
Citation: Bashir, A.; Abbas, Q.;

Mahmood, K.; Alfarhood, S.; Safran,

M.; Ashraf, I. Improving Performance

of Differential Evolution Using

Multi-Population Ensemble Concept.

Symmetry 2023, 15, 1818. https://

doi.org/10.3390/sym15101818

Academic Editor: Youssef N.

Raffoul

Received: 25 August 2023

Revised: 14 September 2023

Accepted: 19 September 2023

Published: 25 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Improving Performance of Differential Evolution Using
Multi-Population Ensemble Concept
Aadil Bashir 1, Qamar Abbas 1 , Khalid Mahmood 2 , Sultan Alfarhood 3,* , Mejdl Safran 3

and Imran Ashraf 4,*

1 Department of Computer Science, Faculty of Computing and Information Technology, International Islamic
University, Islamabad 44000, Pakistan; aadil.phdcs174@iiu.edu.pk (A.B.); qamar.abbas@iiu.edu.pk (Q.A.)

2 Institute of Computing and Information Technology, Gomal University, D.I.Khan 29220, Pakistan;
khalid@gu.edu.pk

3 Department of Computer Science, College of Computer and Information Sciences, King Saud University,
P.O. Box 51178, Riyadh 11543, Saudi Arabia; mejdl@ksu.edu.sa

4 Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
* Correspondence: sultanf@ksu.edu.sa (S.A.); imranashraf@ynu.ac.kr (I.A.)

Abstract: Differential evolution (DE) stands out as a straightforward yet remarkably powerful
evolutionary algorithm employed for real-world problem-solving purposes. In the DE algorithm,
few parameters are used, and the population is evolved by applying various operations. It is difficult
in evolutionary computation algorithms to maintain population diversity. The main issue is the
sub-population of the DE algorithm that helps improve convergence speed and escape from the
local optimum. Evolving sub-populations by maintaining diversity is an important issue in the
literature that is considered in this research. A solution is proposed that uses sub-populations
to promote greater diversity within the population and improve the algorithm performance. DE,
heterogeneous distributed differential evolution (HDDE), multi-population ensemble differential
evolution (MPEDE), and the proposed improved multi-population ensemble differential evolution
(IMPEDE) are implemented using parameter settings; population sizes of 100 NP, 150 NP, and 200 NP;
and dimensions of 10D, 30D, and 50D for performance comparison. Different combinations of
mutations are used to generate the simulated results. The simulation results are generated using
1000, 3000, and 5000 iterations. Experimental outcomes show the superior results of the proposed
IMPEDE over existing algorithms. The non-parametric significance Friedman test confirms that there
is a significant difference in the performance of the proposed algorithm and other algorithms used in
this study by considering a 0.05 level of significance using six benchmark functions.

Keywords: differential evolution; optimization; population diversity; heterogeneous distributed
differential evolution

1. Introduction

Optimization is the process of obtaining the best value decision variables for a given
set of constraints [1]. Today, optimization is considered a very important area of research to
solve real-world problems in engineering, business, industry, and computer science. Evolu-
tionary algorithms have been widely adopted in different domains and are considered to be
very effective in solving real-world optimization problems [2]. A number of evolutionary
algorithms and their variants have been introduced in the last decade [3]. The differen-
tial evolution (DE) algorithm is considered to be one of the most powerful evolutionary
computing algorithms to solve real-world problems. Price and Storn [4] proposed the DE
algorithm in 1995 as a simple yet very powerful stochastic searching technique. DE uses a
few control parameters, which is its remarkable advantage [5]. Evolutionary computation
algorithms are better at searching for global optima than conventional optimization tech-
niques [6]. The DE algorithm has a strong searching capability that is helpful in providing

Symmetry 2023, 15, 1818. https://doi.org/10.3390/sym15101818 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15101818
https://doi.org/10.3390/sym15101818
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-4576-8585
https://orcid.org/0000-0001-6067-382X
https://orcid.org/0009-0001-1268-9613
https://orcid.org/0000-0002-7445-7121
https://orcid.org/0000-0002-8271-6496
https://doi.org/10.3390/sym15101818
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15101818?type=check_update&version=1

Symmetry 2023, 15, 1818 2 of 23

good-quality solutions to many real-world problems. The DE algorithm employs three
control parameters: population size (NP), scaling factor (F), and crossover rate (CR). The
DE algorithm uses several mutation strategies [7]. Various mutation strategies are used for
global convergence to achieve effective results; some are used in local search for effective
results, while others are used to achieve results for various problems [8].

In classical DE, a single mutation strategy and fixed control parameters are used.
The performance of the DE algorithm varies across different optimization problems, even
when the same set of control parameters and a mutation strategy involving a single off-
spring generation are used. Furthermore, for the same optimization problem, DE uses
the best suitable mutation strategy and suitable control parameters that give effective
and high performance [9]. The DE algorithm is applied to several real-life applications,
such as clustering, deoxyribonucleic acid (DNA) microarray, and other soft computing
techniques [10]. Therefore, the performance of DE mutation strategies differs depending
on the specific problem and is sensitive to dimensions. The DE algorithm is a powerful
and uncomplicated evolutionary algorithm (EA) that yields highly effective results. It has
been successfully used in many optimization problems and soft computing techniques [11].
The simplicity of the differential evolution algorithm uses mutation, crossover, and se-
lection operations that make it competitive with other EAs to achieve effective results,
and those operations also guide the EA population to achieve high performance. The DE
algorithm has also been successfully applied to solve many other real-world problems in
chemical engineering [12], economic dispatch problems [13], gene coevolution [14], circuit
parameter optimizations [15], power systems [16], medical imaging [17], and function
optimization [18].

Dividing the main population into sub-populations is an important aspect of the
DE algorithm. The mechanism of dividing the main population into sub-populations is
important in order to obtain better fitness, ensure diversity, escape from local optima,
and improve the convergence speed of the DE algorithm. In this study, instead of calcu-
lating the best individual, worst individual, and random formation of sub-populations,
the average fitness information of the whole population is utilized, which shows significant
improvement in the performance of the multi-population-based ensemble DE algorithm.

1.1. Problem Statement

A multi-population-based ensemble DE algorithm utilizes the user-defined num-
ber of sub-populations and the random partition of sub-populations that decreases the
population diversity. The calculation of the best and worst individual in each iteration
is time-consuming. Moreover, a reduction in population diversity results in premature
population convergence and slows down the convergence speed.

1.2. Research Questions and Research Hypothesis

The following questions are answered in this study:

• How can the performance of the multi-population-based ensemble DE algorithm be
improved by modifying the random partition of sub-populations and the user-defined
number of sub-populations?

• How can the performance of the proposed algorithm be assessed using standard
benchmark functions?

• Is there a significant difference between the performance of an improved multi-
population-based ensemble DE algorithm and other state-of-the-art algorithms?

1.3. Research Contribution

This study makes the following major contributions:

• The number of total sub-populations in the multi-population-based ensemble DE
algorithm is enhanced by utilizing fitness-based information of the whole population.

Symmetry 2023, 15, 1818 3 of 23

• Experimental results are generated to check the solution quality and convergence
speed by considering the test suit of standard benchmark functions and comparing
the result with four state-of-the-art algorithms.

• Statistical significance analysis is performed to assess the significance of the proposed
algorithm with existing state-of-the-art algorithms.

The remaining paper is organized as follows: The working of the DE algorithm is
described in Section 2. A literature review is presented in Section 3, while the proposed
approach is discussed in Section 4. Section 5 contains the results and discussions, as well as
the statistical results. A conclusion is given in the last section of this paper.

2. Working of DE Algorithm

DE has proven to be an effective and efficient algorithm for real optimization prob-
lems, and it shows better performance as compared to another EA-like genetic algo-
rithm (GA). It generates a randomly distributed population, NP, of feasible solutions
(XG) = ({P1,G, P2,G, . . . , PNP,G}). Population objects are called individuals and single indi-
viduals are (Pi,G = x1

i,G, x2
i,G, . . . , xD

i,G, i = 1, 2, . . . , NP), which is used in the DE algorithm,
where, in individual, D is the number of dimensions and G denotes the number of genera-
tions in a single individual. In individuals, each dimension is initialized randomly in a range
[(Xmin, Xmax)], where (Xmin = x1

min, x2
min, . . . , xD

min) and (Xmax = x1
max, x2

max, . . . , xD
max).

2.1. Mutation

In the DE algorithm, a mutation strategy is used to generate a donor/mutant vector.
Therefore, the differential evolution algorithm contains different vectors and a parent vector
by using different vectors/individuals. In mutation strategy, it generates a parent vector by
using different other vectors; the different vector is selected with different techniques and
must be a distant vector. A simple mutation strategy selects three other distinct vectors.
Vectors are commonly represented by DE/x/y/z, where the base vector is represented
by x (is called a base vector), difference vectors are represented by y, and crossover is
represented by z. Constant F is an amplification factor that real factor is used to scale the
difference vector. The differential evolution classical algorithm uses DE/rand/1 for mutant
vector generation.

Vi,G = Xa,G + F ∗ (Xb,G − Xc,G), a 6= b 6= c (1)

where (Xa,G, Xb,G) and (Xc,G) are vectors selected from the current population, the target
individual is (Xi,G), and (Xa,G, Xb,G) and (Xc,G) are three random individuals.

The best fitness values of the current generation, G, is represented by (Xbest,G).
(Xa,G, Xb,G, Xc,G, Xd,G) and (Xe,G) are five individuals that are randomly selected from
the current population, while (Xi,G) is the target vector.

2.2. Crossover Operation

The use of the crossover operation in differential evolution contributes to enhancing
the diversity within the population. It is used to select the offspring vector. Next, this
vector is used in the selection parameter. Crossover operations use the following equation
to create a trail vector:

Ub,G =

{
Vb,G, if randj(0, 1) ≤ Cr or j = jrand

Xb,G, otherwise
(2)

The types of crossover are discussed as follows.

Symmetry 2023, 15, 1818 4 of 23

2.2.1. Binomial Crossover

Binomial crossover, also called uniform crossover, is a process of crossover in which
offspring vector, U, is taken from mutant vector, V, and the current vector of population, X,
by using crossover probability, Cr. Binomial crossover is described in Algorithm 1.

Algorithm 1 Binomial crossover.

1: crossoveBin(X, V)
2: k← irand({1, 2, . . . , n})
3: for m ∈ {1, 2, . . . , n} do
4: if rand(0, 1) < Crorm = k then
5: Um = Vm
6: else
7: Um = Xm
8: end if
9: end for

10: return U

2.2.2. Exponential Crossover

Exponential crossover is a crossover process in which choosing an offspring vector is
carried out by comparing each parameter randomly. The trail vector is generated from the
base vector or mutant vector and compared in every dimension. In the end, the offspring
may be completely different from the trail vector and mutant vector. In an exponential
crossover with a two-point crossover, the first point is selected randomly from {1, 2, . . . , n}
and the second point is selected by using L consecutive components from mutant which is
described in Algorithm 2.

Algorithm 2 Exponential crossover.

1: crossoveExp(X, V)
2: U ← X; k← irand({1, 2, . . . , n}); j← k; L← 0
3: while rand(0, 1) > CrorL = n do
4: Uj = Vj; j← 〈j + 1〉n; L← L + 1
5: end while
6: return U

2.2.3. Selection Operation

During the selection operation, a greedy process is employed to choose the best vector
that connects the target vector and the trial vector [19]. The selected vector is incorporated
as an individual in the next generation. The improvement in algorithm performance is
directly influenced by the selection strategies that are employed. To enhance the conver-
gence performance of the algorithm, a well-designed selection strategy is utilized [20].
The selection operation uses the following equation to create a base vector for the next
generation:

Xj,G+1 =

{
Uj,G if f

(
Uj,G

)
≤ f

(
Xj,G

)
Xj,G otherwise

(3)

where j = 1, . . . , NP and f represents a fitness function.
The new individual is generated through a series of mutation, crossover, and selection

operations by comparing previous vectors, which will be used as a base vector in the
next-generation population.

The rest of the paper is organized as follows: A brief overview of the existing literature
is discussed in Section 3. The proposed algorithm is presented in Section 4. Section 5
is about the results and discussions of the proposed algorithm. In the end, the study is
concluded in Section 6.

Symmetry 2023, 15, 1818 5 of 23

3. Literature Review

A detailed literature review of DE is presented by analyzing a number of research
papers that are related to DE and other EAs. Many schemes that are used in DE are dis-
cussed here. The differential evolution algorithm runs on populations, and the performance
is directly affected by the population size [7]. To enhance the algorithm’s performance,
the population must be diversified. Various approaches for population enhancement in
differential evolution are used by many researchers.

3.1. Single-Population Approach

DE uses different population size values to solve a single problem, chosen by trial and
error method [21]. Furthermore, in certain studies, varying population sizes are occasion-
ally selected for individual problems under consideration [22]. In differential evolution,
the single population approach uses a single population and executes the operations on a
single population with different dimensions sizes [23]. In a single population approach,
the concept of a panmictic population is used. The population is given by {x1, x2, x3, x4, x5},
as shown in Figure 1.

Figure 1. Panmictic population.

3.1.1. Classical Differential Evolution

The classical DE algorithm implements a different parameter setting population, and
newly generated solutions at the current time are included in the population. They can inter-
act with the current generation and offspring derived from their parental solutions [24,25].

3.1.2. Synchronous Differential Evolution

The synchronous DE algorithm is implemented on classical differential evolution [26].
The classical DE algorithm differs from the synchronous DE algorithm in terms of the
latter’s utilization and updating of vector information during the current iteration, while
other differential evolution algorithms use an updated population in the next iteration [27].

3.2. Cellular Differential Evolution

Cellular topology is used in the single-population approach. In this approach, the mu-
tation strategy uses only the vectors of the neighbors. This topology also arranges the
population neighbor distance. Figure 2 shows that during selecting the neighbor, it uses the
Euclidean distance that is used to reduce the population size during its usage to achieve
the high performance of vector the during selection operation and mutation operation [22].

Symmetry 2023, 15, 1818 6 of 23

Figure 2. Cellular population.

3.3. Multi-Population Approach

Differential evolution uses different approaches to enhance population diversity. In the
multi-population approach, this algorithm divides total populations into sub-populations
and runs the algorithm in all sub-problems parallel [28]. At the end of the first generation,
all results are merged, and the population is updated. For the next generation, the whole
population is divided again into sub-populations. The multi-population approach involves
dividing the population into a predetermined number of sub-populations [29]. All sub-
populations can exchange and share their parameters and individuals during evolution [24].
Mostly, multi-population evolutionary algorithms use the arithmetic mean calculation to mi-
grate the vectors and data in sub-populations, and some algorithms exchange information
in the mutation operation. Some algorithms use the best vector from other sub-populations
and share the best fitness vectors in population evolution. After the first generation, the pop-
ulation is updated and divided again into sub-populations according to their best fitness.
The multi-population algorithm uses the arithmetic mean to find the sub-population fitness
through the best fitness exchange information between sub-populations.

3.3.1. Distributed Differential Evolution

In the distributed differential evolution approach, the population is split into sub-
populations, like several islands, that are independent. Islands are the sub-populations in
the DE algorithm [22]. All sub-populations are computed separately, and after that, their
results are shared. Every island has a model of populations in the distributed DE [30].
Figure 3 illustrates the concept of distributed population.

Figure 3. Distributed differential evolution (sub-populations (1, 2, 3, 4, 5)).

3.3.2. Heterogeneous Distributed Differential Evolution

Heterogeneous differential evolution also divides the population into sub-populations
like distributed differential evolution [31]. In heterogeneous DE, the algorithm uses some
more parameters with variations in operations, and this algorithm uses a fixed population
size, but in sub-populations, the size varies. Each sub-population gains or loses individuals

Symmetry 2023, 15, 1818 7 of 23

according to their evolution performance [32]. The algorithm processes sub-populations to
find better operations itself so that the overall performance of the algorithm is better.

3.3.3. Hierarchical Cellular Differential Evolution

The hierarchical cellular differential evolution algorithm is like cellular topology [33].
It makes the sub-populations of a single population, calculates their fitness, and arranges
the sub-populations according to their fitness. Figure 4 shows a display of sub-populations
and arranges them, and the good fitness population is in the center. It achieves high
performance in searching at the population level. Therefore, by using this approach,
the algorithm achieves better solutions in minimal time. To access the other regions that are
far from the center, it requires more execution time, and the performance of the algorithm
becomes poor. This leads to premature convergence of the population to access other
regions far from the center.

Figure 4. Hierarchical cellular differential evolution.

3.4. Population Diversity Schemes

The population size in differential evolution must exceed the number of vectors that
are used in the algorithm to perform operations. Operations like mutation need three
vectors, one of which is the base vector, or else the operations are not completed [34]. Popu-
lation size has an important impact on the differential evolution algorithm evolutionary
process and performance of the algorithm. During the entire population search process,
the differential evolution operation may not effectively preserve a high level of population
diversity [35]. Differential evolution algorithms use many operations that are used to find
fitness, the distance between individuals, and search operations. Population diversity
increases the performance of algorithm operation to find the distance between individuals,
and their fitness and partitioned the population in sub-populations, but it cannot prove to
find the probability of sub-populations without adding some extra terms [36].

3.4.1. Customized Population Sizing for Individual Problems

In the differential evolution algorithm, Storn and Price utilized distinct values for
individuals for each specific problem they encountered and determined the population
size through trial and error. In many other problems after that, studies used different fixed
population sizes in many different problems [11]. It requires more research to find better
solutions because this approach does not satisfy the users to select the fixed size according
to their selected algorithm and selecting the best point and tuning of population size is
not better.

3.4.2. Dimension-Dependent Population Sizing

The DE algorithm has a number of operations that depend on the size of the popula-
tion [37]. This approach is related to problem dimensionality, d, and population size. Stron
and Price recommended setting the population size within a specific range, between 5 times
the dimensionality, 5d, and 10 times the dimensionality, 10d, and claimed the choice of that
is three control parameters that are difficult to use [38]. The hint to use population sizes equal
to 10d is applied to and used in many differential algorithms [11]. Sometimes, a population

Symmetry 2023, 15, 1818 8 of 23

size equal to 5d is also used [39]. Price [40] states that population sizes as large as 20d
should be suggested. In the DE, the usage of a large population size puts a burden on the
speed of the algorithm and the best population size varies according to algorithms from 2d
to 40d, and this depends on the problem. Many studies on population size show the impact
on the differential evolution algorithm performance that should not be fixed and suggest
that the varying population size should be between 3d and 8d. However, experimental
results and population sizes are dependent on problem properties and on the values of
control parameters. Some research papers suggest that small population sizes can also be
used, e.g., 1d.

3.4.3. Problem of Dimensionality-Independent Population Size

The impact of the performance of the differential evolution algorithm depends on the
problem dimensionality and population size [6]. This approach uses the dimensionality that
is independent of population size that uses the fixed population size and dimensions size
is independent. Conversely, if dimension size is fixed, then population size is independent.
The study of [41] uses a fixed population size of 50–100 individuals, and dimension sizes
are independent in the micro-DE algorithm, which uses a small population size that gives
the best results and sets the population size as low as 5 [11]. In [39], a fixed population size
between 10 and 80 and between 200 and 250 is used. The AEPD algorithm [42] uses many
population size problems, an independent dimension size is used, and it is found that the
best population size is 30.

4. Proposed Approach
4.1. Variable Population Size

In differential evolution, it is common practice to maintain a fixed population size,
but few research studies have suggested using a variable-size population. In the research
of [40], two algorithms that use variable population size and self-arrange that popula-
tion size are proposed. In the adaptive multi-population differential evolution (AMPDE)
algorithm [40] and multi-population differential evolution (MPDE) algorithm [40], the
population size is set to 10d. After every generation, the individual levels are self-adapted,
and in both approaches, three mutation strategies are used for parents. Very few researchers
have focused on variable population sizes. Differential evolution algorithm performance
varies depending on the different variants, and it gives better and more efficient results
on large population size than the versions of small population size. The diversity of the
population is supported by the fact that a large size of the population has diverse members,
which leads to high performance due to the ability of the algorithm to obtain a global
solution(s) [43].

In past years, research works on differential evolution focused on developing large
population size approaches [44]. In a slow computation speed problem, the proposed
methodology is first to convert the population into sub-populations and then select the
mutation strategy, which is applied only to selected sub-population individuals. Similarly,
three mutation strategies are used, which are applied to all sub-populations. A single
sub-population uses a single mutation strategy, which is selected randomly. To address the
premature population convergence problem, the population is split into sub-populations.
After every generation, all sub-populations are merged; then, each population is again
converted into sub-populations in the next iteration. If the count of sub-populations
is on the rise and the arithmetic mean of the current whole population fitness is better
than the arithmetic mean of the previous whole population fitness, then the number of
sub-populations is decreased. Conversely, if the arithmetic mean of the current whole
population fitness is equal to or less than the arithmetic mean of the previous whole
population fitness, then the number of populations is increased.

Symmetry 2023, 15, 1818 9 of 23

4.2. Proposed Improved Multi-Population Ensemble Differential Evolution

The proposed improved multi-population ensemble differential evolution (IMPEDE)
method enhances the differential evolution algorithm by leveraging the mutation factor’s
capability to increase the population’s diversity. Consequently, the population exhibits
significantly higher diversity throughout the search process. Multi-population ensemble
differential evolution (MPEDE) is used for the improvement in DE population diversity and
uses the proposed scheme in that algorithm. The arithmetic mean of fitness is calculated by
using the following equation:

∆ f =
∑n

i=0 fi

n
(4)

In the proposed scheme, pn is used for a number of total sub-populations that are
increased according to the arithmetic mean of all population fitness.{

pn = pn + 1, if ∆ f j < ∆ f j−1

pn = pn− 1, otherwise
(5)

Figure 5 shows the workflow of the proposed approach. The working of each sub-
module is discussed subsequently.

Figure 5. Improved differential evolution algorithm.

Symmetry 2023, 15, 1818 10 of 23

For performance comparison, six fitness functions are used in the MPEDE, DE, HDDE,
and IMPEDE algorithms to compare the results of all algorithms. The proposed algorithm
IMPEDE uses a new functionality that controls the number of sub-populations in every
generation and counts the arithmetic mean of all population fitness. It uses three mutation
functions that are selected randomly like previous algorithms. The execution of IMPEDE is
explained in Algorithm 3.

DE starts with randomly generated populations, NP, of feasible solutions, PG =
{X1,G, X2,G, . . . , XNP,G}. Population objects are called individuals, and single individuals
are Xi,G = x1

i,G, x2
i,G, . . . , xD

i,G, i = 1, 2, . . . , NP. G denotes the number of generations that are
used to increase the algorithm calls, and D is the number of dimensions for a single indi-
vidual. For individuals, each dimension is displayed randomly in the range [Xmin, Xmax],
where Xmin = x1

min, x2
min, . . . , xD

min and Xmax = x1
max, x2

max, . . . , xD
max.

Then, mutation, crossover, and selection operations are used. For the next generation,
the number of sub-populations is increased according to the total population average. If the
fitness of the next population is increased, then the number of sub-populations is increased;
otherwise, the number of sub-populations is decreased.

Algorithm 3 IMPEDE algorithm.

Start parameter initializing: F is scaling factor, N is population size, Cr is crossover rate
Set population vector {X1,G, X2,G, . . . , XNP,G}
Total sub-population numbers pn. First time selected pn = 4
Set iteration/generation counter G ← 0
Calculate ∆ f j
while G ≤ maxG do

Now, randomly divide population into sub-populations 1, 2, 3, . . . , pn according to
their size.
Merge the last sub-population with randomly selected other sub-populations as a
reward and adjust the size of that population. Let Pj=Pj U pn and NPj = NPj U NPpn;
for j = 1→ pn do

for all i ∈ {1, 2, . . . , Np} do
Vi,G ← differential mutation(F; x1,G, . . . , xNP,G)
Ui,G ← crossover(Cr; Xi,G, Vi,G
Calculate fitness for fitness functions f 1, ..., f 6
if f (Xi,G) ≤ f (Ui,G) then

Xi,G+1 = Ui,G
else

Xi,G+1 = Xi,G
end if

end for
end for
Calculate ∆ f j+1
if ∆ f j+1 ≤ ∆ f j+1 then

pn = pn + 1
else

pn = pn− 1
end if

Merge all sub-populations 1, 2, 3, 4 . . . , pn
end while
return argmaxXi,G f (Xi,G)

5. Results and Discussions
5.1. Parameter Settings and Simulation Results

In the proposed algorithm, IMPEDE, we have used many functions to generate the
results with the base algorithm. Three distinct mutation strategies are employed to generate

Symmetry 2023, 15, 1818 11 of 23

the mutant vector. The parameter we have used for IMPEDE is the same as in the DE
algorithm, except for the population. We use F = 0.8, Cr = 0.2, and −5 ≤ PNP ≤ +5.
Population sizes of 100 NP, 150 NP, and 200 NP are used, while dimension sizes of 10D,
30D, and 50D are used for mutation.

The mutation operation creates a mutant vector by using other vectors, which are
selected randomly. Different vectors are selected using different techniques. For the
proposed algorithm, IMPEDE, amplification factor, F, is used, while the constant, K, is used
as 0 < K < 1. The following mutation strategies are used in IMPEDE:

Vi,G = Xx,G + F ∗
(
Xy,G − Xz,G

)
, x 6= y 6= z 6= i (6)

Vj,G = Xj,G + K ∗
(
Xx,G − Xj,G

)
+ F ∗

(
Xy,G − Xz,G

)
, x 6= y 6= z 6= j (7)

Vj,G = Xj,G + F ∗
(
Xbest,G − Xj,G + Xy,G − Xz,G

)
, y 6= z 6= j (8)

The above three mutation strategies are used in the algorithm, which are selected
randomly, and each sub-population is processed.

pn

∑
i=0

spi = 1 (9)

Let pn be the number of total sub-populations, and every sub-population, sp1, sp2, sp3, . . . ,
sppn, uses a mutation strategy randomly. The crossover operation is used to generate a trail
vector by using a target vector and a mutant vector. Binomial crossover is used in IMPEDE
for the crossover operation.

Uk,G =

{
Vk,G, if randj(0, 1) ≤ Cr or j = jrand

Xk,G, otherwise
(10)

The selection operation is a greedy operation that is used to select the best vector
between the target vector and the trail vector. IMPEDE uses a selection operation to select
the best vector between offspring and the selected vector, and the vector having the best
fitness is selected for the next generation. The selection function is as follows:

Xj,G+1 =

{
Uj,G if f

(
Uj,G

)
≤ f

(
Xj,G

)
Xj,G otherwise

(11)

where j = 1, . . . , NP.
After performing the selection operation, the vector calculates the arithmetic mean of

current population fitness and previous population fitness. After calculating fitness, if the
newly generated population exhibits the best fitness, it is advisable to increase the number
of sub-populations. However, in the absence of improved fitness, it may be more suitable
to decrease the number of sub-populations.

5.2. Experimental Results

The proposed algorithm, IMPEDE, is implemented along with other DE variants for
performance comparison. For this purpose, this study considers MPEDE, DE, and HDDE.
IMPEDE is implemented using specified parameter settings. Different combinations of
mutations are used to generate the simulated results, and the experiments are performed
using 1000, 3000, and 5000 iterations. Figure 6 shows the convergence graphs of all
algorithms using 150 NP and 50D. It indicates that the performance of the proposed
algorithm, IMPEDE, is better than other algorithms, with a better fitness value, except for
Figure 6f, where the fitness values of HDDE and the proposed IMPEDE look very similar.

Symmetry 2023, 15, 1818 12 of 23

The results lead to the conclusion that Figure 6 demonstrates the superior performance
of IMPEDE in comparison to MPEDE, DE, and HDDE. The evaluation of performance is
based on the arithmetic mean (µ) and standard deviation (SDV) of the fitness function value,
denoted as f(xbest). The fitness value, f , is obtained from individuals using six benchmark
functions. For comparison, different sizes of population and different dimension sizes are
used. In fact, the results are considerably improved on benchmark functions f 2, f 3, f 4, and
f 5, and on benchmark functions f 1 and f 6, the results are normally improved. The results
are compared after 1000 iterations.

Table 1 shows convergence results of MPEDE, IMPEDE, DE, and HDDE on benchmark
functions f 1 to f 6 using a population size of 150, a dimension size of 50, and 1000 iterations.
Furthermore, Table 2 shows the convergence results of MPEDE, IMPEDE, DE, and HDDE
algorithms on fitness functions f 1 to f 6 using a population size of 150, a dimension size
of 50, and 3000 iterations. In early iterations, the results are similar, but as the number of
iterations increases, IMPEDE results are more improved than MPEDE, DE, and HDDE.

(a) (b)

(c) (d)

(e) (f)
Figure 6. Convergence graph of MPEDE, IMPEDE, DE & HDDE for NP = 150, D = 50, itr 1000.
Convergence graphs of benchmark functions f 1 to f 6 are given in (a–f) respectively.

Symmetry 2023, 15, 1818 13 of 23

The number of training iterations in the convergence graphs are reported horizontally
and average fitness values are shown vertically. It can be observed from these sub-figures
that convergence performance of proposed algorithm and three other state of the art algo-
rithms is similar in the starting iterations but as the number of iterations starts increasing,
the performance of proposed algorithm starts minimizing quickly and it is continuously
minimizing till the last iteration. It can be summarized that the convergence speed of
the proposed algorithm in minimizing the problems is better than DE algorithm, MPEDE
algorithm and HODE algorithm

It can be summarized from the results that IMPEDE’s performance is better, as com-
pared to MPEDE, DE, and HDDE in Table 3. To evaluate the performance, the arithmetic
mean (µ) and the standard deviation (SDV) of the fitness function value f (xbest) are em-
ployed. Here, f represents the fitness value of each individual, which is determined using
six benchmark functions. In comparison, different population sizes and different dimension
sizes are used. The results given in Tables 1–3 prove that the proposed algorithm IMPEDE
produces much better results for benchmark functions f 1, f 2, f 3, and f 4, while the results
for benchmark functions f 5 and f 6 are marginally improved.

Symmetry 2023, 15, 1818 14 of 23

Table 1. Comparative results of MPEDE, IMPEDE, DE, and HDDE algorithms with fitness function (f 1– f 6) evaluations for 1000 iterations.

Function Algorithm Mean (M) and SDV
100 NP 150 NP 200 NP

10_DIM 20_DIM 30_DIM 10_DIM 20_DIM 30_DIM 10_DIM 20_DIM 30_DIM

f 1 MPEDE M 65 248 429 66.5 301 4360 7240 3020 444
SDV 29.1 87.3 123 40.2 83.7 215 415 778 232

DE M 85.1 490 591 79.1 397 5970 9020 4120 602
SDV 50.9 97.8 291 50.2 97.8 301 507 961 393

HDDE M 1.2 07 91 9.1 87 170 53 81 02
SDV 40.9 281 305 50.1 301 29,600 603 198 307

IMPEDE M 37.8 211 369 50.3 223 3910 529 227 402
SDV 34.1 103 174 38.4 104 17,900 408 111 157

f 2 MPEDE M 1600 70,300 342,000 1690 72,000 345,000 1760 70,600 348,000
SDV 1070 28,100 111,000 1220 26,300 104,000 1110 24,100 90,000

DE M 880 79,500 491,000 3010 89,500 501,000 4010 89,600 482,000
SDV 2090 38,100 212,000 1990 39,100 301,000 2510 31,500 98,700

HDDE M 998 7100 1000 910 9100 15,000 870 100 1000
SDV 987 49,400 272,000 2810 47,500 296,000 2490 47,900 298,000

IMPEDE M 878 54,800 286,000 1190 62,900 297,000 1310 58,900 309,000
SDV 946 30,600 143,000 1090 30,500 136,000 1090 30,200 119,000

f 3 MPEDE M 89,200 417,000 735,000 90,400 431,000 755,000 2010 438,000 764,000
SDV 71,100 189,000 279,000 72,400 203,000 262,000 75,200 178,000 232,000

DE M 99,700 569,000 905,000 2010 604,000 903,000 3750 597,000 922,000
SDV 90,100 348,000 492,000 89,700 349,000 438,000 93,100 299,000 439,000

HDDE M 9000 95,000 03000 9000 17,000 1000 9100 2000 51,000
SDV 79,100 384,000 502,000 70,100 397,000 403,000 89,400 347,000 572,000

IMPEDE M 44,900 345,000 576,000 63,000 379,000 685,000 73,800 402,000 696,000
SDV 60,400 209,000 356,000 64,100 208,000 28,7000 71,800 189,000 313,000

Symmetry 2023, 15, 1818 15 of 23

Table 1. Cont.

Function Algorithm Mean (M) and SDV
100 NP 150 NP 200 NP

10_DIM 20_DIM 30_DIM 10_DIM 20_DIM 30_DIM 10_DIM 20_DIM 30_DIM

f 4 MPEDE M 0.956 1.04 1.2 0.944 1.05 1.11 0.969 1.05 1.11
SDV 0.183 0.0749 0.0311 0.0223 0.00718 0.00332 0.0151 0.0103 0.0282

DE M 0.0341 0.55 0.92 0.0261 0.74 0.79 0.0197 0.91 3.05
SDV 0.371 0.0891 0.0469 0.0381 0.00891 0.00491 0.0298 0.0291 0.0405

HDDE M 0.99 0.897 2.03 0.941 2.71 3.12 1.02 4.09 0.02
SDV 0.381 0.601 0.583 0.491 0.489 0.507 0.503 0.407 0.401

IMPEDE M 0.819 0.742 0.867 0.762 0.92 0.94 0.819 0.96 1.03
SDV 0.249 0.41 0.411 0.335 0.331 0.375 0.321 0.283 0.265

f 5 MPEDE M 1.1 1.18 1.18 1.13 1.18 1.18 1.15 1.17 1.18
SDV 0.197 0.111 0.0887 0.203 0.106 0.0894 0.209 0.129 0.0766

DE M 0.89 3.05 3.01 3.71 2.98 2.9 2.73 2.87 2.82
SDV 0.315 0.281 0.00279 0.301 0.356 0.0974 0.389 0.291 0.0901

HDDE M 0.995 0.85 0.15 0.89 0.79 0.74 0.91 0.02 0.02
SDV 0.581 0.397 0.371 0.459 0.301 0.414 0.487 0.391 0.341

IMPEDE M 0.901 1.05 1.09 1.02 1.12 1.1 1.05 1.11 1.14
SDV 0.307 0.232 0.191 0.282 0.182 0.213 0.279 0.2 0.151

f 6 MPEDE M 67.6 242 419 649 2530 4290 70.1 254 451
SDV 35.9 90.1 125 3710 809 119 34.2 74.4 99.3

DE M 84.9 426 590 825 4360 6090 85.9 427 611
SDV 50.1 99.7 281 4630 993 302 50.7 90.9 281

HDDE M 0.9 58 4.1 19 09 73 3.91 910 610
SDV 509 283 3710 591 2.98 301 571 30.6 14.8

IMPEDE M 46.1 193 36.9 471 329 401 56.1 2230 3930
SDV 339 111 1850 391 91.9 145 381 996 14.8

Symmetry 2023, 15, 1818 16 of 23

Table 2. Comparative results of MPEDE, IMPEDE, DE, and HDDE algorithms with fitness function (f 1– f 6) evaluations for 3000 iterations.

Function Algorithm Mean (M) and SDV
100 NP 150 NP 200 NP

10_DIM 20_DIM 30_DIM 10_DIM 20_DIM 30_DIM 10_DIM 20_DIM 30_DIM

f 1 MPEDE M 65 251 429 65.9 255 4370 7120 2710 4440
SDV 33.9 87.3 123 36 84.1 12.9 349 778 11.2

DE M 80.2 380 593 81.1 401 6150 8870 4610 6260
SDV 40.5 99.3 281 50.9 99.1 32.2 511 977 36.5

HDDE M 50.4 395 506 68.8 449 53.8 6960 3810 573
SDV 49.1 279 314 54.8 269 3110 581 26.4 390

IMPEDE M 38.2 211 387 4.98 219 38.3 5410 2190 402
SDV 33.9 103 174 38.4 104 1770 407 10.8 149

f 2 MPEDE M 1590 69,100 351,000 1690 71,500 343,000 1760 70,600 351,000
SDV 993 28,100 112,000 1170 26,300 107,000 1200 24,100 90,000

DE M 299 78,800 502,000 2970 87,400 502,000 3050 90,100 491,000
SDV 3010 34,100 294,000 3710 40,600 291,000 2530 40,300 98,200

HDDE M 964 67,100 452,000 3160 78,300 411,000 4020 75,100 490,000
SDV 991 48,700 307,000 2710 49,100 301,000 2910 48,100 301,000

IMPEDE M 878 54,800 289,000 1200 63,100 297,000 1280 58,900 309,000
SDV 946 30600 143,000 1090 30,500 136,000 1120 30,200 124,000

f 3 MPEDE M 89,200 417,000 741,000 90,400 431,000 755,000 99,400 441,000 759,000
SDV 70,900 189,000 279,000 72,400 182,000 262,000 75,200 178,000 241,000

DE M 2010 59,900 871,000 3120 607,000 901,000 3010 604,000 925,000
SDV 87,100 307,000 415,000 93,100 322,000 409,000 90,100 361,000 401,000

HDDE M 62,100 503,000 622,000 80,100 519,000 801,000 90,400 591,000 831,000
SDV 78,100 369,000 495,000 80,200 382,000 438,000 88,100 341,000 491,000

IMPEDE M 45,000 339,000 576,000 62,900 382,000 685,000 72,900 39,800 696,000
SDV 60,600 213,000 356,000 64,100 211,000 287,000 71,900 193,000 313,000

Symmetry 2023, 15, 1818 17 of 23

Table 2. Cont.

Function Algorithm Mean (M) and SDV
100 NP 150 NP 200 NP

10_DIM 20_DIM 30_DIM 10_DIM 20_DIM 30_DIM 10_DIM 20_DIM 30_DIM

f 4 MPEDE M 0.956 1.05 1.11 0.0944 1.12 12.1 0.0974 10.6 11.2
SDV 0.191 0.0749 0.0311 0.00214 0.0731 0.339 0.00151 0.0103 0.00283

DE M 2.01 3.02 2.92 0.301 2.11 29.4 0.201 28.1 29.8
SDV 0.302 0.0932 0.0492 0.00375 0.0901 0.473 0.00292 0.0275 0.00401

HDDE M 0.981 0.913 0.981 0.903 0.998 2.03 0.971 0.998 2.76
SDV 0.401 0.571 0.594 0.484 0.501 0.491 0.495 0.342 0.401

IMPEDE M 0.819 0.739 0.867 0.758 0.92 0.94 0.817 0.957 1.03
SDV 0.258 0.41 0.409 0.335 0.318 0.369 0.321 0.283 0.267

f 5 MPEDE M 1.1 1.22 1.18 1.15 1.18 1.18 1.13 1.23 1.18
SDV 0.205 0.108 0.0887 0.192 0.106 0.0894 0.222 0.129 0.0771

DE M 2.91 2.82 2.91 2.99 3.09 2.69 2.91 3.01 2.68
SDV 0.387 0.281 0.0969 0.351 0.291 0.0879 0.394 0.281 0.0941

HDDE M 0.981 2.79 2.61 2.81 3.01 2.69 2.71 2.97 2.69
SDV 0.491 0.401 0.371 0.467 0.374 0.395 0.471 0.396 0.307

IMPEDE M 0.884 1.05 1.07 1.01 1.09 1.11 1.04 1.11 1.14
SDV 0.307 0.232 0.189 0.282 0.184 0.212 0.286 0.2 0.142

f 6 MPEDE M 68.1 242 419 6610 2540 43.9 69.9 254 437
SDV 35.9 90.1 122 369 809 1290 35.1 74.4 105

DE M 85.1 401 584 8410 4230 58.6 88.1 422 612
SDV 50.3 99.8 279 515 963 3790 52.2 91.9 274

HDDE M 60.3 3460 5030 6040 401 564 7480 403 574
SDV 512 35.9 30.1 561 3.01 3290 548 20.1 327

IMPEDE M 46.1 1820 3630 4710 229 398 5530 223 392
SDV 329 12.2 17.5 384 91.8 1460 368 995 142

Symmetry 2023, 15, 1818 18 of 23

Table 3. Comparative results of MPEDE, IMPEDE, DE, and HDDE algorithms with fitness function (f 1– f 6) evaluations for 5000 iterations.

Function Algorithm Mean (M) and SDV
100 NP 150 NP 200 NP

10_DIM 20_DIM 30_DIM 10_DIM 20_DIM 30_DIM 10_DIM 20_DIM 30_DIM

f 1 MPEDE M 65 248 429 66.5 255 43.7 7120 2580 4450
SDV 33.9 87.3 123 36 83.7 1180 354 778 10.3

DE M 81.6 391 584 80.1 414 58.4 8740 4010 5940
SDV 48.1 99.5 301 51.3 97.1 2950 501 915 28.4

HDDE M 51.2 371 501 68.5 387 5640 6860 379 569
SDV 48.3 278 315 50.7 291 30.9 583 259 381

IMPEDE M 37.8 211 387 50.3 219 3830 5290 227 402
SDV 33.9 103 174 38.4 104 17.7 419 107 157

f 2 MPEDE M 1590 68,300 342,000 1690 71,500 343,000 1760 70,600 348,000
SDV 1040 27,900 108,000 1170 26,300 104,000 1110 24,100 90,000

DE M 3010 81,500 509,000 2910 88,400 501,000 3080 89100 479,000
SDV 2350 40,100 291,000 2690 40,100 298,000 2870 40,900 2010

HDDE M 981 70,100 452,000 2950 80,300 461,000 2930 74,300 494,000
SDV 20.1 49,700 284,000 2790 44,900 281,000 2590 49,100 284,000

IMPEDE M 878 54,800 289,000 1200 62,900 297,000 1280 58,900 311,000
SDV 946 30,600 143,000 1090 30,500 136,000 1120 30,200 124,000

f 3 MPEDE M 89,200 417,000 735,000 90,400 431,000 755,000 99,400 438,000 764,000
SDV 71,100 189,000 279,000 72,400 182,000 262,000 75,200 178,000 232,000

DE M 98,600 569,000 875,000 2140 591,000 901,000 3090 579,000 901,000
SDV 87,900 340,000 408,000 89,700 353,000 407,000 90,400 349,000 407,000

HDDE M 59,100 501,000 704,000 81,500 539,000 873,000 91,900 579,000 848,000
SDV 76,900 379,000 504,000 79,400 360,000 409,000 86,900 348,000 473,000

IMPEDE M 45,000 345,000 576,000 63,000 382,000 685,000 73,800 402,000 696,000
SDV 60,600 213,000 356,000 64,100 211,000 287,000 72,100 193,000 313,000

Symmetry 2023, 15, 1818 19 of 23

Table 3. Cont.

Function Algorithm Mean (M) and SDV
100 NP 150 NP 200 NP

10_DIM 20_DIM 30_DIM 10_DIM 20_DIM 30_DIM 10_DIM 20_DIM 30_DIM

f 4 MPEDE M 0.956 1.05 1.11 0.944 1.05 1.11 0.00973 10.6 11.2
SDV 0.183 0.0749 0.0311 0.213 0.0719 0.0331 0.0147 0.0103 0.00283

DE M 2.04 2.91 2.83 3.02 2.81 2.94 0.0301 27.1 29.3
SDV 0.351 0.0904 0.0493 0.384 0.0869 0.048 0.0301 0.0274 0.00428

HDDE M 0.979 0.951 0.973 0.98 2.05 3.15 0.994 1.91 2.85
SDV 0.402 0.593 0.604 0.517 0.531 0.493 0.496 0.451 0.405

IMPEDE M 0.819 0.742 0.867 0.762 0.92 0.94 0.817 0.96 1.03
SDV 0.258 0.41 0.412 0.335 0.329 0.375 0.321 0.283 0.267

f 5 MPEDE M 1.1 1.18 1.18 1.13 1.18 1.18 1.13 1.17 1.18
SDV 0.205 0.108 0.0887 0.192 0.106 0.0894 0.213 0.129 0.0766

DE M 2.81 2.94 3.01 2.79 2.84 2.71 2.65 2.91 2.83
SDV 0.349 0.273 0.201 0.374 0.257 0.258 0.394 0.281 0.0954

HDDE M 0.997 2.71 2.64 2.85 2.87 2.91 2.75 2.55 2.79
SDV 0.415 0.371 0.348 0.464 0.317 0.396 0.417 0.377 0.379

IMPEDE M 0.884 1.05 1.09 1.02 1.12 1.1 1.05 1.11 1.14
SDV 0.307 0.232 0.189 0.282 0.184 0.213 0.286 0.2 0.142

f 6 MPEDE M 67.7 242 419 6490 2540 4290 69.9 254 434
SDV 35.9 89.5 118 371 809 119 34.2 74.4 105

DE M 81.8 391 569 7810 4170 5800 85.8 391 584
SDV 50.4 2.17 257 524 971 284 49.5 88.1 261

HDDE M 59.1 358 5010 6380 385 564 693 379 509
SDV 5.09 258 29.7 565 2.01 2970 5070 305 281

IMPEDE M 45.8 193 3580 4710 232 398 553 223 392
SDV 3.45 107 17.5 384 92.4 1460 3680 9950 138

Symmetry 2023, 15, 1818 20 of 23

5.3. Discussion

DE is a straightforward yet highly efficient search technique renowned as one of the
top evolutionary algorithms employed for solving practical challenges in the real world.
In DE, the concept of multiple populations is attractive, and this study has adopted this
concept to produce better results. The proposed IMPEDE uses different parameters for
execution that convert the whole population into many sub-populations that enhance the
population diversity and performance.

In the proposed scheme, the number of sub-populations is increased or decreased
according to the performance of the algorithm. The DE algorithm with different variants
shows better and more efficient results on small population sizes compared to large popula-
tion sizes. The diversity of the population is supported by the large size of the population,
where members are diverse, which is helpful in achieving high performance by achieving
the global optimum. In the past years, research works on DE focused on developing
approaches for large population sizes. Previous research works use the static strategy of
creating a number of sub-populations, but the proposed method uses a dynamic strategy of
creating sub-populations. The number of sub-populations can be adjusted, either increased
or decreased, based on the performance.

Six fitness functions are used to analyze the performance of the proposed algorithm
in comparison to DE, HDDE, and MPEDE. Experimental analysis shows that the IM-
PEDE algorithm, which uses sub-populations and increases or decreases the number of
sub-populations, achieves better results than MPEDE, DE, and HDDE algorithms. The per-
formance of the proposed algorithm is compared to MPEDE, DE, and HDDE by using
six benchmark functions and using different sizes of populations. Similarly, different di-
mension sizes are used, and the results are compared after 1000 iterations, 3000 iterations,
and 5000 iterations. It is suggested to use the concept of memory for the selection of
mutation strategies instead of random selection. Memory can be beneficial for enhancing
the performance of IMPEDE.

5.4. Statistical Significance

A statistical significance test is performed with the Friedman significance test for
four algorithms using the results of six benchmark functions. The null hypothesis (H0)
defines that there is no significant difference in the performance of DE, MPEDE, HDDE,
and IMPEDE for benchmark functions f1 to f6. On the other hand, the alternate hypothesis
(Ha) defines that there is a significant difference in the performance of DE, MPEDE, HDDE,
and IMPEDE for benchmark functions f1 to f6. The test statistic in the Friedman significance
test is calculated using Equation (12):

ts =
12

rc(c + 1)
∗

c

∑
j=1

Rj
2 − 3r(c + 1) (12)

where ts is test statistic, r is the number of functions used in this study, c is the number of
algorithms, and R is the average rank.

We have used a 0.05 level of significance to generate the test statistic and p-value by
using the Friedman significance test by considering four algorithms and six benchmark
functions. The significance results of the Friedman test are reported in Table 4 by using
varying dimension sizes of 10, 20, and 30, and population sizes of 100, 150, and 200, while
5000 training iterations are used for all four algorithms. It can be observed from Table 4
that the p-value, in almost all cases, is less than the level of significance, which implies
that the null hypothesis (H0) is rejected. It can be concluded that there is a significant
difference in the performance of the proposed algorithm and the three other algorithms
used in this study.

Symmetry 2023, 15, 1818 21 of 23

Table 4. Statistical significance Friedman test of DE, HDDE, MPEDE, and IMPEDE algorithms using
0.05 level of significance.

Population Size Dimension Test Statistic p-Value

100 NP

10D 17 0.000707

20D 17 0.000707

30D 10.6 0.014098

150 NP

10D 9.6 0.022291

20D 15.8 0.001246

30D 10.8 0.012858

200 NP

10D 4.6 0.203542

20D 15.65 0.001338

30D 15 0.001817

6. Conclusions

This study proposes IMPEDE, a differential evolution algorithm that converts the
whole population into many sub-populations to enhance the population diversity to obtain
a higher performance. The concept of sub-population is preferred due to its high diversity,
which is suitable to obtain a global optima. However, contrary to existing works that use
a static strategy, in the proposed scheme, the number of sub-populations is adjusted dy-
namically with respect to the performance of each generation. Experiments are performed
using different population sizes, dimension sizes, and a different number of iterations to
analyze the efficacy of the proposed IMPEDE in comparison to the existing DE, MPEDE,
and HDDE. The experimental results reveal that the IMPEDE algorithm gives better results
than the MPEDE, DE, and HDDE algorithms. Using six benchmark functions, f 1 to f 6,
the proposed algorithm shows substantially better results for f 2, f 3, f 4, and f 5 while
showing marginally better results for f 1 and f 6 compared to MPEDE, DE, and HDDE
for 1000 iterations, 3000 iterations, and 5000 iterations. The Friedman significance test
shows that the proposed algorithm and the other three algorithms’ performance varies
significantly at a 0.05 level of significance for the considered benchmark functions. The non-
parametric significance Friedman test confirms that there is a significant difference in the
performance of the proposed algorithm and the other used algorithms by considering a
0.05 level of significance using six benchmark functions. The results also indicate that the
use of memory for selecting mutation strategies can be beneficial over random selection.

Author Contributions: Conceptualization, A.B. and Q.A.; data curation, Q.A. and K.M.; formal
analysis, A.B. and K.M.; funding acquisition, S.A.; investigation, S.A. and M.S.; methodology, K.M.
and S.A.; software, M.S.; supervision, I.A.; validation, I.A.; visualization, M.S.; writing—original draft,
A.B. and Q.A.; writing—review and editing, I.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Researchers Supporting Project Number (RSPD2023R890),
King Saud University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to King Saud University for funding this
research through Researchers Supporting Project Number (RSPD2023R890), King Saud University,
Riyadh, Saudi Arabia.

Symmetry 2023, 15, 1818 22 of 23

Conflicts of Interest: The authors declare no conflicts of interests.

References
1. Arunachalam, V. Optimization Using Differential Evolution; The University of Western Ontario: London, ON, Canada, 2008.
2. Zhan, Z.H.; Shi, L.; Tan, K.C.; Zhang, J. A survey on evolutionary computation for complex continuous optimization. Artif. Intell.

Rev. 2022, 55, 59–110. [CrossRef]
3. Liang, J.; Ban, X.; Yu, K.; Qu, B.; Qiao, K.; Yue, C.; Chen, K.; Tan, K.C. A survey on evolutionary constrained multiobjective

optimization. IEEE Trans. Evol. Comput. 2022, 27, 201–221. [CrossRef]
4. Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob.

Optim. 1997, 11, 341–359. [CrossRef]
5. Pan, J.S.; Liu, N.; Chu, S.C. A hybrid differential evolution algorithm and its application in unmanned combat aerial vehicle path

planning. IEEE Access 2020, 8, 17691–17712. [CrossRef]
6. Dixit, A.; Mani, A.; Bansal, R. An adaptive mutation strategy for differential evolution algorithm based on particle swarm

optimization. Evol. Intell. 2022, 15, 1571–1585. [CrossRef]
7. Deng, W.; Shang, S.; Cai, X.; Zhao, H.; Song, Y.; Xu, J. An improved differential evolution algorithm and its application in

optimization problem. Soft Comput. 2021, 25, 5277–5298. [CrossRef]
8. Abbas, Q.; Ahmad, J.; Jabeen, H. The analysis, identification and measures to remove inconsistencies from differential evolution

mutation variants. ScienceAsia 2017, 43S, 52–68. [CrossRef]
9. Sun, G.; Li, C.; Deng, L. An adaptive regeneration framework based on search space adjustment for differential evolution. Neural

Comput. Appl. 2021, 33, 9503–9519. [CrossRef]
10. Achom, A.; Das, R.; Pakray, P.; Saha, S. Classification of microarray gene expression data using weighted grey wolf optimizer

based fuzzy clustering. In Proceedings of the TENCON 2019-2019 IEEE Region 10 Conference (TENCON), Kochi, India, 17–20
October 2019; pp. 2705–2710.

11. Yang, M.; Li, C.; Cai, Z.; Guan, J. Differential evolution with auto-enhanced population diversity. IEEE Trans. Cybern. 2014,
45, 302–315. [CrossRef] [PubMed]

12. Zhang, X.; Jin, L.; Cui, C.; Sun, J. A self-adaptive multi-objective dynamic differential evolution algorithm and its application in
chemical engineering. Appl. Soft Comput. 2021, 106, 107317. [CrossRef]

13. Chen, X.; Shen, A. Self-adaptive differential evolution with Gaussian–Cauchy mutation for large-scale CHP economic dispatch
problem. Neural Comput. Appl. 2022, 34, 11769–11787. [CrossRef]

14. Yang, Y.; Forsythe, E.S.; Ding, Y.M.; Zhang, D.Y.; Bai, W.N. Genomic Analysis of Plastid–Nuclear Interactions and Differential
Evolution Rates in Coevolved Genes across Juglandaceae Species. Genome Biol. Evol. 2023, 15, evad145. [CrossRef] [PubMed]

15. Houssein, E.H.; Mahdy, M.A.; Eldin, M.G.; Shebl, D.; Mohamed, W.M.; Abdel-Aty, M. Optimizing quantum cloning circuit
parameters based on adaptive guided differential evolution algorithm. J. Adv. Res. 2021, 29, 147–157. [CrossRef] [PubMed]

16. Lu, K.D.; Wu, Z.G.; Huang, T. Differential evolution-based three stage dynamic cyber-attack of cyber-physical power systems.
IEEE/ASME Trans. Mechatron. 2022, 28, 1137–1148. [CrossRef]

17. Belciug, S. Learning deep neural networks’ architectures using differential evolution. Case study: Medical imaging processing.
Comput. Biol. Med. 2022, 146, 105623. [CrossRef]

18. Abbas, Q.; Malik, K.M.; Saudagar, A.K.J.; Khan, M.B.; Hasanat, M.H.A.; AlTameem, A.; AlKhathami, M. Convergence Track
Based Adaptive Differential Evolution Algorithm (CTbADE). CMC-Comput. Mater. Contin. 2022, 72, 1229–1250. [CrossRef]

19. Zeng, Z.; Hong, Z.; Zhang, H.; Zhang, M.; Chen, C. Improving differential evolution using a best discarded vector selection
strategy. Inf. Sci. 2022, 609, 353–375. [CrossRef]

20. Mohamed, A.W.; Hadi, A.A.; Jambi, K.M. Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global
numerical optimization. Swarm Evol. Comput. 2019, 50, 100455. [CrossRef]

21. Gong, W.; Wang, Y.; Cai, Z.; Wang, L. Finding multiple roots of nonlinear equation systems via a repulsion-based adaptive
differential evolution. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 1499–1513. [CrossRef]

22. Salehinejad, H.; Rahnamayan, S.; Tizhoosh, H.R. Micro-differential evolution: Diversity enhancement and a comparative study.
Appl. Soft Comput. 2017, 52, 812–833. [CrossRef]

23. Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential Evolution: A review of more than two decades of research.
Eng. Appl. Artif. Intell. 2020, 90, 103479.

24. Dorronsoro, B.; Bouvry, P. Improving classical and decentralized differential evolution with new mutation operator and
population topologies. IEEE Trans. Evol. Comput. 2011, 15, 67–98. [CrossRef]

25. Eltaeib, T.; Mahmood, A. Differential evolution: A survey and analysis. Appl. Sci. 2018, 8, 1945. [CrossRef]
26. Choi, T.J.; Lee, Y. Asynchronous differential evolution with selfadaptive parameter control for global numerical optimization.

In Proceedings of the 2018 2nd International Conference on Material Engineering and Advanced Manufacturing Technology
(MEAMT 2018), Beijing, China, 25–27 May 2018; Volume 189, p. 03020.

27. Son, N.N.; Van Kien, C.; Anh, H.P.H. Parameters identification of Bouc–Wen hysteresis model for piezoelectric actuators using
hybrid adaptive differential evolution and Jaya algorithm. Eng. Appl. Artif. Intell. 2020, 87, 103317. [CrossRef]

28. Ma, Y.; Bai, Y. A multi-population differential evolution with best-random mutation strategy for large-scale global optimization.
Appl. Intell. 2020, 50, 1510–1526. [CrossRef]

http://doi.org/10.1007/s10462-021-10042-y
http://dx.doi.org/10.1109/TEVC.2022.3155533
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/ACCESS.2020.2968119
http://dx.doi.org/10.1007/s12065-021-00568-z
http://dx.doi.org/10.1007/s00500-020-05527-x
http://dx.doi.org/10.2306/scienceasia1513-1874.2017.43S.052
http://dx.doi.org/10.1007/s00521-021-05708-1
http://dx.doi.org/10.1109/TCYB.2014.2339495
http://www.ncbi.nlm.nih.gov/pubmed/25095277
http://dx.doi.org/10.1016/j.asoc.2021.107317
http://dx.doi.org/10.1007/s00521-022-07068-w
http://dx.doi.org/10.1093/gbe/evad145
http://www.ncbi.nlm.nih.gov/pubmed/37515592
http://dx.doi.org/10.1016/j.jare.2020.10.001
http://www.ncbi.nlm.nih.gov/pubmed/33842012
http://dx.doi.org/10.1109/TMECH.2022.3214314
http://dx.doi.org/10.1016/j.compbiomed.2022.105623
http://dx.doi.org/10.32604/cmc.2022.024211
http://dx.doi.org/10.1016/j.ins.2022.07.075
http://dx.doi.org/10.1016/j.swevo.2018.10.006
http://dx.doi.org/10.1109/TSMC.2018.2828018
http://dx.doi.org/10.1016/j.asoc.2016.09.042
http://dx.doi.org/10.1109/TEVC.2010.2081369
http://dx.doi.org/10.3390/app8101945
http://dx.doi.org/10.1016/j.engappai.2019.103317
http://dx.doi.org/10.1007/s10489-019-01613-2

Symmetry 2023, 15, 1818 23 of 23

29. Lu, Y.; Ma, Y.; Wang, J. Multi-Population Parallel Wolf Pack Algorithm for Task Assignment of UAV Swarm. Appl. Sci. 2021,
11, 11996. [CrossRef]

30. Ge, Y.F.; Orlowska, M.; Cao, J.; Wang, H.; Zhang, Y. MDDE: Multitasking distributed differential evolution for privacy-preserving
database fragmentation. VLDB J. 2022, 31, 957–975. [CrossRef]

31. Liu, W.l.; Gong, Y.J.; Chen, W.N.; Zhong, J.; Jean, S.W.; Zhang, J. Heterogeneous Multiobjective Differential Evolution for Electric
Vehicle Charging Scheduling. In Proceedings of the 2021 IEEE Symposium Series on Computational Intelligence (SSCI), Orlando,
FL, USA, 5–7 December 2021; pp. 1–8.

32. Yazdani, D.; Cheng, R.; Yazdani, D.; Branke, J.; Jin, Y.; Yao, X. A survey of evolutionary continuous dynamic optimization over
two decades—Part A. IEEE Trans. Evol. Comput. 2021, 25, 609–629. [CrossRef]

33. Zhong, X.; Cheng, P. An elite-guided hierarchical differential evolution algorithm. Appl. Intell. 2021, 51, 4962–4983. [CrossRef]
34. Zeng, Z.; Zhang, M.; Zhang, H.; Hong, Z. Improved differential evolution algorithm based on the sawtooth-linear population

size adaptive method. Inf. Sci. 2022, 608, 1045–1071. [CrossRef]
35. Gao, S.; Yu, Y.; Wang, Y.; Wang, J.; Cheng, J.; Zhou, M. Chaotic local search-based differential evolution algorithms for optimization.

IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 3954–3967. [CrossRef]
36. Yu, Y.; Gao, S.; Wang, Y.; Lei, Z.; Cheng, J.; Todo, Y. A multiple diversity-driven brain storm optimization algorithm with adaptive

parameters. IEEE Access 2019, 7, 126871–126888. [CrossRef]
37. Cui, M.; Li, L.; Zhou, M.; Abusorrah, A. Surrogate-assisted autoencoder-embedded evolutionary optimization algorithm to solve

high-dimensional expensive problems. IEEE Trans. Evol. Comput. 2021, 26, 676–689. [CrossRef]
38. Sun, X.; Wang, D.; Kang, H.; Shen, Y.; Chen, Q. A Two-Stage Differential Evolution Algorithm with Mutation Strategy Combination.

Symmetry 2021, 13, 2163. [CrossRef]
39. Opara, K.R.; Arabas, J. Differential Evolution: A survey of theoretical analyses. Swarm Evol. Comput. 2019, 44, 546–558. [CrossRef]
40. Wu, C.Y.; Tseng, K.Y. Truss structure optimization using adaptive multi-population differential evolution. Struct. Multidiscip.

Optim. 2010, 42, 575–590. [CrossRef]
41. Caraffini, F.; Kononova, A.V.; Corne, D. Infeasibility and structural bias in differential evolution. Inf. Sci. 2019, 496, 161–179.

[CrossRef]
42. Piotrowski, A.P. Review of differential evolution population size. Swarm Evol. Comput. 2017, 32, 1–24. [CrossRef]
43. Francisco, V.J.; Efren, M.M.; Alexander, G. Empirical analysis of a micro-evolutionary algorithm for numerical optimization. Int.

J. Phys. Sci. 2012, 7, 1235–1258.
44. Rao, R.V.; Saroj, A. A self-adaptive multi-population based Jaya algorithm for engineering optimization. Swarm Evol. Comput.

2017, 37, 1–26.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app112411996
http://dx.doi.org/10.1007/s00778-021-00718-w
http://dx.doi.org/10.1109/TEVC.2021.3060014
http://dx.doi.org/10.1007/s10489-020-02091-7
http://dx.doi.org/10.1016/j.ins.2022.07.003
http://dx.doi.org/10.1109/TSMC.2019.2956121
http://dx.doi.org/10.1109/ACCESS.2019.2939353
http://dx.doi.org/10.1109/TEVC.2021.3113923
http://dx.doi.org/10.3390/sym13112163
http://dx.doi.org/10.1016/j.swevo.2018.06.010
http://dx.doi.org/10.1007/s00158-010-0507-9
http://dx.doi.org/10.1016/j.ins.2019.05.019
http://dx.doi.org/10.1016/j.swevo.2016.05.003

	Introduction
	Problem Statement
	Research Questions and Research Hypothesis
	Research Contribution

	Working of DE Algorithm
	Mutation
	Crossover Operation
	Binomial Crossover
	Exponential Crossover
	Selection Operation

	Literature Review
	Single-Population Approach
	Classical Differential Evolution
	Synchronous Differential Evolution

	Cellular Differential Evolution
	Multi-Population Approach
	Distributed Differential Evolution
	Heterogeneous Distributed Differential Evolution
	Hierarchical Cellular Differential Evolution

	Population Diversity Schemes
	Customized Population Sizing for Individual Problems
	Dimension-Dependent Population Sizing
	Problem of Dimensionality-Independent Population Size

	Proposed Approach
	Variable Population Size
	Proposed Improved Multi-Population Ensemble Differential Evolution

	Results and Discussions
	Parameter Settings and Simulation Results
	Experimental Results
	Discussion
	Statistical Significance

	Conclusions
	References

