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Abstract: Higher-dimensional hypercomplex fractal sets are getting more and more attention because
of the discovery of more and more interesting properties and visual aesthetics. In this study, the
attention was focused on generalized biquaternionic Julia sets and a generalization of classical Julia
sets, defined by power and monic higher-order polynomials. Despite complex and quaternionic Julia
sets, their biquaternionic analogues are still not well investigated. The performed morphological
analysis of 3D projections of these sets allowed for definition of symmetries, limit shapes, and
similarities with other fractal sets of this class. Visual observations were confirmed by stability
analysis for initial cycles, which confirm similarities with the complex, bicomplex, and quaternionic
Julia sets, as well as manifested differences between the considered formulations of representing
polynomials.
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1. Introduction

The studies of Mandelbrot in the 1970s on the iterative equation:

z← z2 + c, z, c ∈ C, (1)

defined previously by Julia and Fatou in their investigation of complex dynamic systems,
resulted in the discovery of one of the most geometrically complicated fractal sets, which
is known nowadays as the Mandelbrot set, or simply M-set. By variation of c, the M-set
consists of an infinite number of Julia (usually marked as J sets) and Fatou sets, varied by
their connectivity. These studies of Mandelbrot were summarized in his famous book [1].
More information on the Julia and Mandelbrot sets, including the most important theorems,
can be also found in [2]. However, in addition to the classical complex iteration mapping
given by (1), a generalization of (1) can be found in quaternions H, the 4-dimensional
hypercomplex algebra, i.e., in this case in (1) z, c ∈ H. This is owing to the cooperation
of Mandelbrot with Norton, who defined the quaternionic Mandelbrot-Julia (M-J) sets in
terms of quaternions [3,4]. In parallel, Holbrook [5] performed further investigations in
terms of their symmetries and connectivity.

In the following decades, numerous generalizations of M-J sets in terms of hypercom-
plex number spaces were developed. They include the next logical step in the hypercomplex
generalization of the M-J sets, that is, their generalization in terms of octonions O (the
8-dimensional hypercomplex algebra), proposed by Griffin and Joshi [6] with further in-
vestigation of their properties [7,8], namely, the structural transitions characteristics for a
large class of octonionic maps. Further generalizations of M-J sets were not possible, since
the hypercomplex algebra of 16-dimensional sedenions S, being the next generalization
after octonions, does not meet any of fundamental properties necessary for addition and
multiplication in an iteration process (see (1)), namely, sedenions are not commutative,
associative, and alternative. The same is applicable to all subsequent generalizations. A
detailed analysis of these properties can be found in [9].
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Later, several other interesting generalizations were presented. In particular, Dixon
et al. [10] investigated higher-dimensional generalizations of quadratic polynomial M-J
sets defined in hypercomplex Clifford algebras. In this study, the authors demonstrated
the fractal nature and symmetry properties of higher-dimensional hypercomplex M-J sets.
Wang and Sun [11] proposed a generalization in terms of the power of the polynomial (1)
in quaternions, namely:

z← zp + c, z, c ∈ H, p ∈ N. (2)

In this study, the authors demonstrated the symmetry properties of quaternionic M-J
sets, including those with negative power p and the stability analysis of these sets. In later
studies, Wang’s team also investigated hypercomplex generalizations defined in terms of
power p as in (2) [12], which was an extension of previous studies by Dixon et al. [10].

The new family of generalizations of M-J sets was established by Rochon and his team.
Their studies focused on generalizations in terms of tensor product algebras: he introduced
bicomplex (C⊗C or C2) M-J sets in [13], later studied by Wang and Song [14] as well, and
further generalizations up to multicomplex Cn M-J sets [15–17]. This short overview shows
that the hypercomplex generalizations of M-J sets are currently being intensively studied
by numerous research teams.

Proceeding to the generalization of M-J sets in terms of tensor product algebras, it was
found that there exist M-J sets defined in biquaternions C⊗H. The first introduction of
biquaternionic M-J sets was given by Gintz [18], where he described the fundamentals of
algebra of biquaternions and showed several renderings of 3D projections of these fractal
sets. Later, Bogush et al. [19] presented their studies on the symmetry of biquaternionic
J sets. Studies by the first author on biquaternionic fractal sets were established in [20],
where their graphical representation and preliminary analysis based on comparison with
other complex and hypercomplex J sets were presented. Furthermore, a more detailed
analysis of these fractal sets was performed and described in [9,21], where some unique
properties for these sets were demonstrated.

This paper aimed to perform a systematic analysis of the symmetry properties of
biquaternionic J sets of type (2) and their additional polynomial variation, as well as to
investigate their stability to confirm the observations made during morphological analysis
of these sets. Morphological analysis and evaluation of stability for biquaternionic J sets are
presented for the first time, which is the main novelty of the study. Moreover, biquaternionic
J sets of type (2) were also defined and investigated for the first time.

The rest of the paper is organized as follows. Section 2 consists of fundamental proper-
ties of biquaternions, as well as basic operations necessary for constructing biquaternionic
J sets, which was also presented in this section. Further, in Section 3, the results of a
morphological analysis are presented, including the appearing symmetries in both types of
the investigated J sets. The results of stability analysis of initial cycles are presented and
discussed in Section 4. The main conclusions are derived in Section 5.

2. Preliminaries
2.1. Biquaternions and Their Properties

The algebra of biquaternions, proposed by Hamilton in 1844 as one of the alternatives
to quaternions [9], is a tensor product C ⊗ H of the field of complex numbers C and
quaternions H; therefore, it is sometimes called a complexified quaternion. It is a 4-
algebra, which is isomorphic to C2 and some Clifford algebras [22,23]. In symbolic form, a
biquaternion q̃ can be presented in a complexified form:

C⊗H := {q̃ = a1 + a2i1 + a3i2 + a4i3|an ∈ C}, (3)

or extended alternative form

C⊗H := {q̃ = (g1 + h1 j) + (g2 + h2 j)i1 + (g3 + h3 j)i2 + (g4 + h4 j)i3|gn, hn ∈ R}, (4)
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where in and j are imaginary units, i.e., i21 = i22 = i23 = −1, j2 = −1.
The fundamental operations on biquaternions, such as addition and multiplication, are

the same as for quaternions, i.e., the algebra of biquaternions is alternative. This means that
multiplication is performed according to special rules according to their non-commutativity.
To simplify these fundamental operations, one can apply the idempotent representation of
biquaternions proposed in [24]:

q̃1,2 =
1
2
± 1

2
ξ j, (5)

where q̃1,2 = ω1 + ξω2, ω1, ω2 ∈ C, ξ ∈ C⊗H, ξ2 = −1, which makes it possible to add
and multiply biquaternions element-wise, so that two biquaternions q̃1 = a1 + a2i1 + a3i2 +
a4i3 and q̃2 = b1 + b2i1 + b3i2 + b4i3, an, bn ∈ C can be added and multiplied as follows:

q̃1 + q̃2 := (a1 + b1) + (a2 + b2)i1 + (a3 + b3)i2 + (a4 + b4)i3, (6)

q̃1 := q̃2 := (a1b1 − a2b2 − a3b3 − a4b4) + (a1b2 + a2b1 + a3b4 − a4b3)i1+

(a1b3 − a2b4 + a3b1 + a4b2)i2 + (a1b4 + a2b3 − a3b2 − a4b1)i3.
(7)

The full list of properties and basic operations on biquaternions can be found in [25].

2.2. Julia Sets within Biquaternions
2.2.1. Power Polynomials

The generalized J sets defined within biquaternions in the form

z← zp + c, z, c ∈ C⊗H, p ≥ 2 (8)

were defined and analyzed in one of the previous author’s publications [21]. Moreover,
the condition of p ≥ 2 was discussed there. The main definitions and theorems for
biquaternionic J sets are followed below for consistency.

Definition 1. The generalized “filled” J set, obtained while iterating recursive Equation (8) is
mapped into the biquaternionic vector space with a limited trajectory of c, and

Jp
C⊗H =

{
c ∈ C⊗H| f (p)

c (z) 9 ∞ if p→ ∞
}

, (9)

And, thus, Jp
C⊗H is bounded [21].

Theorem 1. Jp
c,C⊗H = Jp

(c1−c2 j)q̃1+(c̃1+c̃2 j)q̃2,C⊗H = Jp
c1−c2 j,C ×e Jp

c̃1+c̃2 j,H [21].

Proof of Theorem 1. Let c ∈ C ⊗ H. For the recursive equation defined by (8) and
f (p)
c (z) := ( f (p−1)

c fc)(z), according to Definition 1, f (p)
c (0) has a bounded orbit ∀s ∈ N.

Additionally, when p ≥ 2, one obtains

fc(z) = zp + c =
[
(z1 − z2 j)p + (c1 − c2 j)

]
q̃1 +

[
(z̃1 + z̃2 j)p + (c̃1 + c̃2 j)

]
q̃2, (10)

where z = (z1 − z2 j)q̃1 + (z̃1 + z̃2 j)q̃2, and c = (c1 − c2 j)q̃1 + (c̃1 + c̃2 j)q̃2, thus

f (p)
c (z) = f (p)

c1−c2 j(z1 − z2 j)q̃1 + f (p)
c̃1−c̃2 j(z̃1 − z̃2 j)q̃2. (11)

Considering that f (p)
c (0) = f (p)

c1−c2 j(0)q̃1 + f (p)
c̃1−c̃2 j(0)q̃2 is bounded when p→ ∞ ,

f (p)
c1−c2 j(0)q̃1 and f (p)

c̃1−c̃2 j(0)q̃2 are also bounded when p→ ∞ . Then, c1− c2 j ∈ Jp
C, c̃1− c̃2 j ∈

Jp
H, and c = (c1 − c2 j)q̃1 + (c̃1 + c̃2 j)q̃2 ∈ Jp

C ×q̃ Jp
H, and Jp

C⊗H ⊂ Jp
C ×q̃ Jp

H [21]. �
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2.2.2. Monic Higher-Degree Polynomials

To investigate the homeomorphisms of M-J sets in a complex plane, Branner and
Fagella [26] introduced the family of monic higher-degree polynomials in the following
form:

z← z(z + c)p. (12)

This allowed us to analyze the connectedness and complex dynamics of limbs and
external rays in M-J sets. Later, Zireh investigated the properties of a family of polynomials
of type (12) defined in bicomplex numbers in terms of connectedness [27]. From the defined
theorems and their proofs presented in [27], it can easily be seen that the same applies for
(12) defined in biquaternions; therefore, these theorems are omitted in this paper.

The fundamentals on biquaternionic operations and definitions of J sets defined
within power and monic higher-degree polynomials are used for their implementation for
visualization and morphology analysis purposes, as well as for analysis of stability of these
fractal sets presented in Sections 3 and 4, respectively.

3. Symmetry of Biquaternionic Julia Sets

The first results on the construction of biquaternionic J sets in [18] were an inspiration
for further investigation of these fractal sets, and their preliminary analysis was performed
in [20,21], which focused on investigation of the symmetry of well-known analogues of J
sets on a complex plane as well as the connectedness of these sets. In the following study, a
systematic analysis in terms of symmetry of biquaternionic J sets of both types presented in
Section 2.2 is presented.

For analysis of the symmetry of biquaternionic J sets, their 3D projections onto R3 are
used. Following the previous visualization techniques commonly used for the represen-
tation of 4D fractal sets, see, e.g., [11,13,14,20,21], where the 3D projection is obtained by
setting a4 in the quadruplet (3) to 0. As shown, for example, in [11], this procedure does
not cause a loss of generality.

All 3D projections of the biquaternionic J sets presented in this paper were prepared in
ChaosPro 4.0 freeware software. To implement addition and multiplication operations on
biquaternions according to the rules presented in Section 2.1, which are necessary for the
construction of biquaternionic J sets according to (8) and (12), a new library was prepared
in the native programming language in ChaosPro, which is based on C/C++.

3.1. Symmetry of Biquaternionic Julia Sets Defined by Power Polynomials

As shown in [21], biquaternionic J sets do not resemble their quaternionic or bicomplex
analogues in terms of symmetry. Wang and Sun in [11] demonstrated the rotational symme-
try of quaternionic J sets, whereas Rochon showed the quadrilateral symmetry of bicomplex
J sets, which was confirmed in [21]. The conjecture of uniqueness of biquaternionic J sets in
terms of their symmetry made in [18] was confirmed in further studies presented in [21].

A simple way to show this uniqueness is to set c = 0 in (8). The resulting recursion
equation leads to the appearance of the analog of the so-called “unit disc” in the case of
the C-plane [4], i.e., {z ∈ C : |z| < 1}. Previous studies on quaternionic and bicomplex J
sets for such conditions [4,28,29] show that in the first case when p→ ∞, one obtains a
hypersphere (which was observed also in [11]), whereas in the second case, the resulting
shape is a Steinmetz hypersolid. This can be generalized for their higher-dimensional
analogues as well. To analyze the biquaternionic J sets for c = 0 and increasing p, their
representative 3D projections are shown in Figure 1.
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and 𝑝 = 1000. Despite the increase in 𝑝, the symmetry of biquaternionic J sets is pre-
served. One can observe that the symmetry of biquaternionic J sets is similar to that of 
bicomplex J sets (cf. the results presented in [29]). 
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Figure 2. Three-dimensional projections of various of biquaternionic J sets obtained from (8) for 𝑐 =0 and 𝑝 = 2: (a) ℜℑ  plane, (b) ℜℑ  plane, (c) ℑ ℑ  plane. 

Figure 1. Three-dimensional projections of biquaternionic J sets obtained from (8) for c = 0 and
various values of p, a perspective view. (a) p = 2, (b) p = 3, (c) p = 5, (d) p = 20, (e) p = 100,
(f) p = 1000.

From the above projections, one can make the following observations on the properties
of biquaternionic J sets.

Remark 1. For c = 0, J sets have nine planes of symmetry regardless of the value of p.

From the visualizations shown in Figure 1, the symmetry with respect to the plane
=1=2 in the coordinates defined as <=1=2 for a 3D projection (=3 is not taken into con-
sideration) is well visible. To show the other symmetry planes, it is essential to visualize
biquaternionic sets in other projections. Let us analyze the limit cases presented in Fig-
ure 1a,f. The orthogonal 3D projections are presented in Figures 2 and 3, respectively, for
p = 2 and p = 1000. Despite the increase in p, the symmetry of biquaternionic J sets is
preserved. One can observe that the symmetry of biquaternionic J sets is similar to that of
bicomplex J sets (cf. the results presented in [29]).
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Remark 2. The shape of the biquaternionic J set tends to be a unique nontrivial set when p→ ∞ .

As discussed earlier, for p→ ∞, every M-J set of type (8) defined in a given number
space tends to a set with a unique geometry characteristic for a given number space.
Naturally, with an increase of p, the value of c has less influence and for p→ ∞, it loses
this influence completely. In the case of biquaternionic J sets, one can observe a unique
shape of the J sets tend when p→ ∞ , as seen in Figure 3. Because of the high value of
p, one can consider this shape as very similar to the limit shape. The top 3D projection
presented in Figure 3a depicts that this set contains characteristic horn-like structures,
which are formed at the very beginning of the increase of p (see Figure 1). Moreover,
one can observe that the rotational symmetry in the <=1 plane is broken, i.e., the shape
presented in Figure 3a is not the same if it is rotated by 90◦. This is a direct consequence
of the definition of these fractal sets in a hypercomplex number space composed from a
tensor product of two dimensionally unequal algebras, C⊗H.

Remark 3. By reducing the number of non-zero elements in z and c, it is possible to obtain the
analogues of the J sets defined in the C-plane.

To visualize the relationship between biquaternionic and classical J sets defined in
the C-plane, it is essential to analyze sets with a specific geometry and values of c, which
demonstrate a similarity between the mentioned groups of fractal sets. The biquaternionic
analogs of famous Dendrite and San Marco J sets are presented in Figure 4.
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Dendrite p = 2, c = i1 (a), San Marco p = 2, c = −0.75 in isometric (b), top (c), and side (d) views,
respectively.

The Dendrite presented in Figure 4a shows a geometric structure characteristic for all
types of number spaces used for construction of fractal sets (e.g., it looks like similar to J
sets constructed in the C-plane and Cn-spaces as well as in the H-space). The San Marco
J set presented in Figure 4b–d in various projections reveals a much more complicated
shape and it is difficult to observe its C-plane analogue. The characteristic shape of the San
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Marco J set is quite visible in the top view (Figure 4c), which can be directly obtained by
cutting its biquaternionic analogue in the <=1 plane. However, it is interesting to observe
that in the <=2 plane (Figure 4d), this set has the form of a square. The lack of rotational
symmetry typical for quaternionic or quadrilateral symmetry of bicomplex J sets as well as
the above-discussed differences in various orthogonal projections is the result of a tensor
product of dimensionally unequal algebras in the number space, where these sets were
defined. However, the examples presented in Figure 4 proved that the biquaternionic J sets
remain fractals.

3.2. Symmetry of Biquaternionic Julia Sets Defined by Monic Higher-Degree Polynomials

To investigate the homeomorphisms of J sets defined in biquaternions, the recurrence
in Equation (12) is applied to generate visualizations with the same assumptions made in
the preamble of Sections 3 and 3.1. This allowed for observing the variability of the shapes
of particular biquaternionic J sets defined by (12) with increasing p as well as determining
the limit shape when p→ ∞ . The 3D projections of the J sets constructed using (12) for
selected values of p are presented in Figure 5.
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From the above-presented visualizations, it can be observed that the resulting J sets
for various values of p reveal some differences, especially for low values of p; however,
for higher values of p, these differences become less and less recognizable. Finally, when
p→ ∞ , the resulting limit figure is the same as for the classical J set defined by (8), which is
evident when substituting to p = ∞ to (8) and (12). Due to this, all symmetries characteristic
for biquaternionic J sets defined by (8) are preserved.

Nevertheless, the dynamics of the biquaternionic J sets defined by (12) are completely
different, which can be observed based on previously analyzed 3D projections of the
analogues of Dendrite and San Marco fractals; see Figure 6. One can observe that the
resulting shapes do not correspond to the biquaternionic J sets defined by (8), nor to their
analogues defined in the C-plane.
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The J sets of both types, investigated from the point of view of their morphology and
appearance symmetries, were further investigated in light of their stability, in particular,
the determination of the boundaries of fixed points for variable p, which is the subject of
the next section.

4. Stability of Biquaternionic Julia Sets

In this section, the stability of generalized Julia sets defined in biquaternions is ana-
lyzed. The analysis was performed for both investigated recurrence Equations (8) and (12)
for 1-, 2-, and 3-cycle stability and various values of p, which made it possible to observe
variation of stability for these sets when p→ ∞ .

4.1. Stability of Biquaternionic Julia Sets Defined by Power Polynomials
4.1.1. 1-Cycle Stability

There are numerous similarities between biquaternions, quaternions, and bicomplex
numbers; that is, all of these number spaces represent 4-dimenional hypercomplex numbers
with numerous similar properties (see Section 2.1 for more details). Moreover, C⊗H is
isomorphic to C2 [22]. Thus, the dynamics and stability of Julia sets defined as biquaternions
are expected to reveal some similarities as in the case of their morphological analysis
performed in Section 3.

Following [11,30], let us represent the n-th generation biquaternion in terms of Pauli
matrices:

zn = xnI + iσVn, (13)

where σ = (σ1,σ2,σ3) is a set of 2 × 2 Pauli matrices:

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
, (14)

completed by 2 × 2 invariant unit matrix

I =
[

1 0
0 1

]
, (15)

and {x, V} ≡ {x, y, v, w}, i.e., the biquaternion can be represented by its scalar and vector
parts:

Sn = {xn}, Vn = {yn, vn, wn}, xn, yn, vn, wn ∈ C. (16)

Note that for quaternions σ = −i(σ3,σ2,σ1), i.e., the quaternion needs to be multi-
plied by−i and indices of σn need to be replaced (see, e.g., [25]), whereas for biquaternions,
Pauli matrices (14) can be used directly without additional operations [31].
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The recurrence relation for the biquaternionic quadratic map can be presented as:

zn+1 = z2
n + c, (17)

where
c = d1I + iσD, (18)

D = {d2, d3, d4}, d1, d2, d3, d4 ∈ C. (19)

Taking into account (13) and (16), we may write

z2 = (SI + iσV)2 =
(

S2 −V2
)

I + 2iσSV. (20)

The iterations of (17) considering (18) and (20) are represented by:

Sn+1 = S2
n −V2

n + d1, (21)

Vn+1 = 2SnVn + D. (22)

To determine fixed points and boundary regions for the biquaternionic quadratic map,
it is necessary to determine the eigenvalues of the matrix with perturbed terms. Introducing
the perturbation of z, we have:

S = Sn + εSn, (23)

V = Vn + εVn, (24)

where ε is the so-called small perturbation parameter. This leads to:

εSn+1 = S− Sn+1 = S2 −V2 − S2
n + V2

n, (25)

εVn+1 = V−Vn+1 = 2(SV− SnVn), (26)

which can be simplified to the following form:

εSn+1 = 2(SnεSn −VnεVn) + O
(

εS2
n, εV2

n

)
, (27)

εVn+1 = 2(SnεVn −VnεSn) + O
(

εS2
n, εV2

n

)
, (28)

where O
(

εS2
n, εV2

n

)
is the Landau symbol, which denotes truncation in terms of the order

higher than the first one in solutions (27) and (28). Expanding εVn in terms of the orthogonal
triplet (i1, i2, i3), we have:

εVn = εαni1 + εβni2 + εγni3 (29)

and omitting the Landau symbol in (27) and (28), we obtain:

εSn+1 = 2(SεSn −Vεαni1), (30)

εVn+1 = 2(Snεαni1 −VεSn). (31)

From the matrix (
εSn+1
εαn+1

)
= Λ

(
εSn
εαn

)
, (32)

we can determine Λ considering (30) and (31):

Λ =

[
2S −2Vi1

2Vi1 2S

]
, (33)
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which makes it possible to obtain the eigenvalues:

λ1,2 = 2(S∓Vi1). (34)

Considering that |λn| = 2(S + V) and noting that |λ| < 1, the boundary region of the
biquaternionic quadratic map is determined by

S + V =
1
2

, (35)

which leads to:
‖z‖ = 1

2
. (36)

According to the trigonometric representation proposed in [11]:

z = ‖z‖(cos θ + m sin θ), (37)

where m = K/|K|, we have:

S =
1
2

cos θ, V =
1
2

m sin θ, 0 ≤ θ < 2π. (38)

The boundary of the region of fixed points for the biquaternionic quadratic map is
thus defined by:

d1 =
1
4
(2 cos θ − cos 2θ), D =

m
4
(2 sin θ − sin 2θ), 0 ≤ θ < 2π. (39)

In the same way, we can obtain solutions for higher-degree biquaternionic maps. Let
us analyze the next cases discussed previously for p = 3 and p = 5. The boundary region
of fixed points for these cases are, respectively, as follows:

p = 3 : ‖z‖ = 1√
3

, d1 =
1√
3

(
cos θ − 1

3
cos 3θ

)
, D =

m√
3

(
sin θ − 1

3
sin 3θ

)
, (40)

p = 5 : ‖z‖ = 1
4
√

5
, d1 =

1
4
√

5

(
cos θ − 1

5
cos 5θ

)
, D =

m
4
√

5

(
sin θ − 1

5
sin 5θ

)
. (41)

For detailed calculations for these cases, see Appendix A.
Taking into account (37) and (39)–(41), one can observe that these formulas lead to

their general form proposed in [11] for quaternions:

‖z‖ = |p|−
1

p−1 , (42){
d1 = |p|−

1
p−1 (cos θ − cos pθ),

D = |p|−
1

p−1 (sin θ − sin pθ).
(43)

Using (42), one can get the 1-cycle stability for the limit shape considered in the
previous section. Substituting p = ∞ to (42), the direct result will have an indeterminate
form; however, when representing it in terms of limits, we have

lim
p→∞
|p|−

1
p−1 = 1. (44)

This confirms the convergence of the 1-cycle stability region of the generalized bi-
quaternionic J set to the unit disc.
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4.1.2. 2-Cycle Stability

The 2-cycle for the biquaternionic quadratic map is defined by the equation:

zn+2 =
(

z2
n + c

)2
+ c = z4

n + 2z2
nc + c2 + c, (45)

where c is given by (18) and (19). Using the notation given by (13) and (16), the powers of z
can be given by (20) and the following expression:

z4 = (SI + iσV)4 =
(

S4 − 6S2V2 + V4
)

I + 4iσ
(

S3V− SV2
)

. (46)

The iterations of (45) considering (18), (20) and (46) are represented by:

Sn+2 = S4
n − 6S2

nV2
n + V4

n + 2a
(

S2
n −V2

n

)
+ d2

1 + d1, (47)

Vn+2 = 4SnVn

(
S2

n −Vn + D
)
−D2 + D. (48)

When introducing the perturbation of z by (23) and (24) as in Section 4.1.1, one obtains:

εSn+2 = S− Sn+2 = S4 + V4 − 6
(

S2V2 − S2
nV2

n

)
+ 2
(

S2 −V2 − S2
n −V2

n

)
− S4

n −V4
n, (49)

εVn+2 = V−Vn+1 = 4
(

S3V− SV2 + SV
)
− 4
(

S3
nVn − SnV2

n + SnVn

)
. (50)

After simplification of (49) and (50) and omitting the Landau symbol as in Section 4.1.1,
we have:

εSn+2 = 4SεSn

(
S2 − 3V2 + 1

)
+ 4Vεαni1

(
V− 3S2 − 1

)
, (51)

εVn+2 = 4Sεαni1
(

S2 − 2V + 1
)
− 4VεVn

(
V + 3S2 + 1

)
. (52)

From matrix (32) we can determine Λ:

Λ =

 4S
(

S2 − 3V2 + 1
)

4Vi1
(

V− 3S2 − 1
)

−4Vi1
(

V + 3S2 + 1
)

4S
(

S2 − 2V + 1
) , (53)

and the corresponding eigenvalues:

λ1,2 = 4
(

S3 − 1.5SV2 − SV + S
)
± 2Viσ

√
36S4 + 9S2V2 − 12S2V + 28S2 − 4V2 + 4. (54)

Taking the module of (54), we have:

‖z‖ = 1
3
√

4
, (55)

which leads to the determination of the boundary of the region of fixed points for the
2-cycle using (37) and (38).

In a similar way, we can determine the boundary regions of fixed points for the 2-cycle
for p = 3 and p = 5, where:

p = 3 : ‖z‖ = 1
8
√

9
, (56)

p = 5 : ‖z‖ = 1
24
√

25
. (57)

The presentation of the detailed calculations was omitted in this paper because of its
severe extension.
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From the obtained values, one can derive the general formula for ‖z‖ for the 2-cycle:

‖z‖ = |p|
− 2

p2−1 . (58)

Assuming p = ∞ in (58), one leads to the conclusion that the 2-cycle stability region of
the generalized biquaternionic J set also leads to the unit disc.

4.1.3. 3-Cycle Stability

Starting again from the biquaternionic quadratic map, the 3-cycle analogue is defined
by the equation:

zn+3 = ((z2
n + c)

2
+ c)

2
+ c = z8

n + 4z6
nc + 6z4

nc2 + 2z4
nc + 4z2

nc3 + 4z2
nc2 + c4 + 2c3 + c2 + c, (59)

where c is given by (18) and (19). Using the notation given by (13) and (16), the powers of z
can be given by (20), (46), and the following expressions:

z6 =
(

S6 − 15S4V2 + 15S2V4 −V6
)

I + 2iσ
(

3S5V− 10S3V3 + 3SV5
)

, (60)

z8 =
(

S8 − 28S6V2 + 70S4V4 − 28S2V6 + V8
)

I + 8iσ
(

S7V− 7S5V3 + 7S3V5 − SV7
)

. (61)

Introducing perturbation of z and simplifications, which were omitted here due to
complex notation, one obtains the matrix from which the eigenvalues are calculated. Taking
the module of the obtained eigenvalues, we have:

‖z‖ = 1
7
√

4
. (62)

Using a similar procedure, the value of ‖z‖ was calculated for p = 3:

‖z‖ = 1
26
√

27
. (63)

Calculations for the higher values of p were not possible because of the hardware
limitations. Because of this, the determination of the general formulas for the 3-cycle and
higher cycles is not possible through the computational way. Nevertheless, it is expected
that the dynamics are different for higher cycles, which finally leads to the limit shape
observed in Section 3.1.

4.2. Stability of Biquaternionic Julia Sets Defined by Monic Higher-Degree Polynomials
4.2.1. 1-Cycle Stability

The recurrence relation for the biquaternionic quadratic map defined in terms of monic
higher-degree polynomials (12) can be presented as:

zn+1 = zn(zn + c)2 = z3
n + 2z2

nc + znc2. (64)

Using the notation given by (13) and (16), the powers of z can be given by (20) and
(A1). Applying the same procedure as in Section 4.1.1, one can calculate the iterations of
(64) considering (18), (20) and (46), which can be represented by:

Sn+1 = Sn

(
S2

n + 2Snd1 − 3V2
n − 4DVn −D2 + d2

1

)
− 2Vnd1(Vn + D), (65)

Vn+1 = Vn

(
−V2

n + 4Snd1 + S2
n − 2DVn −D2 + d2

1

)
+ 2SnD(Sn + d1). (66)

Introducing the perturbation of z and simplifications, we can obtain the eigenvalues
in the following form:
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λ1,2 =
3
2

S2 − 3SV− 4V− 3
2

V2 ± 1
2

iσ

√
9S4 + 108S3V + 96S3 + 18S2V2 + 240S2V + 164S2 − 108SV3

−192SV2 + 24SV + 64S + 9V4 − 48V3 − 100V2 − 32V + 4
(67)

Taking the module of (67), we have:

‖z‖ =
√

6
3

, (68)

which leads to the determination of the boundary of the region of fixed points for a 1-cycle
using (36) and (37).

Similarly, we can determine the boundary regions of fixed points for a 1-cycle for
p = 3 and p = 5, where:

p = 3 : ‖z‖ = 1
3
√

2
, (69)

p = 5 : ‖z‖ = 1
5
√

3
. (70)

4.2.2. 2-Cycle Stability

The 2-cycle for the biquaternionic quadratic map defined in terms of monic higher-
degree polynomials (12) is given by equation:

zn+2 = zn(zn(zn + c)2 + c)
2
= z8

n + 4z7
nc + 6z6

nc2 + 4z5
nc3 + z4

nc4 + 2z4
nc + 4z3

nc2 + 2z2
nc3 + c2. (71)

The powers of z are given by (20), (46), (60), (61), (A1), (A3), and the following
expression:

z7 =
(

S7 − 21S5V2 + 35S3V4 − 7SV6
)

I + iσ
(

7S6V− 35S4V3 + 21S2V5 −V7
)

. (72)

Omitting the steps presented above, one leads to the determination of modules of
eigenvalues for 2-cycle stability, which in this case have the following values for the
considered p:

p = 2 : ‖z‖ = 1
7
√

4
, (73)

p = 3 : ‖z‖ = 14

√
2

15
, (74)

4.2.3. 3-Cycle Stability

Finally, the 3-cycle for the biquaternionic quadratic map defined in terms of monic
higher-degree polynomials (12) is given by the equation:

zn+3 = zn(zn(zn(zn + c)2 + c)
2
+ c)

2

= z10
n + 4z9

nc + 6z8
nc2 + 4z7

nc3 + z6
nc4 + 2z6

nc + 4z5
nc2 + 2z5

nc
+2z4

nc3 + 4z4
nc2 + 2z3

nc3 + z2
nc2 + 2znc2 + c2.

(75)

In this case, the powers of z are given by all expressions mentioned in Section 4.2.2
and the following ones:

z9 =
(

S9 − 36S7V2 + 126S5V4 − 84S3V6 + 9SV8
)

I

+iσ
(

9S8V− 84S6V3 + 126S4V5 − 36S2V7 + V9
)

.
(76)

z10 =
(

S10 − 45S8V2 + 210S6V4 − 210S4V6 + 45S2V8 −V10
)

I

+2iσ
(

5S9V− 60S7V3 + 126S5V5 − 60S3V7 + 5SV9
)

.
(77)
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Using the same computational procedure as previously, the modulus of the eigenvalue
for 3-cycle stability was determined for p = 2:

‖z‖ = 1
17
√

9
. (78)

Because of the increasing computational complexity (for p = 3 the maximal power
within the polynomial is 48, while for p = 5 this value equals 180), the determination
of modules of eigenvalues for higher values of p were not possible because of hardware
limitations.

5. Conclusions

This paper discusses the generalized biquaternionic Julia sets defined by power and
monic higher-degree polynomials in terms of their symmetry and stability. The 3D projec-
tions of both types of fractal sets were constructed and discussed. The symmetry planes
for these fractal sets were defined together with the definition and analysis of the limit
shapes (when p→ ∞ ). The similarities between fractal sets were constructed based on
power polynomials and its analogues in other hypercomplex number spaces with the same
dimension, such as fractal sets defined in quaternions and bicomplex numbers. Moreover, it
was shown that all of the mentioned fractal sets have the same origin as complex Julia sets.
The biquaternionic Julia sets constructed based on monic higher-degree polynomials were
presented for the first time, and the morphological analysis of these sets shows that their
shapes and dynamics are completely different with respect to the above-discussed fractal
sets defined in power polynomials, again underlining the multimodality and increasing
complexity of Julia sets defined in hypercomplex number spaces.

To support the observations made during the morphological analysis, stability calcu-
lations were performed for both investigated types of fractal sets. It was shown that the
dynamics of biquaternionic Julia sets defined by power polynomials reveal similarities to
the dynamics of fractal sets defined in quaternions, at least in the initial cycles of stability.
The severe differences between these two types of fractal sets are expected to appear at high
cycles of stability; however, because of hardware limitations, these differences have not
been identified yet. In contrast, the biquaternionic fractal sets defined by monic high-order
polynomials reveal some similarities but different and more complex behavior, which
confirms the observations made for the morphology of these sets.
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List of Symbols

an complex elements of a biquaternion
bn complex elements of a biquaternion
c constant value of the Julia/Mandelbrot set
C complex number space
C2 bicomplex number space
Cn multicomplex number space
C⊗C bicomplex number space
C⊗H biquaternion number space
dn complex elements of the constant value of the biquaternionic Julia set
D vector part of constant value of the biquaternionic Julia set
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gn real elements of the extended representation of a biquaternion
hn real elements of the extended representation of a biquaternion
H quaternion number space
in imaginary units
I invariant unit matrix
j imaginary unit
Jp
C⊗H generalized biquaternionic Julia set
N natural number space
O Landau symbol
O octonion number space
p power of the iterated variable of the Julia/Mandelbrot set
q̃ biquaternion
R real number space
Sn scalar parts of the iterated variable of the biquaternionic Julia set
S sedenion number space
vn complex elements of vector parts of biquaternions
Vn vector parts of the iterated variable of the biquaternionic Julia set
wn complex elements of vector parts of the iterated variable of the biquaternionic Julia set
xn complex elements of scalar parts of the iterated variable of the biquaternionic Julia set
yn complex elements of vector parts of the iterated variable of the biquaternionic Julia set
z iterated variable of the Julia/Mandelbrot set
ε small perturbation parameter
λn eigenvalues
ξ biquaternionic root of −1
σn Pauli matrices
ωn arbitrary complex numbers
=1=2 symmetry plane along the axes of imaginary values i1 and i2
<=1 symmetry plane along the axes of reals and imaginary i1 values
<=2 symmetry plane along the axes of reals and imaginary i2 values

Appendix A

Considering the preliminaries given by (13)–(16), (18) and (19), one can calculate
1-cycle stability of the biquaternionic map for p = 3 and p = 5. According to this, we obtain

z3 = (SI + iσV)3 = S
(

S2 − 3V2
)

I + iσV
(

3S2 −V2
)

, (A1)

z5 = (SI + iσV)5 = S
(

S4 − 10S2V2 + 5V4
)

I + iσV
(

5S4 − 10S2V2 + V4
)

. (A2)

Representing (A1) and (A2) as two parts, for p = 3, we have

Sn+1 = Sn

(
S2

n − 3V2
n

)
+ d1, (A3)

Vn+1 = Vn

(
3S2

n −V2
n

)
+ D, (A4)

and for p = 5
Sn+1 = Sn

(
S4

n − 10S2
nV2

n + 5V4
n

)
+ d1, (A5)

Vn+1 = Vn

(
5S4

n − 10S2
nV2

n + V4
n

)
+ D. (A6)

Introducing perturbation in the same way as in (23) and (24) and introducing the
Landau symbol in the obtained solutions to truncate higher-order terms, for p = 3, we have

εSn+1 = 3
(

S2 −V2
)

εSn − 6SVεVn + O
(

εS2
n, εV2

n

)
, (A7)

εVn+1 = 3
(

S2 −V2
)

εVn + 6SVεSn + O
(

εS2
n, εV2

n

)
, (A8)
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and for p = 5

εSn+1 = 5
(

S4 − 2S2V2 + V4
)

εSn − 20SV
(

S2 −V2
)

εVn + O
(

εS2
n, εV2

n

)
, (A9)

εVn+1 = 5
(

S4 − 6S2V2 + V4
)

εVn + 20SV
(

S2 −V2
)

εSn + O
(

εS2
n, εV2

n

)
. (A10)

Using (29) and omitting the Landau symbol, for p = 3, we obtain

εSn+1 = 3
(

S2 −V2
)

εSn − 6SVεαni1, (A11)

εVn+1 = 6SVεSn + 3
(

S2 −V2
)

εαni1, (A12)

and for p = 5

εSn+1 = 5
(

S4 − 2S2V2 + V4
)

εSn − 20SV
(

S2 −V2
)

εαni1, (A13)

εVn+1 = 5
(

S4 − 6S2V2 + V4
)

εαni1 + 20SV
(

S2 −V2
)

εSn, (A14)

which leads to construction of matrix of the form (32) and determination of eigenvalues for
p = 3

λ1,2 = 3
(

S2 −V2
)
∓ 6SViσ, (A15)

and for p = 5

λ1,2 = 5
(

S4 − 4S2V2 + V4
)
∓
√

10
(

S2V2 − 2S3 + 2V3
)

iσ. (A16)

Taking the module of (A15) and (A16) and noting that |λ| < 1, for p = 3 , we have

S2 + V2 =
1
3
→ ‖z‖ = 1√

3
, (A17)

and for p = 5.

S4 − 4S2V2 + V4 =
1
5
→ ‖z‖ = 1

4
√

5
. (A18)
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