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Abstract: Mathematical modeling in epidemiology, biology, and life sciences requires the use of
stochastic models. In this paper, we derive a competitive two-strain stochastic SIR epidemic model
by considering the change in state of the epidemic process due to an event. Based on the density-
dependent process theory, we construct a six-dimensional deterministic model that can be used to
describe the diffusion limit of the stochastic epidemic on a heterogeneous network. Furthermore, we
show the explicit expressions for the variances of infectious individuals with strain 1 and strain 2
when the level of infection is increasing exponentially. In particular, we find that the expressions
of the variances are symmetric. Finally, simulations for epidemics spreading on networks are
performed to confirm our analytical results. We find a close agreement between the simulations and
theoretical predictions.

Keywords: stochasticity; network; two-strain model

1. Introduction

Infectious diseases caused by pathogens such as viruses and bacteria can spread
between humans or animals. In real life, the emergence of new diseases and the persistence
of existing diseases endanger human health and bring huge economic burdens to society.
A century earlier, Kermack and Mckendrick had developed an SIR epidemic model for the
single pathogen [1]. Since then, a very large number of models for epidemiology, biology,
and life sciences have been formulated, analyzed, and employed [2–4].

Pathogens of diseases can be represented by multiple variants, and called by the
general name strains. The presence of multiple strains of a pathogen makes it more difficult
for us to combat the disease. For example, Haemophilus influenzae is represented by six
serotypes: a, b, c, d, e, and f, as well as some variants that are not typeable. Dengue virus
has four serotypes. COVID-19 has five variant strains, namely the Alpha variant, Beta
variant, Gamma variant, Delta variant, and Omicron variant [5,6]. There have been many
researchers who have studied multistrain infectious diseases and focused on symmetry in
infectious diseases [7–9]. In particular, the interrelationship between different strains, such
as competition, mutation, superinfection, and cross infection, has attracted much attention.
For example, Ackleh and Allen argued that there is a competitive exclusion and coexistence
of strains in gonorrhea and other sexually infectious diseases [10].

In addition, most mathematical models that describe the spread of multistrain diseases
assume that all members of a population are uniformly mixing and ignore individual
heterogeneity. A more realistic way is to consider the transmission of diseases through
contacts between people, with these contacts describing a network of interactions [11–14].
There have been many examples of using networks to study epidemic models with multiple
strains [15–17]. Yao and Zhang developed a two-strain SIS model on heterogeneous
networks with demographics for disease transmission [16]. Chung and Lui proved the
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local asymptotic stability of the interior steady state of a two-strain influenza model with
sufficiently close cross-immunity [17].

Observed epidemics are noisy and unpredictable, which motivates the use of stochas-
tic epidemic models [8,18–20]. Firstly, under the same initial conditions, standard models
based on ODEs predict the same results. By contrast, stochastic models can predict the
variability of the level of infection by capturing the chance nature of the event. Secondly,
the interaction of stochasticity with the natural oscillatory behaviour of epidemics can
lead to a range of phenomena that differ from deterministic models. El Hajji considered a
mathematical dynamical system involving both deterministic and stochastic SIR epidemic
models with nonlinear incidence rates in a continuous reactor [20]. For the deterministic
model, a profound qualitative analysis was given. For the stochastic model, the long-time
dynamics were concluded using the Feller’s test combined with the canonical probability
method. Chen and Kang studied a stochastic multi-strain SIS epidemic model by introduc-
ing Lévy noise into the disease transmission rate of each strain [8]. They found that Lévy
noise can cause the two strains to be almost guaranteed to become extinct, even though
there is a dominant strain that persists in the deterministic model. Unfortunately, they
can only get the properties of solutions to the stochastic differential equation, such as the
stochastic stability of the disease-free equilibrium and the existence of the unique positive
solution. We are still unable to obtain the transient dynamics of the disease and analyze the
variability of the level of infection. In addition, a wide body of literature has demonstrated
that stochastic models can generate very different dynamics compared with deterministic
models; however, heterogeneous differences have rarely been elucidated. Here, we offer an
analytical insight into the confounding roles of stochasticity and network structure in the
dynamics of infection.

In this paper, we will study a competitive two-strain stochastic SIR epidemic on a
configuration model network. Using probability-generating functions, we obtain a six-
dimensional stochastic model. Based on the density-dependent process theory, we derive
analytical expressions for the variances of the early development phase of an epidemic on
a network given its degree of distribution. In particular, we find that the expressions of the
variances are symmetric. Simulations of the evolution of epidemics in various networks
are implemented to confirm the usefulness of our analysis.

2. The Competitive Two-Strain Stochastic SIR Model

We use the configuration model network with the degree distribution pk. The proba-
bility generating function of degree distribution pk is defined as g(x) = ∑k pkxk, x ∈ [0, 1].
The average degree is µD, µD = ∑M

k=1 kpk = g′(1), where M is the maximum degree.
Individuals are classified according to their disease states S, I, J or R, and their degree on the
network. For k = 1, . . . , M and t ≥ 0, let [Sk](t) be the number of susceptible individuals
of degree k at time t. Similarly, [Ik](t) and [Jk](t) are the numbers of individuals of degree
k infected by strain 1 and strain 2 at time t, respectively. For t ≥ 0, let [SS](t), [SI](t) and
[SJ](t) be the numbers of S− S, S− I and S− J pairs at time t, respectively. Let

W(t) =
(
[S1](t), . . . , [SM](t), [I1](t), . . . , [IM](t), [J1](t), . . . , [JM](t), [SS](t), [SI](t), [SJ](t)

)
.

The state space of W(t) is

H =
{(

[S1], . . . , [SM], [I1], . . . , [IM], [J1], . . . , [JM], [SS], [SI], [SJ]
)

: [Sk], [Ik], [Jk] ≥ 0,

[Sk] + [Ik] + [Jk] ≤ Nk, k = 1, . . . , M, [SS], [SI], [SJ] ≥ 0, [SS] + [SI] + [SJ] ≤ µD N
}

,

where N is the total population size and Nk is the number of individuals of degree k. Let
[S](t) = ∑M

k=1[Sk](t), [I](t) = ∑M
k=1[Ik](t) and [J](t) = ∑M

k=1[Jk](t). Thus, [S](t), [I](t) and
[J](t) are the total numbers of susceptibles infected with strain 1 and strain 2 at time t,
respectively.
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To derive the two-strain SIR model, we must consider the neighbourhood of each
node. Firstly, we make the following assumptions.
(i) The distribution of neighbourhoods with x susceptibles, y infected with strain 1 and z
infected with strain 2 around a susceptible node of degree k follows a multinomial, that is

PS
x,y,z,k = Cx,y,z

k px
S−S py

S−I pz
S−J(1− pS−S − pS−I − pS−J)

k−x−y−z

with

pS−S =
[SS]

∑k k[Sk]
, pS−I =

[SI]
∑k k[Sk]

, pS−J =
[SJ]

∑k k[Sk]
.

For infectious nodes, we only focus on the susceptible neighbors. Thus,
(ii) the distribution of neighbourhoods with x susceptibles around an infectious node with
strain 1 of degree k follows a binomial, that is

PI
x,k = Cx

k px
I−S(1− pI−S)

k−x

with

pI−S =
[SI]

∑k k[Ik]
;

(iii) the distribution of neighbourhoods with x susceptibles around an infectious node with
strain 2 of degree k follows a binomial, that is

PJ
x,k = Cx

k px
J−S(1− pJ−S)

k−x

with

pJ−S =
[SJ]

∑k k[Jk]
.

The process {W(t)} is a continuous time Markov chain. Let

h = ([S1], . . . , [SM], [I1], . . . , [IM], [J1], . . . , [JM], [SS], [SI], [SJ])

denote a typical element of H. There are four basic events: the infection of a susceptible
node by an infectious node with strain 1 or strain 2, and the recovery of an infectious
node with strain 1 or strain 2. Susceptible individuals are infected by one of their infected
neighbors with strain 1 at rate τ1 or with strain 2 at rate τ2. Those infected with strain
1 recover at rate γ1, and those infecteds with strain 2 recover at rate γ2. There are four
types of jump for {W(t)},; for the transmission event (a susceptible node of degree k has
x susceptible neighbours, y infected neighbours with strain 1, z infected neighbours with
strain 2), the jumps are given by

lk1 =(−δ1k, . . . ,−δMk, δ1k, . . . , δMk, 0, . . . , 0,−2x, x− y,−z),

lk2 =(−δ1k, . . . ,−δMk, 0, . . . , 0, δ1k, . . . , δMk,−2x, −y, x− z),

where δmk (m = 1, . . . , M) is the Kronecker delta symbol. For the recovery event (an
infectious node of degree k with strain 1 or strain 2 has x susceptible neighbours), the jumps
are given by

lk3 =(0, . . . , 0,−δ1k, . . . ,−δMk, 0, . . . , 0, 0,−x, 0),

lk4 =(0, . . . , 0, 0, . . . , 0,−δ1k, . . . ,−δMk, 0, 0,−x).

The corresponding state transition rates of {W(t)} are given below: a susceptible node
of degree k (the node has x susceptible neighbours, y infected neighbours with strain 1, z
infected neighbours with strain 2) is infected by one of his infected neighbors with strain 1
at rate

q(h, h + lk1) = τ1y[Sk]PS
x,y,z,k;
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a susceptible node of degree k is infected by one of his infected neighbors with strain 2
at rate

q(h, h + lk2) = τ2z[Sk]PS
x,y,z,k;

an infected node of degree k with strain 1 recovers at rate

q(h, h + lk3) = γ1[Ik]PI
x,k;

an infected node of degree k with strain 2 recovers at rate

q(h, h + lk4) = γ2[Jk]P
J
x,k.

Let ŝk = [Sk]/N, îk = [Ik]/N, ĵk = [Jk]/N (k = 1, . . . , M), û = [SS]/N, v̂1 = [SI]/N
and v̂2 = [SJ]/N. Note that, for a given degree k, the intensities of the jumps of {W(t)}
have the following form

q(h, h + lkm) = Nβlkm

( h
N

)
, m = 1, . . . , 4, h ∈ H

with
βlk1

(ŝ1, . . . , ŝM, î1, . . . , îM, ĵ1, . . . , ĵM, û, v̂1, v̂2) = τ1yŝk P̃S
x,y,z,k,

βlk2
(ŝ1, . . . , ŝM, î1, . . . , îM, ĵ1, . . . , ĵM, û, v̂1, v̂2) = τ2zŝk P̃S

x,y,z,k,

βlk3
(ŝ1, . . . , ŝM, î1, . . . , îM, ĵ1, . . . , ĵM, û, v̂1, v̂2) = γ1 îk P̃I

x,k,

βlk4
(ŝ1, . . . , ŝM, î1, . . . , îM, ĵ1, . . . , ĵM, û, v̂1, v̂2) = γ2 ĵk P̃J

x,k,

where

P̃S
x,y,z,k = Cx,y,z

k

(
û

∑m mŝm

)x( v̂1

∑m mŝm

)y( v̂2

∑m mŝm

)z(
1− û

∑m mŝm
− v̂1

∑m mŝm
− v̂2

∑m mŝm

)k−x−y−z
,

P̃I
x,k = Cx

k

(
v̂1

∑m mîm

)x(
1− v̂1

∑m mîm

)k−x
,

P̃J
x,k = Cx

k

(
v̂2

∑m mĵm

)x(
1− v̂2

∑m mĵm

)k−x
.

The deterministic process is denoted by w(t) = (s1(t), . . . , sM(t), i1(t), . . . , iM(t), j1(t), . . . ,
jM(t), u(t), v1(t), v2(t)), where sk(t) = [Sk](t)/N, ik(t) = [Ik](t)/N, jk(t) = [Jk](t)/N (k =
1, . . . , M), u(t) = [SS](t)/N, v1(t) = [SI](t)/N and v2(t) = [SJ](t)/N. Given the initial
conditions N−1W(0) =

(
s1(0), . . . , sM(0), i1(0), . . . , iM(0), j1(0), . . . , jM(0), u(0), v1(0), v2(0)

)
.

Based on the work of Kurtz [21], w(t) is the solution of

dw(t)
dt

= ∑
k,x,y,z

βlk1
(w)lk1 + ∑

k,x,y,z
βlk2

(w)lk2 + ∑
k,x

βlk3
(w)lk3 + ∑

k,x
βlk4

(w)lk4

= τ1 ∑
k,x,y,z

ysk P̃S
x,y,z,klk1 + τ2 ∑

k,x,y,z
zsk P̃S

x,y,z,klk2 + γ1 ∑
k,x

ik P̃I
x,klk3 + γ2 ∑

k,x
jk P̃J

x,klk4.

Thus, we get the following deterministic system
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dsn

dt
=− τ1nsn

v1

∑m msm
− τ2nsn

v2

∑m msm
, n = 1, . . . , M,

din

dt
= τ1nsn

v1

∑m msm
− γ1in, n = 1, . . . , M,

djn
dt

= τ2nsn
v2

∑m msm
− γ2 jn, n = 1, . . . , M,

du
dt

=− 2τ1 ∑
m

m(m− 1)sm
uv1

(∑m msm)
2 − 2τ2 ∑

m
m(m− 1)sm

uv2

(∑m msm)
2 ,

dv1

dt
= τ1 ∑

m
m(m− 1)sm

uv1

(∑m msm)
2 − τ1 ∑

m
m(m− 1)sm

v2
1

(∑m msm)
2

− τ2 ∑
m

m(m− 1)sm
v1v2

(∑m msm)
2 − τ1v1 − γ1v1,

dv2

dt
= τ2 ∑

m
m(m− 1)sm

uv2

(∑m msm)
2 − τ2 ∑

m
m(m− 1)sm

v2
2

(∑m msm)
2

− τ1 ∑
m

m(m− 1)sm
v1v2

(∑m msm)
2 − τ2v2 − γ2v2.

(1)

Using the result of Kurtz [21], as N → ∞, we know that for every T ≥ 0,

lim
N→∞

sup
0≤t≤T

| N−1W(t)−w(t) |= 0 almost surely,

where w(t) is the solution of a deterministic system (1) with initial condition w(0) =
N−1W(0). Further, √

N
({

N−1W(t)
}
− {w(t)}

)
⇒ {V(t)},

where ⇒ denotes weak convergence and
{

V(t)
}

=
{

V(t) : t ≥ 0
}

is a zero-mean
Gaussian process.

Let s = ∑M
n=1 sn, i = ∑M

n=1 in and j = ∑M
n=1 jn. Lumping together the differential

equations for sn, in and jn, we obtain

ds
dt

=− τ1v1 − τ2v2,

di
dt

= τ1v1 − γ1i,

dj
dt

= τ2v2 − γ2 j,

du
dt

=− 2τ1 ∑
m

m(m− 1)sm
uv1

(∑m msm)
2 − 2τ2 ∑

m
m(m− 1)sm

uv2

(∑m msm)
2 ,

dv1

dt
= τ1 ∑

m
m(m− 1)sm

uv1

(∑m msm)
2 − τ1 ∑

m
m(m− 1)sm

v2
1

(∑m msm)
2

− τ2 ∑
m

m(m− 1)sm
v1v2

(∑m msm)
2 − τ1v1 − γ1v1,

dv2

dt
= τ2 ∑

m
m(m− 1)sm

uv2

(∑m msm)
2 − τ2 ∑

m
m(m− 1)sm

v2
2

(∑m msm)
2

− τ1 ∑
m

m(m− 1)sm
v1v2

(∑m msm)
2 − τ2v2 − γ2v2.

(2)

Inspired by the literature [18,22], we will reduce a relatively low dimensional network-
based epidemic model by using the probability generating function. Let θ = [S1]/(Np1) =
s1/p1 represent the probability that a node having degree 1 remains susceptible at time t.
The infection down each link is assumed to be independent, thus we have [Sk] = Npkθk
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and [S] = N ∑k pkθk = Ng(θ). Further, we have sk = pkθk, s = g(θ), ∑k ksk = θg′(θ) and
∑k k(k− 1)sk = θ2g′′(θ). Thus, system (2) becomes

dθ

dt
=− τ1

v1

g′(θ)
− τ2

v2

g′(θ)
,

di
dt

= τ1v1 − γ1i,

dj
dt

= τ2v2 − γ2 j,

du
dt

=− 2τ1uv1
g′′(θ)
g′(θ)2 − 2τ2uv2

g′′(θ)
g′(θ)2 ,

dv1

dt
= τ1uv1

g′′(θ)
g′(θ)2 − τ1v2

1
g′′(θ)
g′(θ)2 − τ2v1v2

g′′(θ)
g′(θ)2 − τ1v1 − γ1v1,

dv2

dt
= τ2uv2

g′′(θ)
g′(θ)2 − τ2v2

2
g′′(θ)
g′(θ)2 − τ1v1v2

g′′(θ)
g′(θ)2 − τ2v2 − γ2v2.

(3)

Let W̃(t) =
(
[S1](t)/p1, [I](t), [J](t), [SS](t), [SI](t), [SJ](t)

)
and w̃(t) =

(
θ(t), i(t),

j(t), u(t), v1(t), v2(t)
)
. Instead of {W(t)}, we simply need to consider process {W̃(t)}.

For the transmission event (a susceptible node of degree k has x susceptible neighbours,
y infected neighbours with strain 1, z infected neighbours with strain 2), the jumps are
given by

l̃k1 =(−δ1k/p1, 1, 0,−2x, x− y,−z),

l̃k2 =(−δ1k/p1, 0, 1,−2x, −y, x− z),

For the recovery event (an infectious node of degree k with strain 1 or strain 2 has x
susceptible neighbours), the jumps are given by

l̃k3 =(0,−1, 0, 0,−x, 0),

l̃k4 =(0, 0,−1, 0, 0,−x).

The intensities of the jumps of {W̃(t)} are given by

β̃ l̃k1
(ŝ1/p1, î, ĵ, û, v̂1, v̂2) = τ1yŝk P̃S

x,y,z,k,

β̃ l̃k2
(ŝ1/p1, î, ĵ, û, v̂1, v̂2) = τ2zŝk P̃S

x,y,z,k,

β̃ l̃k3
(ŝ1/p1, î, ĵ, û, v̂1, v̂2) = γ1 îk P̃I

x,k,

β̃ l̃k4
(ŝ1/p1, î, ĵ, û, v̂1, v̂2) = γ2 ĵk P̃J

x,k.

Given the initial condition N−1W̃(0) =
(
θ(0), i(0), j(0), u(0), v1(0), v2(0)

)
, where

θ(0) = s1(0)/p1, i(0) = ∑m im(0) and j(0) = ∑m jm(0). Similarly, as N → ∞, for
every T ≥ 0,

lim
N→∞

sup
0≤t≤T

| N−1W̃(t)− w̃(t) |= 0 almost surely,

where w̃(t) is the solution of a deterministic system (3) with initial condition w̃(0) =
N−1W̃(0). Further, we have

√
N
({

N−1W̃(t)
}
− {w̃(t)}

)
⇒
{

Ṽ(t)
}

,

where⇒ denotes weak convergence and
{

Ṽ(t)
}
=
{

Ṽ(t) : t ≥ 0
}

is a zero-mean Gaussian
process with variance function given by

Σ(t) = Var
(
Ṽ(t)

)
= M(t)

[∫ t

0
M−1(u)G(u)

(
M−1(u)

)>du
](

M(t)
)>, (4)
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where

M(t) = exp
(∫ t

0
B(u)du

)
with

B(t) = ∇F(t).

F(t) is the vector field of system (3), and

G(t) = ∑
k,x,y,z

β̃ l̃k1
(w̃)l̃>k1 l̃k1 + ∑

k,x,y,z
β̃ l̃k2

(w̃)l̃>k2 l̃k2 + ∑
k,x

β̃ l̃k3
(w̃)l̃>k3 l̃k3 + ∑

k,x
β̃ l̃k4

(w̃)l̃>k4 l̃k4. (5)

It follows that Σ(t) satisfies

dΣ(t)
dt

= G(t) + B(t)Σ(t) + Σ(t)B(t)>

with initial condition Σ(0) = 0. Thus, Σ(t) can be computed numerically.

3. Early Growth Behaviour

We analyze the variances of the prevalence of infections with strain 1 and strain 2
during the early development of the epidemic. A linearizing system (3) allows us to get a
new system 

dθ

dt
=− τ1

g′(1)
v1 −

τ2

g′(1)
v2,

di
dt

= τ1v1 − γ1i,

dj
dt

= τ2v2 − γ2 j,

du
dt

=− 2τ1
g′′(1)
g′(1)

v1 − 2τ2
g′′(1)
g′(1)

v2,

dv1

dt
=

[
τ1

g′′(1)
g′(1)

− τ1 − γ1

]
v1,

dv2

dt
=

[
τ2

g′′(1)
g′(1)

− τ2 − γ2

]
v2.

(6)

To examine the dynamics, we assume that

i(t) = i(0) exp(r1t) =: ĩ exp(r1t),

j(t) = j(0) exp(r2t) =: j̃ exp(r2t),
(7)

where r1, r2 > 0. Based on system (6), it follows that

di
dt

= τ1v1 − γ1i = r1i,

dj
dt

= τ2v2 − γ2 j = r2 j.

Thus,

v1 =
r1 + γ1

τ1
i, v2 =

r2 + γ2

τ2
j.

Moreover, we know that
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dv1

dt
=

[
τ1

g′′(1)
g′(1)

− τ1 − γ1

]
v1 = r1v1,

dv2

dt
=

[
τ2

g′′(1)
g′(1)

− τ2 − γ2

]
v2 = r2v2.

Hence,

τ1 =
g′(1)

g′′(1)− g′(1)
(r1 + γ1), τ2 =

g′(1)
g′′(1)− g′(1)

(r2 + γ2).

So, we have

v1 =
g′′(1)− g′(1)

g′(1)
i,

v2 =
g′′(1)− g′(1)

g′(1)
j.

Using system (6), we then work out the early behaviour of the other variables,

θ(t) = 1− r1 + γ1

r1g′(1)
i(t)− r2 + γ2

r2g′(1)
j(t),

u(t) = g′(1)− 2g′′(1)(r1 + γ1)

r1g′(1)
i(t)− 2g′′(1)(r2 + γ2)

r2g′(1)
j(t),

v1(t) =
g′′(1)− g′(1)

g′(1)
i(t),

v2(t) =
g′′(1)− g′(1)

g′(1)
j(t).

(8)

It follows from (5) that

G(w) = τ1 ∑
k,x,y,z

ysk P̄S
x,y,z,kT1 + τ2 ∑

k,x,y,z
zsk P̄S

x,y,z,kT2 + γ1 ∑
k,x

ik P̄I
x,kT3 + γ2 ∑

k,x
jk P̄J

x,kT4,

where

P̄S
x,y,z,k = Cx,y,z

k

(
u

θg′(θ)

)x( v1

θg′(θ)

)y( v2

θg′(θ)

)z

×
(

1− u
θg′(θ)

− v1

θg′(θ)
− v2

θg′(θ)

)k−x−y−z
,

P̄I
x,k = Cx

k

(
v1

∑m mim

)x(
1− v1

∑m mim

)k−x
,

P̄J
x,k = Cx

k

(
v2

∑m mjm

)x(
1− v2

∑m mjm

)k−x
,
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and

T1 =



δ1k
p2

1
− δ1k

p1
0 2xδ1k

p1

(y−x)δ1k
p1

zδ1k
p1

− δ1k
p1

1 0 −2x x− y −z

0 0 0 0 0 0

2xδ1k
p1

−2x 0 4x2 2x(y− x) 2xz

(y−x)δ1k
p1

x− y 0 2x(y− x) (x− y)2 z(y− x)

zδ1k
p1

−z 0 2xz z(y− x) z2


,

T2 =



δ1k
p2

1
0 − δ1k

p1

2xδ1k
p1

yδ1k
p1

(z−x)δ1k
p1

0 0 0 0 0 0

− δ1k
p1

0 1 −2x −y x− z

2xδ1k
p1

0 −2x 4x2 2xy 2x(z− x)

yδ1k
p1

0 −y 2xy y2 y(z− x)

(z−x)δ1k
p1

0 x− z 2x(z− x) y(z− x) (x− z)2


,

T3 =



0 0 0 0 0 0

0 1 0 0 x 0

0 0 0 0 0 0

0 0 0 0 0 0

0 x 0 0 x2 0

0 0 0 0 0 0


, T4 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 x

0 0 0 0 0 0

0 0 0 0 0 0

0 0 x 0 0 x2


.

Thus, we can obtain

G11 =
τ1

p1

v1

g′(θ)
+

τ2

p1

v2

g′(θ)
, G12 = G21 = −τ1

v1

g′(θ)
, G13 = G31 = −τ2

v2

g′(θ)
,

G14 = G41 = 0, G15 = G51 = τ1
v1

g′(θ)
, G16 = G61 = τ2

v2

g′(θ)
,

G22 = τ1v1 + γ1i, G23 = G32 = 0, G24 = G42 = −2τ1
g′′(θ)
g′(θ)2 uv1,

G25 = G52 = τ1
g′′(θ)
g′(θ)2 uv1 − τ1v1 − τ1

g′′(θ)
g′(θ)2 v2

1 + γ1v1,

G26 = G62 = −τ1
g′′(θ)
g′(θ)2 v1v2, G33 = τ2v2 + γ2 j,

G34 = G43 = −2τ2
g′′(θ)
g′(θ)2 uv2, G35 = G53 = −τ2

g′′(θ)
g′(θ)2 v1v2,

G36 = G63 = τ2
g′′(θ)
g′(θ)2 uv2 − τ2v2 − τ2

g′′(θ)
g′(θ)2 v2

2 + γ2v2,
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G44 = 4τ1
g′′′(θ)
g′(θ)3 u2v1 + 4τ1

g′′(θ)
g′(θ)2 uv1 + 4τ2

g′′′(θ)
g′(θ)3 u2v2 + 4τ2

g′′(θ)
g′(θ)2 uv2,

G45 = G54 = 2τ1
g′′′(θ)
g′(θ)3 uv2

1 − 2τ1
g′′′(θ)
g′(θ)3 u2v1 + 2τ2

g′′′(θ)
g′(θ)3 uv1v2,

G46 = G64 = 2τ1
g′′′(θ)
g′(θ)3 uv1v2 + 2τ2

g′′′(θ)
g′(θ)3 uv2

2 − 2τ2
g′′′(θ)
g′(θ)3 u2v2,

G55 = τ1
g′′′(θ)
g′(θ)3 u2v1 − 2τ1

g′′′(θ)
g′(θ)3 uv2

1 − τ1
g′′(θ)
g′(θ)2 uv1 + τ1

g′′′(θ)
g′(θ)3 v3

1

+ 3τ1
g′′(θ)
g′(θ)2 v2

1 + τ1v1 + τ2
g′′′(θ)
g′(θ)3 v2

1v2 + τ2
g′′(θ)
g′(θ)2 v1v2 + γ1 ∑

k,x
x2ik P̄I

x,k,

G56 = G65 = τ1
g′′′(θ)
g′(θ)3 v2

1v2 + τ1
g′′(θ)
g′(θ)2 v1v2 − τ1

g′′′(θ)
g′(θ)3 uv1v2 + τ2

g′′′(θ)
g′(θ)3 v1v2

2

+ τ2
g′′(θ)
g′(θ)2 v1v2 − τ2

g′′′(θ)
g′(θ)3 uv1v2,

G66 = τ1
g′′′(θ)
g′(θ)3 v1v2

2 + τ1
g′′(θ)
g′(θ)2 v1v2 + τ2

g′′′(θ)
g′(θ)3 u2v2 − 2τ2

g′′′(θ)
g′(θ)3 uv2

2 − τ2
g′′(θ)
g′(θ)2 uv2

+ τ2
g′′′(θ)
g′(θ)3 v3

2 + 3τ2
g′′(θ)
g′(θ)2 v2

2 + τ2v2 + γ2 ∑
k,x

x2 jk P̄J
x,k.

Using (7) and (8), we linearise G with respect to (i, j) at (0, 0). Then, we can obtain
matrix G, where

G11 =
τ1

p1

g′′ − g′

g′2
i +

τ2

p1

g′′ − g′

g′2
j, G12 = G21 = −τ1

g′′ − g′

g′2
i,

G13 = G31 = −τ2
g′′ − g′

g′2
j, G14 = G41 = 0, G15 = G51 = τ1

g′′ − g′

g′2
i,

G16 = G61 = τ2
g′′ − g′

g′2
j, G22 =

(
τ1

g′′

g′
− τ1 + γ1

)
i, G23 = G32 = 0,

G24 = G42 = −2τ1
g′′(g′′ − g′)

g′2
i, G25 = G52 =

(g′′ − g′)[τ1g′′ + (γ1 − τ1)g′]
g′2

i,

G26 = G62 = 0, G33 =

(
τ2

g′′

g′
− τ2 + γ2

)
j,

G34 = G43 = −2τ2
g′′(g′′ − g′)

g′2
j, G35 = G53 = 0,

G36 = G63 =
(g′′ − g′)[τ2g′′ + (γ2 − τ2)g′]

g′2
j,

G44 = 4τ1
(g′′ − g′)(g′′′ + g′′)

g′2
i + 4τ2

(g′′ − g′)(g′′′ + g′′)
g′2

j,

G45 = G54 = −2τ1
g′′′(g′′ − g′)

g′2
i, G46 = G64 = −2τ2

g′′′(g′′ − g′)
g′2

j,
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G55 = τ1
(g′′′ − g′′ + g′)(g′′ − g′)

g′2
i + γ1 ∑

k,x
x2ik P̄I

x,k,

G56 = G65 = 0,

G66 = τ2
(g′′′ − g′′ + g′)(g′′ − g′)

g′2
j + γ2 ∑

k,x
x2 jk P̄J

x,k.

Here, we have used the fact that g′(θ), g′′(θ) and g′′′(θ) will become g′(1), g′′(1) and
g′′′(1) with the use of the early growth assumption. Write g(n) ≡ g(n)(1), n = 1, 2, 3. Next,
we calculate ∑k,x x2ik P̄I

x,k and ∑k,x x2 jk P̄J
x,k.

Note that
dsk
dt

= kpkθk−1θ̇,

dθ

dt
=− τ1

g′
v1 −

τ2

g′
v2 = − r1 + γ1

g′
i− r2 + γ2

g′
j.

Thus,
dsk
dt

= −kpkθk−1 r1 + γ1

g′
i− kpkθk−1 r2 + γ2

g′
j. (9)

It follows from (9) that

ik(t) = ik(0) + kpk
r1 + γ1

g′

∫ t

0
(θ(t− a))k−1i(t− a)e−γ1ada

≈ kpk
r1 + γ1

g′

∫ t

0
(θ(t− a))k−1i(t− a)e−γ1ada,

jk(t) = jk(0) + kpk
r2 + γ2

g′

∫ t

0
(θ(t− a))k−1 j(t− a)e−γ2ada

≈ kpk
r2 + γ2

g′

∫ t

0
(θ(t− a))k−1 j(t− a)e−γ2ada,

where e−γ1a is the probability that an infective of age a with strain 1 is still infective,
and e−γ2a is the probability that an infective of age a with strain 2 is still infective.

Now consider the neighbourhood around such an infective with strain 1. Every
infectious individual of degree k must have been infected by one of their infected neighbors,
leaving k− 1 individuals who are potentially susceptible. If the infection of the central
node happened a time a ago, then each of the k− 1 potentially susceptible neighbours has
an independent probability e−τ1a of avoiding infection from the central node. In addition,
the neighbouring node of degree l has a probability of θl−1 of avoiding infection from any
other source. Summing over l, then, gives the general expression

ik P̄I
x,k = kpk

r1 + γ1

g′

∫ t

0
(θ(t− a))k−1i(t− a)e−γ1a

×Cx
k

(
g′(θ)
g′(1)

e−τ1a
)x(

1− g′(θ)
g′(1)

e−τ1a
)k−1−x

da.

In the early growth phase of the infection, we assume that θ ≈ 1 and g′(θ) ≈ g′(1).
Hence,
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∑
k,x

x2ik P̄I
x,k = ∑

k,x
x2kpk

r1 + γ1

g′

∫ t

0
i(t− a)e−γ1a

×
(

k− 1
x

)(
e−τ1a)x(1− e−τ1a)k−1−xda

=
r1 + γ1

g′ ∑
k

kpk

∫ t

0
i(t− a)e−γ1a

×∑
x

x2
(

k− 1
x

)(
e−τ1a)x(1− e−τ1a)k−1−xda

=
r1 + γ1

g′
i ∑

k
k(k− 1)(k− 2)pk

∫ t

0
e−(2τ1+r1+γ1)ada

+
r1 + γ1

g′
i ∑

k
k(k− 1)pk

∫ t

0
e−(τ1+r1+γ1)ada

≈ r1 + γ1

g′

(
g′′′

2τ1 + r1 + γ1
+

g′′

τ1 + r1 + γ1

)
i.

Similarly, for an infective with strain 2, we can obtain

∑
k,x

x2 jk P̄x,k = ∑
k,x

x2kpk
r2 + γ2

g′

∫ t

0
j(t− a)e−γ2a

×
(

k− 1
x

)(
e−τ2a)x(1− e−τ2a)k−1−xda

≈ r2 + γ2

g′

(
g′′′

2τ2 + r2 + γ2
+

g′′

τ2 + r2 + γ2

)
j.

Therefore,

G55 = τ1
g′′ − g′

g′2

[
g′′′ − g′′ + g′ + γ1

(
g′′′

2τ1 + r1 + γ1
+

g′′

τ1 + r1 + γ1

)]
i,

G66 = τ2
g′′ − g′

g′2

[
g′′′ − g′′ + g′ + γ2

(
g′′′

2τ2 + r2 + γ2
+

g′′

τ2 + r2 + γ2

)]
j.

It is not hard to find that matrix G can be written as G̃1i(t) + G̃2 j(t), where

G̃1 =



τ1
p1

g′′−g′

g′2 −τ1
g′′−g′

g′2 0 0 τ1
g′′−g′

g′2 0

−τ1
g′′−g′

g′2 τ1
g′′
g′ − τ1 + γ1 0 −2τ1

g′′(g′′−g′)
g′2

(g′′−g′)[τ1g′′+(γ1−τ1)g′ ]
g′2 0

0 0 0 0 0 0

0 −2τ1
g′′(g′′−g′)

g′2 0 4τ1
(g′′−g′)(g′′′+g′′)

g′2 −2τ1
g′′′(g′′−g′)

g′2 0

τ1
g′′−g′

g′2
(g′′−g′)[τ1g′′+(γ1−τ1)g′ ]

g′2 0 −2τ1
g′′′(g′′−g′)

g′2 τ1
(g′′−g′)(g′′′−g′′+g′)+γ1(g′′−g′)

(
g′′

τ1+r1+γ1
+ g′′′

2τ1+r1+γ1

)
g′2 0

0 0 0 0 0 0


,

and
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G̃2 =



τ2
p1

g′′−g′

g′2 0 −τ2
g′′−g′

g′2 0 0 τ2
g′′−g′

g′2

0 0 0 0 0 0

−τ2
g′′−g′

g′2 0 τ2
g′′
g′ − τ2 + γ2 −2τ2

g′′(g′′−g′)
g′2 0 (g′′−g′)[τ2g′′+(γ2−τ2)g′ ]

g′2

0 0 −2τ2
g′′(g′′−g′)

g′2 4τ2
(g′′−g′)(g′′′+g′′)

g′2 0 −2τ2
g′′′(g′′−g′)

g′2

0 0 0 0 0 0

τ2
g′′−g′

g′2 0 (g′′−g′)[τ2g′′+(γ2−τ2)g′ ]
g′2 −2τ2

g′′′(g′′−g′)
g′2 0 τ2

(g′′−g′)(g′′′−g′′+g′)+γ2(g′′−g′)
(

g′′
τ2+r2+γ2

+ g′′′
2τ2+r2+γ2

)
g′2


.

In addition, matrix B(t) is the Jacobian matrix of system (6),

B =



0 0 0 0 − τ1
g′ − τ2

g′

0 −γ1 0 0 τ1 0

0 0 −γ2 0 0 τ2

0 0 0 0 −2τ1
g′′
g′ −2τ2

g′′
g′

0 0 0 0 r1 0

0 0 0 0 0 r2


.

Substituting G(t) = G̃1i(t) + G̃2 j(t) and B(t) = B into (4) yields the expression
for Σ(t),

Σ(t) = Σ1(t) + Σ2(t),

where Σ1(t) and Σ2(t) satisfy

r1Σ1(t)− BΣ1(t)− Σ1(t)B> = ĩ
[
exp(r1t)G̃1 − exp(Bt)G̃1 exp(Bt)>

]
(10)

and
r2Σ2(t)− BΣ2(t)− Σ2(t)B> = j̃

[
exp(r2t)G̃2 − exp(Bt)G̃2 exp(Bt)>

]
. (11)

Now we can solve (10) and (11) for Σ(t). Because of the complexity of the expressions,
we only show the variances of the proportion of infected individuals with strain 1 and
strain 2 as below,

Var(i) =
ĩ

r1γ1g′2(r1 + 2γ1)(r1 + γ1)2N

{
τ3

1
[
2r1(r1 + 2γ1)e(r1−γ1)t − r1γ1e−2γ1t + γ1(r1 + 2γ1)e2r1t − 2(r1 + γ1)

2er1t]

×
(g′ + 2g′′′)γ2

1 + [(2r1 + 3τ1)g′ + (3r1 + 4τ1)g′′′ − (r1 + τ1)g′′]γ1 + (r1 + 2τ1)(r1 + τ1)(g′ + g′′′ − g′′)
(τ1 + r1 + γ1)(2τ1 + r1 + γ1)

× (g′′ − g′) + r1(r1 + γ1)[τ1(g′ − g′′)− γ1g′]
{

2τ1(r1 + 2γ1)(g′′ − g′)e(r1−γ1)t

+ γ1[g′r1 + 2τ1(g′ − g′′) + g′γ1]e−2γ1t + (r1 + γ1)[2τ1(g′ − g′′)− g′γ1]er1t
}}

,

(12)
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Var(j) =
j̃

r2γ2g′2(r2 + 2γ2)(r2 + γ2)2N

{
τ3

2
[
2r2(r2 + 2γ2)e(r2−γ2)t − r2γ2e−2γ2t + γ2(r2 + 2γ2)e2r2t − 2(r2 + γ2)

2er2t]

×
(g′ + 2g′′′)γ2

2 + [(2r2 + 3τ2)g′ + (3r2 + 4τ2)g′′′ − (r2 + τ2)g′′]γ2 + (r2 + 2τ2)(r2 + τ2)(g′ + g′′′ − g′′)
(τ2 + r2 + γ2)(2τ2 + r2 + γ2)

× (g′′ − g′) + r2(r2 + γ2)[τ2(g′ − g′′)− γ2g′]
{

2τ2(r2 + 2γ2)(g′′ − g′)e(r2−γ2)t

+ γ2[g′r2 + 2τ2(g′ − g′′) + g′γ2]e−2γ2t + (r2 + γ2)[2τ2(g′ − g′′)− g′γ2]er2t
}}

.

(13)

4. Simulation Results

In this section, we present numerical and stochastic simulations to support the the-
oretical results. We fix the mean but differentiate the variance of the degree distribution.
The analytical results only apply to the early growth stage of the infection, which can be
defined as the time when the susceptible individuals have not yet decreased significantly.
This means that, if we want to compare the early growth variances of infectious individuals,
we may have a very short window in which we can do it.

We implement the stochastic simulations to capture the temporal evolution of an
epidemic on a network of size 1000. To get the average early growth behavior, we set the
initial numbers of infected individuals with strain 1 and strain 2 as 10 and 5. Then, we
set the simulation time to zero and let the infection grow from there. We consider two
networks, the Poisson network and the Scale-free network. Table 1 lists the parameter
values of Figures 1 and 2.

Table 1. Parameter values.

Parameters Values Values
(Poisson Network) (Scale-Free Network)

g′ 6 6
g′′ 35.964 66.202
g′′′ 216.5 1785.6
ĩ 0.01 0.01
j̃ 0.005 0.005

τ1 1 1
τ2 0.8 0.8
γ1 1.5 1.5
γ2 1 1
r1 3.5241 8.5595
r2 3.0193 7.0476

Figures 1 and 2 show the results of the stochastic simulations compared with the
theoretical predictions. Figure 1 shows that the means of the infected individuals with
strain 1 and strain 2 for the two networks. The red solid lines are obtained based on
1000 simulations, and the black dashed lines are obtained by using (7). We can see that the
means of the infected individuals with strain 1 and strain 2 in the stochastic simulations
are consistent with the predicted results in the early growth stage. Specifically, we find that
the growth rates r1 and r2 for the Scale-free network are larger than that for the Poisson
network. Although the average degrees of these two networks are the same, Scale-free
networks have a greater variance and skewness. This is the reason for the difference.

We show the temporal evolution of the standard deviation of the infected individuals
with strain 1 and strain 2 in Figure 2. The pink solid lines are obtained based on simulations,
and the blue dashed lines are obtained by using (12) and (13). Figure 2 shows the period
of time at which we have agreement in the standard deviations of those infected with
strain 1 and strain 2 between the two networks with the predicted results. From Table 1,
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we speculate that the network with lower variance and skewness has a stabilizing effect
during the exponential growth phase; that is to say, those infected in the network with high
heterogeneity always display greater variation about the mean.
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Figure 1. Demonstration of the mean early growth behaviour of the number of those infected with
strain 1 and strain 2 for Poisson and Scale-free networks.
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Figure 2. Demonstration of the standard deviation of the number of those infected with strain 1 and
strain 2 for Poisson and Scale-free networks.

5. Conclusions

We have considered the spread of SIR-type two-strain infections in heterogeneous
networks. We focus on the variance of the prevalence of the infection. Using the result
of Kurtz [21] enables us to analyze the stochastic dynamic of the disease using the deter-
ministic limiting system. Furthermore, inspired by Graham and Volz et al. [18,22], we
reduce a relatively low dimensional deterministic network-based epidemic model by using
the probability generating function. Then, expressions for the asymptotic variances of
those infected with strain 1 and strain 2 during the early growth are obtained. This result
provides support for us to understand the early behavior of infectious disease with two
strains. For the numerical scheme, the theoretical results are used to improve the efficiency
of the calculation.

By comparing the results that are derived analytically with stochastic simulations, we
demonstrate that the approximate performance of the mean and standard deviation of the
number of those infected with strain 1 and strain 2 for the SIR epidemic process in the
Poisson network and the Scale-free network. We can get a strong agreement between the
results and simulations, as can be seen in Figures 1 and 2. Furthermore, we show that the
network with lower variance and skewness has a stabilizing effect during the exponential
growth phase; that is to say, those infected in the network with high heterogeneity always
display greater variation about the mean. An implication of this result is that, in the
situation of an outbreak of a disease, if we are able to target the very well-connected people
in the network, then we can decrease the spread of the disease in the population efficiently.

Of course, we only study the simple scenario of the two-strain SIR epidemic spreading
in heterogeneous networks. For mutation, cross-infection, and other forms of interrelation-

Figure 2. Demonstration of the standard deviation of the number of those infected with strain 1 and
strain 2 for Poisson and Scale-free networks.
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5. Conclusions

We have considered the spread of SIR-type two-strain infections in heterogeneous
networks. We focus on the variance of the prevalence of the infection. Using the result
of Kurtz [21] enables us to analyze the stochastic dynamic of the disease using the deter-
ministic limiting system. Furthermore, inspired by Graham and Volz et al. [18,22], we
reduce a relatively low dimensional deterministic network-based epidemic model by using
the probability generating function. Then, expressions for the asymptotic variances of
those infected with strain 1 and strain 2 during the early growth are obtained. This result
provides support for us to understand the early behavior of infectious disease with two
strains. For the numerical scheme, the theoretical results are used to improve the efficiency
of the calculation.

By comparing the results that are derived analytically with stochastic simulations, we
demonstrate that the approximate performance of the mean and standard deviation of the
number of those infected with strain 1 and strain 2 for the SIR epidemic process in the
Poisson network and the Scale-free network. We can get a strong agreement between the
results and simulations, as can be seen in Figures 1 and 2. Furthermore, we show that the
network with lower variance and skewness has a stabilizing effect during the exponential
growth phase; that is to say, those infected in the network with high heterogeneity always
display greater variation about the mean. An implication of this result is that, in the
situation of an outbreak of a disease, if we are able to target the very well-connected people
in the network, then we can decrease the spread of the disease in the population efficiently.

Of course, we only study the simple scenario of the two-strain SIR epidemic spreading
in heterogeneous networks. For mutation, cross-infection, and other forms of interrelation-
ship between strains, we can do further research. In summary, our work provides some
insights into the stochastic dynamics of infectious diseases with two strains.
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