantom field [14,15],
the tachyon field [16], quantum field [17,18], as well as interacting dark energy models, like
Chaplygin gas [19], holographic models [20,21], etc. To understand why the universe is
accelerating, various cosmologists have, from time to time, proposed some well-known
modified theories of gravity, like f (G) gravity [22], f (R) gravity [23], f (R, T) [24–29], f (τ)
gravity [30], f (G, T) gravity [31], f (R, T, RµvTµv) gravity [32], f (Q) gravity [33–38], and
the recently proposed f (Q, T) [39–41] gravity. Dark energy and dark matter refer to the
unseen additives of the universe. Dark matter is an invisible, non-baryonic matter believed
to explain phenomena, including gravitational lensing and galactic rotation curves. Dark
energy is responsible for the accelerating expansion of the universe [1,42].

Geometric variables in symmetric teleparallel gravity reflect the physical character-
istics of the gravitational interaction, which are symbolized by non-metricity Q. Non-
metricity Q of the metric tensor is the non-vanishing covariant derivative of the metric
tensor, i.e., Qαµv=∇αgµv . Non-metricity geometrically describes a variation of the length
of a vector in parallel transport. This strategy was first presented by Nester and Yo [33].
The Lagrangian is viewed as an arbitrary function of the non-metricity in an extension
of symmetric teleparallel gravity. By coupling the non-metricity Q with the trace of the
energy–momentum tensor T, the f (Q) theory is further extended to the f (Q, T) theory [39].

In the present work, we study various energy conditions in the recently proposed
f (Q, T) gravity theory. Energy conditions are powerful tools used to investigate the
spacetime structure and are widely used in GR to study, e.g., the emergence of Big Rip
singularities and black hole dynamics [43]. Also, they provide us with some latitude in
our analysis of particular notions about the nature of cosmic geometries and particular
relationships that energy–momentum must satisfy under stress in order for energy density
to be positive. They are typically used in general relativity to illustrate and investigate
spacetime singularities [44]. Using power law in f (R) gravity, the authors of ref. [45]
studied the energy condition, focusing specifically on the null energy condition for black
hole thermodynamics [7], whereas the Hawking–Penrose singularity theorem invokes
both the weak and strong energy conditions [46]. Ref. [31] introduced energy conditions
within the FLRW universe for two models. The viability of the bounds in f (R,� R, T) was
investigated through energy conditions in [47]. In different modified theories of gravity, like
f (R) and generalized teleparallel theory, energy conditions have been investigated [48–51].

Motivated by the preceding analysis and discussions, we, in this work, explore two
different f (Q, T) models in a flat FLRW spacetime with the proposed equation of state
(EoS) p = ωρ, and the deceleration parameter (q) where p, ρ, and ω represent cosmological
pressure, energy density, and the EoS parameter; this is conducted alongside the validation
of energy conditions.

The organization of the analysis is as follows: The fundamental formalism of the
f (Q, T) theory of gravity by varying actions is presented in Section 2. The gravitational
field equations and the emergent scale factor are shown in Section 3. The empirical
constraints that explain the model-free parameters are presented in Section 4. In Section 5,
cosmological parameters are discussed. In Section 6, two models of f (Q, T) gravity are
discussed. We used a f (Q, T) function, both linear and quadratic, as f (Q, T) = a1Q + a2T
and f (Q, T) = a3Q2 + a4T, where a1, a2, a3, and a4 are model parameters. A summary of
the concluding remarks is provided in the last Section 7.

2. Basic Formalism in f (Q, T) Gravity

The modified Einstein–Hilbert action principle for the f (Q, T)-extended symmetric
teleparallel gravity is given in [39]

S =
∫ [ 1

16π
f (Q, T) + Lm

]√
−gd4x, (1)
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where f (Q, T) denotes the general functional form of the non-metricity scalar Q and the
trace of the energy–momentum tensor T. g is the determinant of the metric tensor gµν,
i.e., g = det

(
gµν

)
, and Lm is Lagrangian matter. The non-metricity scalar Q is defined as

Q ≡ −gµν
(

Lδ
αµLα

νδ − Lδ
αδLα

µν

)
, (2)

where the deformation tensor Lδ
αγ is given by

Lδ
αγ = −1

2
gδη
(
∇γgαη +∇αgηγ −∇η gαγ

)
. (3)

The non-metricity tensor is defined by the following form

Qγµν = ∇γgµν, (4)

and the trace of the non-metricity tensor is obtained as

Qδ = gµνQδµν, Q̃δ = gµνQµδν. (5)

Further, we define the super potential tensor as follows:

Pδ
µν = −1

2
Qδ

µν +
1
4

(
Qδ − Q̃δ

)
gµν −

1
4

δδ
(µQν), (6)

and using this, the non-metricity scalar is

Q = −QδµνPδµν. (7)

The variation of the energy–momentum tensor with respect to the metric tensor gµν reads
as follows:

δ(gµνTµν)

δgαβ
= Tαβ + θαβ. (8)

The energy–momentum tensor is

Tµν =
−2√−g

δ(
√−gLm)

δgµν , (9)

and

θµν = gαβ
δTαβ

δgµν . (10)

Also, the field equations of f (Q, T) gravity are given by varying the action, Equation (1),
with respect to the metric tensor gµν,

− 2√−g
∇δ

(
fQ
√
−gPδ

µν

)
− 1

2
f gµν + fT

(
Tµν + θµν

)
− fQ

(
PµδαQν

δα − 2Qδα
µPδαν

)
= 8πTµν, (11)

where fQ = d f (Q,T)
dQ , fT = d f (Q,T)

dT , and ∇δ denotes the covariant derivative. From
Equation (11), it emerge that the field equations of f (Q, T) depend on the tensor θµν. Vari-
ous cosmological models of f (Q, T) gravity, depending on the nature of the source of matter,
are possible. Recently, Koussour et al. [52] investigated the quintessence universe and cos-
mic acceleration in f (Q, T) gravity by presuming a specific form of f (Q, T) = αQ + βQ2 + γT,
where α, β, and γ are free model parameters. Also, in [53], the authors investigated energy
conditions in f (Q, T) gravity for two different forms of models.
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3. Flat FLRW Universe in f (Q, T) Cosmology

In order to find a solution for the field equations in f (Q, T)-extended symmetric
teleparallel gravity, some straightforward assumptions, such as the selection of a metric,
are frequently required. Consequently, we consider the flat FLRW metric,

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

, (12)

where a(t) is the scale factor of the metric that depends on the cosmic time (where the unit
of the cosmic time is Gyr). The energy–momentum tensor of the universe for the perfect
fluid is given by

Tµ
ν = diag(−ρ, p, p, p). (13)

Here, p and ρ denote the pressure and energy density of the universe, respectively. Thus,
for tensor θ

µ
ν , the expression is obtained as θ

µ
ν = diag(2ρ + p,−p,−p,−p). The Einstein

field equations using the metric (12) are given as follows:

κ2ρ =
f
2
− 6FH2 − 2G̃

1 + G̃

( .
FH + F

.
H
)

, (14)

κ2 p = − f
2
+ 6FH2 + 2

( .
FH + F

.
H
)

. (15)

Here, κ2 = 8π, G̃ = fT
8π , and an overhead dot (·) represents a derivative with respect to

cosmic time (t). In this case, F ≡ fQ and κ2G̃ ≡ fT represent the differentiations of the
f (Q, T) function with respect to Q and T, respectively, and Q = 6H2. With the help of
Equations (14) and (15), the EoS parameter is expressed as

ω = −1 +
(

1
κ2ρ

)(
2κ2 + fT

κ2 + fT

)( .
FH + F

.
H
)

. (16)

Specific Hubble Parameters and Analysis

Now we provide a glimpse of the main features of the scale factor (transit scale factor)
and derive a few physical quantities from them to discuss the observed scenario. Hence,
for the transit scale factor, Hubble’s parameter [54,55] is observed as follows:

H(z) = ε
(

a−δ + λ
)

, (17)

where ε, λ, and δ are the model parameters. Keeping in mind the relation between a and z
as a = 1

1+z , Equation (17) becomes

H(z) =
H0

(λ + 1)

(
λ + (1 + z)δ

)
. (18)

Here, H0 represents the present Hubble constant, which explains the present expansion rate
of the universe. Freedman et al. [56] and Suyu et al. [57] evaluated a value of the present
Hubble constant H0 = 72± 8 km/s/Mpc and 69.7+4.9

−5 km/s/Mpc, where Plank [58] gives
H0 = 67.3± 1.20 km/s/Mpc.

The ΛCDM model explains the accelerated universe expansion of the present era with
the transition from the decelerated expansion era dominated by the dark matter in the past
era. It would be interesting to check the deviation of the considered choice (Equation (17))
from the ΛCDM model. The ΛCDM universe approaches ω → −1 as z → −1 with the
transition from the decelerated phase at z ≈ 0.5. The choice (Equation (17)) may also yield
this kind of transitional behavior, and for δ > 0, it may reproduce the effects of the ΛCDM
model in the limit z→ −1. The best-fit values of the model parameters λ and δ obtained
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from different observational datasets may reveal the exact nature of H(z), compared to the
ΛCDM model.

Using the time–redshift differential relation, d
dt = −(1 + z)H d

dz , the first and second
derivatives of H are obtained as

Ḣ(z) = −
δH2

0(z + 1)δ
(
λ + (z + 1)δ

)
(λ + 1)2 and

Ḧ(z) =
δ2H3

0(z + 1)δ
(
λ + (z + 1)δ

)(
λ + 2(z + 1)δ

)
(λ + 1)3

(19)

We observe and compare our investigated model with the recent observations by finding
the best-fit values and the best-fit curve of the Hubble function toward the model param-
eters H0, λ, and δ, with the recent observational datasets. Hence, here, we use the most
favorable Hubble and Supernovae SNe-Ia to constrain the said model parameter in the
following section.

4. Observational Constraints

The accelerated expansion can be explained by a cosmological constant; alternative
explanations, such as dynamical dark energy or modified gravity, can be investigated
by looking at how they affect the history of the universe’s late-time expansion or the
development of its structures. In order to identify constant parameters, we use the Hubble
and Supernova Ia datasets in this research.

4.1. Hubble Dataset

The Hubble parameter is also related to the differential redshift, as H(z) = − 1
1+z

dz
dt ,

where dz is obtained from the spectroscopic surveys, and so a measurement of dt provides
the Hubble parameter, which will be independent of the model. In fact, two methods are
generally used to measure the Hubble parameter values H(z) at a certain redshift, and are
extracted from H(z), from the line-of-sight baryonic acoustic oscillation (BAO) datasets
and differential age (DA) method [59–79], estimating H(z). We notice the observational
constraints on parameters H0 = ε(λ + 1), δ and λ using the latest 54 data points of H(z) in
the redshift range 0.07 ≤ z ≤ 2.4, where 28 points are obtained using the DA method, and
26 points are obtained using BAO. The values are presented in Table 1.

We found the best-fit curve of H(z) with 54 data values shown in Table 2, using
R2 − test:

R2 = 1− ∑54
1 [(Hi)obs − (Hi)th]

2

∑54
1 [(Hi)obs − (Hi)mean]2

(20)

R2 − test determines the proportion of variance in the dependent variable that can
be explained by the independent variable. An R2 = 1 indicates an exact fit and pertains
to the values of model parameters H0, δ, and λ, with respect to the OHD (observatory
Hubble dataset). To find the best-fit values of H0, δ, and λ, we restrict the parametric
spaces −1 < z and ε 6= 0. We use error bars to represent the mean point and its deviation
from the mean across 54 points of the Hubble dataset and graphically compare our model

with the ΛCDM model (with H(z) = H0

√
Ωm0(1 + z)3 + ΩΛ0) for H0 = 67.8 km/s/Mpc,

ΩΛ0 = 0.7, and Ωm0 = 0.3, where Ωm0 and ΩΛ0 are the density parameters of dark matter
and dark energy, as shown in Figure 1 We obtain the best-fit plot for approximate values of
H0 = 64.49+0.33

−0.32, δ = 1.54+0.02
−0.02 and λ = 1.140.068

−0.077, with a maximum of R2 = 0.9321 and an
RMSE of 11.071. Therefore, H0 = 64.4772+0.33

−0.32 km/s/Mpc deviating by 6.79% from an exact
fit. Figure 3 shows the 1− σ (dark blue-shaded) and 2− σ (sky blue-shaded) maximum
likelihood contours in the H0-δ, H0-λ and λ-δ planes for the Hubble dataset.
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Table 1. Best-fit values of the model parameters H0, δ, and λ for both datasets.

Datasets H0 (km/s/Mpc) δ λ ε

Hubble 64.49+0.33
−0.32 1.54+0.02

−0.02 1.14+0.068
−0.077 30.2+0.90

−0.87

SNe-Ia 68.665+2.2
−2.1 1.53+0.28

−0.29 1.86+0.37
−0.34 23.954+3.74

−2.84

Table 2. A total of 54 points of H(z) data: 28 (DA) + 26 (BAO + other).

z H(z) σH Ref. z H(z) σH Ref.

0.07 69 19.6 [59] 0.9 69 12 [60]
0.120 68.6 26.2 [59] 0.170 83 8 [61]
0.179 75 4 [62] 0.2 72.9 29.6 [59]
0.27 77 14 [61] 0.28 88.8 36.6 [59]

0.350 76.3 5.6 [63] 0.38 83 13.5 [64]
0.4 95 17 [61] 0.42 87.1 11.2 [64]

0.44 92.8 12.9 [64] 0.47 89 34 [59]
0.48 97 62 [65] 0.6 87.9 6.1 [66]
0.68 92 8 [62] 0.73 97.3 7 [66]
0.78 105 12 [62] 0.87 125 17 [62]
0.90 117 23 [61] 1.037 154 20 [62]
1.3 168 17 [61] 1.363 160 33.6 [61]

1.430 177 18 [61] 1.530 140 14 [61]
1.750 202 40 [61] 1.965 186.5 50.4 [67]
0.24 79.69 2.99 [68] 0.30 81.7 6.22 [69]
0.31 78.18 4.74 [70] 0.34 83.8 3.66 [68]
0.35 87.7 9.1 [71] 0.36 79.94 3.38 [70]
0.38 81.5 1.9 [72] 0.40 82.04 2.03 [70]
0.43 86.45 3.97 [68] 0.44 82.6 7.8 [73]
0.44 84.81 1.83 [70] 0.48 87.79 2.03 [70]
0.51 90.4 1.9 [72] 0.52 94.35 2.64 [70]
0.56 93.34 2.3 [70] 0.57 87.6 7.8 [74]
0.57 96.8 3.4 [75] 0.59 98.48 3.18 [70]
0.6 87.9 6.1 [73] 0.61 97.3 2.1 [72]

0.64 98.82 2.98 [70] 0.73 97.3 7 [73]
2.30 224 8.6 [76] 2.33 224 8 [77]
2.34 222 8.5 [78] 2.36 226 9.3 [79]

Figure 1. The best-fit plot of the Hubble parameter versus redshift for the Hubble dataset (red); the
black dotted line and blue dash-dot line show plots for the ΛCDM model and SNe-Ia dataset. Dots
denote the Hubble datasets with the error bars.
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4.2. Supernovae SNe-Ia

The distance modulus µ(z) = m−M is given by

µ(z) = 5 log10 dL − 5 log10(
H0

Mpc
) + 25 (21)

where M is constant for all SNe-Ia. To obtain the best-fit curve, we have to consider the data
frame with 580 observed entries of apparent magnitude from the Union 2.1 compilation [80],
where dL(z) = (1 + z)

∫ z
0

H0
H(z∗)dz∗. The [80] statistically significant value of M is −19.30.

R2 = 1− ∑580
1 [(µi)obs − (µi)th]

2

∑580
1 [(µi)obs − (µi)mean]2

(22)

We use error bars for 580 points from the SNe-Ia datasets and compare our model with
the well-accepted ΛCDM model for H0 = 67.8 km/s/Mpc, ΩΛ0 = 0.7 and Ωm0 = 0.3 as
shown in Figure 2. We obtain the best-fit plot for approximate values of H0 = 68.665+2.1

−2.1,
δ = 1.53+0.28

−0.29, and λ = 1.86+0.37
−0.34, with a maximum R2 = 0.9930 and an RMSE of 0.2662.

Therefore, H0 = 68.665+2.1
−2.1 km/s/Mpc, deviating by 0.7% from an exact fit. Figure 3 shows

the 1− σ (dark green-shaded) and 2− σ (light green-shaded) maximum likelihood contours
in the H0-δ, H0-λ, and λ-δ planes for the SNe-Ia Datasets.

Figure 2. The best-fit plot for luminosity distance (µ) versus redshift for SNe-Ia datasets (red); the
black dotted line and blue dash-dot line show plots for the ΛCDM model and the Hubble dataset.
Dots denote the SNe datasets with error bars.
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Figure 3. The 1− σ and 2− σ maximum likelihood contour plots for the parameters using Hubble
(left) and SNe-Ia (right) datasets.

5. Cosmic Parameters and Energy Conditions

In order to discuss how the universe has evolved in various phases, we need to discuss
the behaviors of some cosmological parameters, like the deceleration parameter, statefinder
parameter, etc.; these are defined as follows:

The deceleration parameter (q) is

q = −1 +
d
dt

(
1
H

)
(23)

Here, q > 0 denotes the decelerating phase of the universe, q < 0 denotes the accelerating
phase, q = 0 represents the transition point where the universe shifts from the deceleration
phase to the acceleration phase.

The statefinder parameters.
The statefinder is a novel cosmological diagnostic pair r, s that was introduced by

Sahni et al. [81]. The statefinder is a geometrical diagnostic that enables the model-
independent characterization of dark energy features. It is defined as [81,82]:

r(z) = 1 + 3
Ḣ
H2 +

Ḧ
H3 and s(z) =

r− 1

3
(

q− 1
2

) . (24)

The flat ΛCDM model is at the point where the statefinder parameters {r, s} = {1, 0}
have the corresponding values. Additionally, the {r, s} plane, a positive parameter s (i.e.,
s > 0) with r < 1, denotes a quintessence-like model of dark energy, whereas a negative
parameter s (i.e., s < 0) with r > 1 denotes a Chaplygin gas-like model of dark energy.
Furthermore, by traversing the point {r, s} = {1, 0}, one can figure out different types of
dark energy models.

Energy conditions
One can derive highly potent and broad theorems regarding the behaviors of massive

gravitational fields and cosmic geometries using the energy conditions (ECs) of general
relativity (GR). Generally speaking, ECs can be divided into

• Strong energy condition (SEC): One inequality of SEC, formulated as ρ + 3p ≥ 0, as-
serts that gravity should always be attractive. Another component of SEC is ρ + p ≥ 0.
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• Dominant energy condition (DEC): When an observer measures, the matter–energy
density will be positive and will propagate causally, which leads to ρ ≥ |p|, ρ ≥ 0.
DEC implies that the flow of sound energy will not exceed the speed of light.

• Weak energy condition (WEC): The matter–energy density measured by any time-like
observer should be positive, ρ ≥ 0, ρ + p ≥ 0. WEC implies that the energy density
should not be negative

• Null energy condition (NEC): For a perfect fluid energy–momentum tensor, NEC is
given by ρ + p ≥ 0.

The violation of the NEC in energy conditions implies the invalidity of the given
energy criteria. The current fast expansion of the universe has raised questions about the
SEC. In cosmological situations during the inflationary expansion and at the present, SEC
must be broken.

From Equations (18) and (19), the deceleration parameter and statefinder parameters
are obtained as follows:

q = −1 +
δ(z + 1)δ

λ + (z + 1)δ
. (25)

r(z) =
λ2 + (δ− 2)(δ− 1)λ(z + 1)δ + (δ− 1)(2δ− 1)(z + 1)2δ(

λ + (z + 1)δ
)2 (26)

s(z) = 1 +
δ(z + 1)δ−1((z + 1)ε

(
(2δ− 3)(z + 1)δ − 3λ

)(
λ + (z + 1)δ

)
− δλ

)
ε
(
λ + (z + 1)δ

)3 . (27)

After the analysis of SNe-Ia data by numerous researchers, it was observed that datasets
favor current acceleration for (z < 0.5) and past deceleration for (z > 0.5). A while
back, the high-z supernova search (HZSNS) team reported zda = 0.46± 0.130 at the (1σ)
confidence level [83], which was further refined to zda = 0.43± 0.070 at (1 σ) [83]. According
to SNLS [84], as also compiled in [55], the transition redshift zda ≡ 0.6 (1σ) is in better
agreement with the flat ΛCDM model zda = (2ΩΛ/Ωm)1/3 − 1 ∼ 0.66). Another limit is
0.60 ≤ z0 ≤ 1.18 (2σ, joint analysis) [41]. Furthermore, the transition from deceleration
to acceleration (i.e., q = 0) for our derived model is zda

∼= 0.62 for the Hubble dataset
and zda

∼= 1.36 for supernovae, which are in agreement with the SNe-Ia supernovae
observations, including the furthest-known supernova SNI997ff at z ≈ 1.7 [85,86]. We see
that the variation of q with z in our model is compatible with the results. In our derived
model, using the best-fit values of δ, λ, the deceleration parameters q0 (at z = 0) for Hubble
and Supernova are −0.2792 and −0.4774, respectively. They are compatible with [87,88].
Figure 4 shows a plot of the deceleration parameters versus redshift for both Hubble and
Supernovae datasets, where the values of model parameters δ and λ are from Table 1.

In this study, the argument was made that the {r, s} plane is useful for distinguishing
between various models. An analysis based on {r, s} has proven useful in differentiating
between general relativity and modified theories of gravity. We note that for the Hubble
datasets, the r and s parameters at the present epoch (i.e., z = 0) are r0 = 0.43987 and
s0 = −3.3632, while for the SNe-Ia datasets, they are r0 = 0.48918 and s0 = −10.5851, as
shown in Figure 5 for the best-fit values of ε, δ, λ from Table 1. Currently, observations
are not sensitive enough to measure these parameters. However, these parameters can be
deduced from future observations, which would greatly help to constrain the nature of
dark energy.
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(a) (b)

Figure 4. Behavior of the deceleration parameter (left plot (a) for Hubble and the right plot (b) for
SNe-Ia), with redshift for the best-fit values of δ and λ provided in Table 1.

Figure 5. Behavior of the universe in the s− r plane for the best-fit values of δ and λ provided in
Table 1.

6. Models of f (Q, T) Gravity

In this section, we discuss some physical aspects of different models of f (Q, T) gravity.

6.1. Model-I

Here, we consider the f (Q, T) gravity model as

f (Q, T) = a1Q + a2T, (28)

where a1 and a2 are arbitrary constant model parameters. For the above model, field
Equations (14)–(16) take the form

ρ =
a1Ḣ

a2 + 8π
−

a1
(
3H2 + Ḣ

)
2(a2 + 4π)

, (29)

Figure 6 shows the pressure versus redshift plots for both Hubble and SNe-Ia datasets.
Parameters H0, δ, and λ are from Table 1, while model parameters a1 = −0.0125 and
a2 = −0.012 are arbitrarily chosen, respectively.
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Figure 6. Behavior of the (redshift–density) plane for the constant values H0, δ, and λ provided in
Table 1.

ω =
−3a2

(
H2 + Ḣ

)
− 8π

(
3H2 + 2Ḣ

)
a2
(
3H2 − Ḣ

)
+ 24πH2 , (30)

The EoS parameter is associated with energy density ρ and pressure p. The EoS parameter
is positive in the early universe. As time evolves, it moves from the positive region into
the negative region. The negative ω is proposed as a constant vacuum energy density. It
is worth noting that ω = 0 shows pressureless cold matter (PCL), ω = (0, 1

3 ) represents
hot matter, ω = 1

3 is radiation, ω = ( 1
3 , 1) is the hard universe, ω = 1 shows stiff fluid (SF),

ω > 1 is the Ekpyrotic matter (Ek-M), −1 < ω < − 1
3 denotes the quintessence region, and

ω < −1 denotes the phantom region, respectively; ω = −1 represents the cosmological
constant-like fluid and ω << −1 is precluded by the SNe-Ia perceptions. Subsequently,
the evolving ω range of our derived model is supportive of the ΛCDM) model in both
Hubble and supernova data.

From Figure 7, we can observe that the universe exits the decelerated regime and
enters the accelerating phase, as studied in [89].

Figure 7. Behavior of the (redshift–EoS) plane for the constant values of H0, δ, and λ, provided in
Table 1.
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Furthermore, to verify the genuineness of the model in the context of cosmic accelera-
tion; we resolve different forms of energy conditions by calculating

ρ + p =
2a1Ḣ

a2 + 8π
, (31)

ρ− p = −
a1
(
3H2 + Ḣ

)
a2 + 4π

, (32)

and

3p + ρ = a1

(
3H2 + Ḣ
a2 + 4π

+
4Ḣ

a2 + 8π

)
, (33)

for NEC, DEC, and SEC, respectively. Figures 8 and 9 are plots of energy conditions with
respect to the constants obtained from the best-fit values for the Hubble and SNe-Ia datasets,
as shown in Table 1, and model parameters a1 = −0.0125 and a2 = −0.012, where the y-axis
has a combination of pressure and density. According to the accelerating universe data,
the SEC must be violated on a cosmological scale [90,91]. Also, the EoS parameter (ω) with
values of ω < − 1

3 indicates that ρ + 3p < 0. Therefore, there is a violation of the SEC in the
present era. In Figures 8 and 9, we can see that both the NEC and DEC are adhered to for
both Hubble and SNe-Ia datasets. The behavior of energy density is depicted in Figure 6.
We examine the NEC behavior (i.e., a partial condition of WEC). Therefore, the concurrent
validation of NEC and energy density results in the validation of WEC.

Figure 8. Behavior of the (redshift–energy condition) plane for the Hubble dataset for a1 = −0.0125,
and a2 = −0.012.

Figure 9. Behavior of the (redshift–energy condition) plane for SNe-Ia datasets for a1 = −0.0125, and
a2 = −0.012.
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6.2. Model-II

Here, we consider the f (Q, T) gravity model as

f (Q, T) = a3Q2 + a4T, (34)

where a3 and a4 are arbitrary constant model parameters. For the above model’s field
Equations (14)–(16), we take the form

ρ = −
3
(
72πa3H4 + 9a3a4H4 − 2a3a4H2Ḣ − 4a3a4ḢH2)

(a4 + 4π)(a4 + 8π)
, (35)

Figure 10 shows the plot of density versus redshift for both Hubble and SNe-Ia datasets,
with H0, δ, and λ taken from Table 1, while model parameters a3 = −0.0125 and a4 are
−0.012, respectively.

ω =
−3a4

(
3H2 + 4Ḣ + 2Ḣ

)
− 8π

(
9H2 + 8Ḣ + 4Ḣ

)
a4
(
9H2 − 4Ḣ − 2Ḣ

)
+ 72πH2 , (36)

As shown in Figure 11, the universe is in an accelerating mode and is about to enter a
decelerating phase. Additionally, we resolve various energy conditions by calculating the
model’s accuracy in the context of cosmic acceleration.

ρ + p =
24a3H2(2Ḣ + Ḣ

)
a4 + 8π

, (37)

ρ− p = −
6a3H2(9H2 + 4Ḣ + 2Ḣ

)
a4 + 4π

, (38)

and

3p + ρ =
6a3H2(a4

(
9H2 + 20Ḣ + 10Ḣ

)
+ 24π

(
3H2 + 4Ḣ + 2Ḣ

))
(a4 + 4π)(a4 + 8π)

, (39)

Figures 12 and 13 show plots of energy conditions with respect to constants obtained
from the best-fit values of the Hubble and SNe-Ia datasets, as shown in Table 1, and model
parameters a3 = −0.0125 and a4 = −0.012. According to the accelerating universe data,
as shown in Figures 12 and 13, the SEC must be violated on a cosmological scale [55,56].
Figures 12 and 13 indicate that the NEC and DEC are upheld for both Hubble and SNe-Ia
datasets. We examined the NEC behavior (i.e., a partial condition of WEC). Therefore, the
concurrent validation of NEC and energy density results in the validation of WEC.

Figure 10. Behavior of the (redshift–density) plane for the constant values of ε, δ, and λ, provided in
Table 1.
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Figure 11. Behavior of the (redshift–EoS) plane for the constant values of H0, δ, and λ provided in
Table 1.

Figure 12. Behavior of the (redshift–energy condition) plane for the Hubble dataset for a3 = −0.0125
and a4 = −0.012.

Figure 13. Behavior of the (redshift–energy condition) plane for SNe-Ia dataset for a3 = −0.0125 and
a4 = −0.012.

7. Conclusions

In the present work, we took a f (Q, T) function that is both linear and quadratic,
expressed as follows:

f (Q, T) = a1Q + a2T, f (Q, T) = a3Q2 + a4T (40)
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where a1, a2, a3, and a4 are model parameters. In terms of redshift z, we measured sev-
eral cosmological parameters in the FLRW universe, including the Hubble parameter H
and the deceleration parameter q. By applying the R2 − test formula for observational
constraints on the model, we were able to determine the approximate best-fit values of
the model parameters ε, δ, λ, and H0, utilizing datasets like the Hubble dataset H(z) and
union 2.1 compilation of SNe-Ia datasets. The following are the characteristics of our
cosmological model:

• The best-fit plots based on the observational datasets are presented in Figures 1 and 2.
We used a hybrid model of the least squares method and gradient descent for the
best fit. The R2 values for the Hubble and SNe-Ia datasets are 0.9321 and 0.9930,
respectively. SNe-Ia has 580 observations, providing the superior fit amongst the
two datasets.

• The derived Hubble function is constrained by observational datasets i.e., Hubble and
SNe-Ia datasets, and the present values of the Hubble constant are
H0 = 64.4772+0.33

−0.32 km/s/Mpc and H0 = 68.665+2.1
−2.1 km/s/Mpc, respectively, which

are compatible with [56–58].
• The transition from early deceleration to the universe’s present acceleration is shown

by the deceleration parameter q0 = −0.2792 and q0 = −0.4774, with respect to Hubble
and SNe-Ia datasets, which are compatible with [87,88].

• We considered two functional forms of f (Q, T) gravity in Sections 6.1 and 6.2 to
observe the behaviors of energy density and the EoS parameter. In the considered
models, the EoS parameter traces its journey from the matter-dominated, decelerating
phase during early times to the dark energy-dominated, accelerating phase in later
times. The energy density remains positive in both models, subjected to the values of
model parameters.

• In both functional forms of f (Q, T) of Sections 6.1 and 6.2, NEC, WEC, and DEC are
satisfied, whereas SEC is violated (see Figures 8, 9, 12 and 13).

• The cosmological redshift (z > 0) provides insight into the evolution of the early
universe and z = 0 denotes the present universe. From the cosmological redshift
(z < 0), one may predict the future universe evolution. For the expanding universe, the
relationship between the scale factor (a) and cosmological redshift (z) is a0

a = 1 + z.
For the present universe, a = a0 = 1 (by convention of the observational cosmol-
ogy) [92], which will yield z = 0. For the past universe evolution, 0 < a < 1, which
will yield 0 < z < ∞. The future evolution of the universe may be portrayed by
−1 < z < 0 with z → −1 (in the extreme future). For a detailed compilation of the
cosmological scale issues, one may refer to Ref. [93]. In this sense, the present models
are decelerating in the past and will approach the ΛCDM phase in the extreme future.
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