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Abstract: Entropy is a thermodynamic function in physics that measures the randomness and
disorder of molecules in a particular system or process based on the diversity of configurations that
molecules might take. Distance-based entropy is used to address a wide range of problems in the
domains of mathematics, biology, chemical graph theory, organic and inorganic chemistry, and other
disciplines. We explain the basic applications of distance-based entropy to chemical phenomena.
These applications include signal processing, structural studies on crystals, molecular ensembles,
and quantifying the chemical and electrical structures of molecules. In this study, we examine
the characterisation of polyphenylenes and boron (B12) using a line of symmetry. Our ability to
quickly ascertain the valences of each atom, and the total number of atom bonds is made possible
by the symmetrical chemical structures of polyphenylenes and boron B12. By constructing these
structures with degree-based indices, namely the K Banhatti indices, ReZG1-index, ReZG2-index,
and ReZG3-index, we are able to determine their respective entropies.

Keywords: boron B12; polyphenylenes P[s,t]; entropy’s related K-Banhatti indices; entropy’s related
redefined Zagreb indices

1. Introduction

In mathematical chemistry, topological indices are numerical values that describe
the topology of molecular structures. The chemical process conceptual framework is a
significant area of applied mathematics. This theory can be used to model issues in the real
world. Since their inception, chemical networks have drawn the attention of researchers
because of their widespread applications. The correlation coefficient (r) between the
physicochemical characteristics and topological indices is determined in order to assess
the utility of a topological index to forecast the physicochemical behavior of a chemical
compound [1,2]. Additionally, it falls within a class of challenging chemical graph theory
applications for precise molecular issue resolutions. In the fields of chemical sciences
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and chemical graph theory, this theory is crucial. The QSAR/QSPR analysis included
physiochemical properties and topological indices such as the 1st multiple Zagreb index,
2ndmultiple Zagreb index, and hyper Zagreb index [3,4]. Recently, Ali et al. defined the
atom–bond sum–connectivity index in [5].

Let G(VG, EG) be a graph, with the vertices and edges denoted by VG and EG, re-
spectively. In chemical graph theory, a molecular graph is a simple connected graph
that contains chemical atoms and bonds, which are commonly referred to as atoms and
atom-bonds, respectively [6,7].

The valency of atom bonds (line segments) and a few Banhatti indices, each of which
had the following description [8], was used by Kulli to begin constructing valency-based
topological indices in 2016 [9–11].

The 1st and 2nd K-Banhatti indices are as follows, respectively:

B1(G) = ∑
ai ,aj∈EG

(dai + daj) & B2(G) = ∑
ai ,aj∈EG

(dai × daj) (1)

The 1st and 2nd hyper K-Banhatti indices are as follows, respectively:

HB1(G) = ∑
ai ,aj∈EG

(dai + daj)
2 & HB2(G) = ∑

ai ,aj∈EG

(dai × daj)
2 (2)

The 1st and 2ndK-generalized Banhatti indices are as follows, respectively:

GB1(G) = ∑
ai ,aj∈EG

(dai + daj)
α & GB2(G) = ∑

ai ,aj∈EG

(dai × daj)
α (3)

The redefined Zagreb indices ReZG1, ReZG2, and ReZG3 were 1st proposed by Ran-
jini [12] in 2013:

ReZG1 = ∑
ai ,aj∈EG

dai + daj

dai × daj

& ReZG2 = ∑
ai ,aj∈EG

dai × daj

dai + daj

. (4)

The 3rd redefined Zagreb index is defined as

ReZG3 = ∑
ai ,aj∈EG

(dai × daj)(dai + daj) (5)

Entropy is the measurement of the amount of thermal energy per unit of temperature
in a system that cannot be used for productive labour. Entropy is a measure of a system’s
molecular disorder or unpredictability since work is produced by organised molecular
motion, see new works on graph theory in [13,14]. Entropy was initially discussed by
Shannon in his well-known [15] from 1948. The entropy of a probability distribution
measures the unpredictable nature of information content or the uncertainty of a system.
Entropy was then used to analyse chemical networks and graphs in order to comprehend
the structural information contained within these networks. Recently, graph entropies have
become more well-liked in a variety of academic disciplines, including biology, chemistry,
ecology, and sociology. Graph theory and network theory have both undertaken substantial
study on invariants, which are utilised as information functionals in science and have been
around for a long time. The degree of every atom is vitally crucial [16–18]. The following
sections will discuss graph entropy measures that have been applied to analyse biological
and chemical networks in chronological order for further information [19].

In this article, we construct the boron B12 and polyphenylenes P[s,t]. We determine
the K-Banhatti entropies, redefined 1st, 2nd and 3rd Zagreb entropies by using K-Banhatti
indices [20–22], 1st Zagreb index, 2nd Zagreb index, 3rd Zagreb index and the concept of
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entropy from Shazia Manzoor’s article [23] and Ghani et al. [24,25]. Many researchers
discussed several aspects of distance-based entropies in [26–33].

Entropy Related to Valency-Based Indices

The entropy of an edge-weighted graph G is defined in [34], which was published in
2009. Ghani et al. defined the modified definition of entropy in [35]. A network with lines
that are weighted has the equation G = (VG, EG), µ(aiaj)), where VG, EG, and the vertex
set, edge set, and edge–weight of edge (aiaj) are each represented by µ(aiaj):

ENTµ(G) = − ∑
ai ,aj∈EG

µ(aiaj)

∑
ai ,aj∈EG

µ(aiaj)
log
{ µ(aiaj)

∑
ai ,aj∈EG

µ(aiaj)

}
(6)

• Entropy related to the 1st K-Banhatti index

Assume µ(aiaj) = dai + daj . Then, the 1st K-Banhatti B1 index (1) is thus provided by

B1(G) = ∑
ai ,aj∈EG

{
dai + daj

}
= ∑

ai ,aj∈EG

µ(aiaj).

By putting these parameters into Equation (6), the 1st K-Banhatti entropy is

ENTB1(G) = log (B1(G))− 1
B1(G)

log
{

∏
ai ,aj∈EG

[dai + daj ]
[dai+daj ]

}
. (7)

• Entropy related to the 2nd K-Banhatti index

Assume µ(aiaj) = dai × daj . Then, the 2nd K-Banhatti B2 index (1) is thus provided by

B2(G) = ∑
ai ,aj∈EG

{
(dai × daj)

}
= ∑

ai ,aj∈EG

µ(aiaj).

By putting these parameters into Equation (6), the 2ndK-Banhatti entropy is

ENTB2(G) = log (B2(G))− 1
B2(G)

log
{

∏
ai ,aj∈EG

[dai × daj ]
[dai×daj ]

}
. (8)

• Entropy related to the 1st K hyper Banhatti index

Assume µ(aiaj) = (dai + daj)
2. Then, the 1st K hyper Banhatti HB1 index (2) is thus

provided by

HB1(G) = ∑
ai ,aj∈EG

{
(dai + daj)

2
}
= ∑

ai ,aj∈EG

µ(aiaj).

By putting these parameters into Equation (6), the 1st K hyper Banhatti entropy is

ENTHB1(G) = log (HB1(G))− 1
HB1(G)

log
{

∏
ai ,aj∈EG

[dai + daj ]
2[dai+daj ]

2}
. (9)

• Entropy related to the 2ndK hyper Banhatti index

Assume µ(aiaj) = (dai × daj)
2. Then, the 2nd K hyper Banhatti index (2) is thus

provided by

HB2(G) = ∑
ai ,aj∈EG

{
(dai × daj)

2
}
= ∑

ai ,aj∈EG

µ(aiaj).
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By putting these parameters into Equation (6), the 2nd K hyper Banhatti entropy is

ENTHB2(G) = log (HB1(G))− 1
HB1(G)

log
{

∏
ai ,aj∈EG

[dai × daj ]
2[dai×daj ]

2}
. (10)

• The first redefined Zagreb entropy

Assume µ(aiaj) =
dai+daj
dai daj

. Then, the 1st redefined Zagreb index (4) is thus provided by

ReZG1 = ∑
ai ,aj∈EG

{dai + daj

dai daj

}
= ∑

ai ,aj∈EG

µ(aiaj).

By putting these parameters into Equation (6), the 1st redefined Zagreb entropy is

ENTReZG1 = log (ReZG1)−
1

ReZG1
log
{

∏
ai ,aj∈EG

[
dai + daj

dai daj

]

[
dai +daj
dai daj

]}
. (11)

• The second redefined Zagreb entropy

Assume µ(aiaj) =
dai dv

dai+daj
. Then, the 2nd redefined index (4) is thus provided by

ReZG2 = ∑
ai ,aj∈EG

{ dai daj

dai + daj

}
= ∑

ai ,aj∈EG

µ(aiaj).

By putting these parameters into Equation (6), the 2nd redefined Zagreb entropy is

ENTReZG2 = log (ReZG2)−
1

ReZG2
log
{

∏
ai ,aj∈EG

[
dai dv

dai + daj

]
[

dai daj
dai +daj

]}
. (12)

• The third redefined Zagreb entropy

Assume µ(aiaj) =
{
(dai daj)(dai + daj)

}
. Then, the 3rd redefined Zagreb index (5) is

thus provided by

ReZG3 = ∑
ai ,aj∈EG

{
(dai daj)(du + dv)

}
= ∑

ai ,aj∈EG

µ(aiaj).

By putting these parameters into Equation (6), the 3rd redefined Zagreb entropy is

ENTReZG3 = log (ReZG3)−
1

ReZG3
log
{

∏
ai ,aj∈EG

[(dai daj)(dai + daj)]
[(dai daj )(dai+daj )]

}
. (13)

2. The Boron Network

We discuss the topological characteristics of boron B12 in this article. The icosahedral
network of boron B12 has two dimensions. The existence of icosahedral structures contain-
ing B12 was confirmed by a recent investigation of high-pressure solid boron [36]. However,
prior theoretical and practical investigations of multiple boron clusters have demonstrated
that the B12 structure is unstable in the gas phase [37–39]. Figure 1 displays the molecular
graph of boron B12. The dotted line in Figure 1 represents the line of symmetry; using this
line, we can easily obtain the edge-partition of B12.
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Line of symmetry

Figure 1. Boron B12.

2.1. Results and Discussion

Now, (s, t) are the units of B12, where s and t show the number of B12 in horizontal
rows and vertical columns. In the boron network, the edge set E(G) is divided into seven
groups based on the degree of each edge’s end vertices. The set that is disjoint is shown
by the symbols ξ(d(ui),d(vj))

. The 1st set that is disjoint is ξ(2,4), the 2nd set that is disjoint is

ξ(2,5), the 3rd set that is disjoint is ξ(3,4), the 4th set that is disjoint is ξ(3,5), the 5th set that is
disjoint is ξ(4,4), the 6th set that is disjoint is ξ(4,5), and the 7th set that is disjoint is ξ(5,5).

From the symmetrical chemical structure of boron, B12, we find the edge-partition of
B12 easily:

ξ(2,4) =
{

e = ai ∼ aj, ∀ ai, aj ∈ E(B12)
∣∣∣dai = 2, daj = 4

}
= 2(s + t),

ξ(2,5) =
{

e = ai ∼ aj, ∀ ai, aj ∈ E(B12)
∣∣∣dai = 2, daj = 5

}
= 2(s + t),

ξ(3,4) =
{

e = ai ∼ aj, ∀ ai, aj ∈ E(B12)
∣∣∣dai = 3, daj = 4

}
= 3st + s + 5,

ξ(3,5) =
{

e = ai ∼ aj, ∀ ai, aj ∈ E(B12)
∣∣∣dai = 3, daj = 5

}
= 3st + 2s + 3t + 4,

ξ(4,4) =
{

e = ai ∼ aj, ∀ ai, aj ∈ E(B12)
∣∣∣dai = 4, daj = 4

}
= s + 2t + 1,

ξ(4,5) =
{

e = ai ∼ aj, ∀ ai, aj ∈ E(B12)
∣∣∣dai = 4, daj = 5

}
= 9st + 7s + 6t + 5,

ξ(5,5) =
{

e = ai ∼ aj, ∀ ai, aj ∈ E(B12)
∣∣∣dai = 5, daj = 5

}
= 9st + 7s + 7t + 3.
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This partition provides

• The 1st K-Banhatti entropy of B12

Assume that B12 is an icosahedral network of boron. Then, by using Equation (1) and
the edge-partition of B12, the 1st K-Banhatti index is

B1(B12) = 190s + 190t + 216st + 147

By using the edge-partition of B12 and Equation (7) as described below,

ENTB1(B12) = log (B1)−
1
B1

log
{

∏
E(2,4)

(dai + daj)
(dai+daj ) × ∏

E(2,5)

(dai + daj)
(dai+daj )

× ∏
E(3,4)

(dai + daj)
(dai+daj ) × ∏

E(3,5)

(dai + daj)
(dai+daj ) × ∏

E(4,4)

(dai + daj)
(dai+daj )

× ∏
E(4,5)

(dai + daj)
(dai+daj ) × ∏

E(5,5)

(dai + daj)
(dai+daj )

= log (190s + 190t + 216st + 147)− 1
190s + 190t + 216st + 147

log
{

2(s + t)(6)6

× 2(s + t)(7)7 × (3st + s + 5)(7)7 × (3st + 2s + 3t + 4)(8)8 × (s + 2t + 1)(8)8

× (9st + 7s + 6t + 5)(9)9 × (9st + 7s + 7t + 3)(10)10
}

.

After simplifying the preceding expression, the following equation yields the precise
value of the 1st K-Banhatti entropy:

ENTB1(B12) = log (190s + 190t + 216st + 147)− 1
190s + 190t + 216st + 147

log
{

2(s + t)(6)6

× (3st + 3s + 2t + 5)(7)7 × (3st + 3s + 5t + 5)(8)8 × (9st + 7s + 6t + 5)(9)9

× (9st + 7s + 7t + 3)(10)10
}

. (14)

• The second K-Banhatti entropy of B12

Assume that B12 is an icosahedral network of boron. Then, by using Equation (1) and
the edge-partition of B12, the 2nd K-Banhatti entropy index is

B2(B12) = 409s + 408t + 486st + 311

By using the edge-partition of B12 and Equation (8) as described below,

ENTB2(B12) = log (B2)−
1
B2

log
{

∏
E(2,4)

(dai × daj)
(dai×daj ) × ∏

E(2,5)

(dai × daj)
(dai×daj )

× ∏
E(3,4)

(dai × daj)
(dai×daj ) × ∏

E(3,5)

(dai × daj)
(dai×daj ) × ∏

E(4,4)

(dai × daj)
(dai×daj )

× ∏
E(4,5)

(dai × daj)
(dai×daj ) × ∏

E(5,5)

(dai × daj)
(dai×daj )

}
= log (409s + 408t + 486st + 311)− 1

409s + 408t + 486st + 311
log
{

2(s + t)88

× 2(s + t)1010 × (3st + s + 5)1212 × (3st + 2s + 3t + 4)1515 × (s + 2t + 1)1616

× (9st + 7s + 6t + 5)2020 × (9st + 7s + 7t + 3)2525
}

. (15)

• The 1st hyper K-Banhatti entropy of B12
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Assume that B12 is an icosahedral network of boron. Then, by using the Equation (2)
and the edge-partition of B12, the 1st K hyper Banhatti index is

HB1(B12) = 1678s + 1676t + 1968st + 1270

By using the edge-partition of B12 and Equation (9) as described below;

ENTHB1(B12) = log (HB1)−
1

HB1
log
{

∏
E(2,4)

(dai + daj)
2(dai+daj )

2
× ∏

E(2,5)

(dai + daj)
2(dai+daj )

2

× ∏
E(3,4)

(dai + daj)
2(dai+daj )

2
× ∏

E(3,5)

(dai + daj)
2(dai+daj )

2
× ∏

E(4,4)

(dai + daj)
2(dai+daj )

2

× ∏
E(4,5)

(dai + daj)
2(dai+daj )

2
× ∏

E(5,5)

(dai + daj)
2(dai+daj )

2

= log (1678s + 1676t + 1968st + 1270)− 1
1678s + 1676t + 1968st + 1270

× log
{

2(s + t)672 × 2(s + t)798 × (3st + s + 5)798 × (3st + 2s + 3t + 4)8128

× (s + 2t + 1)8128 × (9st + 7s + 6t + 5)9162 × (9st + 7s + 7t + 3)10200
}

.

After simplification, we obtain

ENTHB1(B12) = log (1678s + 1676t + 1968st + 1270)− 1
1678s + 1676t + 1968st + 1270

× log
{

2(s + t)672 × (3st + 3s + 3t + 5)798 × (3st + 3s + 5t + 5)8128

× (9st + 7s + 6t + 5)9162 × (9st + 7s + 7t + 3)10200
}

. (16)

• The 2nd hyper K-Banhatti entropy of B12

Assume that B12 is an icosahedral network of boron. Then, by using Equation (2) and
the edge-partition of B12, the 2nd K hyper Banhatti index is

HB2(B12) = 8233s + 8290t + 9972st + 5151

By using the edge-partition of B12 and Equation (10) as described below,

ENTHB2(B12) = log (HB2)−
1

HB2
log
{

∏
E(2,4)

(dai × daj)
2(dai×daj )

2
× ∏

E(2,5)

(dai × daj)
2(dai×daj )

2

× ∏
E(3,4)

(dai × daj)
2(dai×daj )

2
× ∏

E(3,5)

(dai × daj)
2(dai×daj )

2
× ∏

E(4,4)

(dai × daj)
2(dai×daj )

2

× ∏
E(4,5)

(dai × daj)
2(dai×daj )

2
× ∏

E(5,5)

(dai × daj)
2(dai×daj )

2

= log (8233s + 8290t + 9972st + 5151)− 1
8233s + 8290t + 9972st + 5151

× log
{

2(s + t)8128 × 2(s + t)10200 × (3st + s + 5)12288

×(3st + 2s + 3t + 4)15450

× (s + 2t + 1)16512 × (9st + 7s + 6t + 5)20800 × (9st + 7s + 7t + 3)251250
}

. (17)

• The 1st redefined Zagreb entropy of B12
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Assume that B12 is an icosahedral network of boron. Then, by using Equation (4) and
the edge-partition of B12, the 1st redefined Zagreb index is

ReZG1(B12) = 11st + 11s + 11t + 9

By using the edge-partition of B12 and Equation (11) as described below,

ENTReZG1(B12) = log (ReZG1)−
1

ReZG1
log
{

∏
E(2,4)

[
dai + daj

dai daj

]

[
dai +daj

dai dv
]

×∏
E(2,5)

[
dai + daj

dai daj

]

[
dai +dv
dai daj

]

× ∏
E(3,4)

[
dai + daj

dai daj

]

[
dai +daj
dai daj

]

× ∏
E(3,5)

[
dai + daj

dai daj

]

[
dai +daj
dai daj

]

×∏
E(4,4)

[
dai + daj

dai daj

]

[
dai +daj
dai daj

]

× ∏
E(4,5)

[
dai + daj

dai daj

]

[
dai +daj
dai daj

]

×∏
E(5,5)

[
dai + daj

dai daj

]

[
dai +daj
dai daj

]}
= log (11st + 11s + 11t + 9)− 1

11st + 11s + 11t + 9
× log

{
2(s + t)(

4
3
)

4
3

× 2(s + t)(
7
10

)
7

10 × (3st + s + 5)(
7

12
)

7
12 × (3st + 2s + 3t + 4)(

8
15

)
8

15

×(s + 2t + 1)(
1
2
)

1
2

× (9st + 7s + 6t + 5)(
9
20

)
9

20 × (9st + 7s + 7t + 3)(
2
5
)

2
5

}
. (18)

• The 2nd redefined Zagreb entropy of B12

Assume that B12 is an icosahedral network of boron. Then, by using Equation (4) and
the edge-partition of B12, the 2nd redefined Zagreb index is

ReZG2(B12) =
1

504
(26847st + 23210s + 23175t + 18488)

By using the edge-partition of B12 and Equation (12) as described below,
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ENTReZG2(B12 = log (ReZG2)−
1

ReZG2
log
{

∏
E(2,4)

[
dai × daj

dai + daj

]

[
dai×daj
dai +daj

]

× ∏
E(2,5)

[
dai × daj

dai + daj

]

[
dai×dv
dai +daj

]

× ∏
E(3,4)

[
dai × daj

dai + daj

]

[
dai×daj
dai +daj

]

× ∏
E(3,5)

[
dai × daj

dai + daj

]

[
dai×daj
dai +daj

]

× ∏
E(4,4)

[
dai × daj

dai + daj

]

[
dai×daj
dai +daj

]

× ∏
E(4,5)

[
dai × daj

dai + daj

]

[
dai×daj
dai +daj

]

× ∏
E(5,5)

[
dai × daj

dai + daj

]

[
dai×daj
dai +daj

]}
= log

1
504

(26847st + 23210s + 23175t + 18488)

− 504
(26847st + 23210s + 23175t + 18488)

× log
{

2(s + t)(
4
3
)

4
3 × 2(s + t)(

7
10

)
7
10 × (3st + s + 5)(

12
7
)

12
7

×(3st + 2s + 3t + 4)(
15
8
)

15
8

× 4(s + 2t + 1)× (9st + 7s + 6t + 5)(
20
9
)

20
9 × (9st + 7s + 7t + 3)(

5
2
)

5
2

}
. (19)

• The 3rd redefined Zagreb entropy of B12

Assume that B12 is a hexagonal grid of benzenoid. Then, by using Equation (5) and
the edge-partition of B12, the 3rd redefined Zagreb index is

ReZG3(B12) = 4482st + 3698s + 3682t + 2678

Now, we compute the 3rd redefined Zagreb entropy by using the edge-partition of B12
and Equation (13) as described below,

ENTReZG3(B12) = log (ReZG3)−
1

ReZG3
log
{

∏
E(2,4)

[(dai daj)(dai + daj)]
[

dai +daj
dai daj

]

× ∏
E(2,5)

[(dai daj)(dai + daj)]
[

dai +dv
dai daj

]
× ∏

E(3,4)

[dai daj)(dai + daj ]
[dai daj )(dai+daj ]

× ∏
E(3,5)

[dai daj)(dai + daj ]
[dai daj )(dai+daj ] × ∏

E(4,4)

[dai daj)(dai + daj ]
[dai daj )(dai+daj ]

× ∏
E(4,5)

[dai daj)(dai + daj ]
[dai daj )(dai+daj ] × ∏

E(5,5)

[dai daj)(dai + daj ]
[dai daj )(dai+daj ]

}
= log (4482st + 3698s + 3682t + 2678)− 1

4482st + 3698s + 3682t + 2678

× log
{

2(s + t)4848 × 2(s + t)7070 × (3st + s + 5)8484

×(3st + 2s + 3t + 4)120120

× (s + 2t + 1)2896 × (9st + 7s + 6t + 5)180180 × (9st + 7s + 7t + 3)250250
}

. (20)

2.2. Comparison of K-Banhatti and Redefined Zagreb Indices of B12

Here, we present numerical and graphical comparison of K-Banhatti indices and
redefined Zagreb indices of boron B12 for s = 2, 4, 6. . ., 16 and t = 3, 5, 7, . . ., 17, in Table 1
and Figure 2 respectively.
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Table 1. Comparison of K-Banhatti and redefined Zagreb indices of B12.

(s, t) B1 B2 HB1 HB2 ReZG1 ReZG2 ReZG3

(2, 3) 2393 5269 21,462 106,319 130 586.35 48,012
(4, 5) 6177 13,707 55,722 278,973 328 1516.20 125,520
(6, 7) 11,689 26,033 105,726 531,403 614 2872.20 238,884
(8, 9) 18,929 42,247 171,474 863,609 988 4654.36 388,104

(10, 11) 27,897 62,349 252,966 1,275,591 1450 6862.68 573,180
(12, 13) 38,593 86,339 350,202 1,767,349 2000 9497.16 794,112
(14, 15) 51,017 114,217 463,182 2,338,883 2638 12,557.80 1,050,900
(16, 17) 65,169 145,983 591,906 2,990,193 3364 16,044.60 1,343,544

( 2 , 3 ) ( 4 , 5 ) ( 6 , 7 ) ( 8 , 9 ) ( 1 0 , 1 1 ) ( 1 2 , 1 3 ) ( 1 4 , 1 5 ) ( 1 6 , 1 7 )

0

5 0 0 0 0 0

1 0 0 0 0 0 0

1 5 0 0 0 0 0

2 0 0 0 0 0 0

2 5 0 0 0 0 0

3 0 0 0 0 0 0

( s , t )

 B 1
 B 2
 H B 1
 H B 2
 R e Z G 1
 R e Z G 2
 R e Z G 3

Figure 2. Graphical representation indices of B12.

3. The Polyphenylenes Network

Polyphenylenes include benzenoid aromatic nuclei that are linked together by a
carbon-carbon bond [40]. Polyphenylenes have been the subject of research for many
years. Up until 1979, there was a lot of interest in polyphenylenes because of its thermal
and thermo-oxidative stability. The quest for a single group of polymers that can be
converted to another, such as an electrical insulator that can be transformed into an electrical
conductor by utilizing doping with an electron acceptor or donor, is a key ongoing subject
in polyphenylene [41].

Figure 3 for polyphenylenes P[s,t] has been shown.
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Line of symmetery

Figure 3. 2D-polyphenylenes molecular.

In 2011, Zhen Zhou [42] indicated that two-dimensional polyphenylene is a con-
ventional semiconductor with a large band gap and that the porous structure gives it a
remarkable selectivity for H2 permeability compared to CO2, CO, and CH4. This porous
graphene, which has been tested, is likely to find use in a hydrogen-powered civilization.
In Figure 3, the dot lines represent the line of symmetry, with 6s(t + 1) atoms on the left
side and the same on the right. Here, in the P[s,t], there are two sorts of atoms vi and aj such
that dvi = 2 and daj = 3, where dvi and daj mean the valency of atoms ∀ vi, vj ∈ P[s,t]. The
order and size of P[s,t], is

|P[s,t]| = 12s(t + 1) S(P[s,t]) = (30t + 13)s− t

From the symmetrical chemical structure of polyphenylene, P[s,t], we find the edge-
partition of P[s,t] easily. The edge partition of polyphenylenes P[s,t] is shown in Table 2.

Table 2. Edge-partition of polyphenylenes P[s,t].

Edge-Partition E(2∼2) E(2∼3) E(3∼3)

Number of bonds 4(2s + t) 4(6st + s− t) (6st + s− t)

• Entropy related to the 1st K-Banhatti index of P[s,t]

Assume that P[s,t] is a network of benzenoid aromatic nuclei in polyphenylenes.
Equation (1) and Table 2 are then used to calculate the 1st K Banhatti index:

B1(P[s,t]) = 26s + 42t + 188st
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By using Table 2 and Equation (7) as follows:

ENTB1(P[s,t]) = log (B1)−
1
B1

log
{

∏
E(2,2)

(dai + daj)
(dai+daj ) × ∏

E(2,3)

(dai + daj)
(dai+daj )

× ∏
E(3,3)

(dai + daj)
(dai+daj )

= log (26s + 42t + 188st)− 1
26s + 42t + 188st

log
{

4(2st + t)(4)4

× 4(6st + s− t)(5)5 × (6st + s− t)(6)6

After simplification, we obtain

ENTB1(P[s,t]) = log (26s + 42t + 188st)− 1
26s + 42t + 188st

log
{

356984st + 59156s− 58132t
}

. (21)

• Entropy related to 2nd K-Banhatti index of P[s,t]

Assume that P[s,t] is a network of benzenoid aromatic nuclei in polyphenylenes. Then,
by using Equation (1) and Table 2, the 2nd K-Banhatti index is

B2(P[s,t]) = 33s + 49t + 230st

By using Table 2 and Equation (8) as described below:

ENTB2(P[s,t]) = log (B2)−
1
B2

log
{

∏
E(2,2)

(dai × daj)
(dai×daj ) × ∏

E(2,3)

(dai × daj)
(dai×daj )

× ∏
E(3,3)

(dai × daj)
(dai×daj )

}
= log (33s + 49t + 230st)− 1

33s + 49t + 230st
log
{

4(2st + t)44

× 4(6st + s− t)66 × (6st + s− t)99
}

. (22)

• Entropy related to the 1st K hyper Banhatti index of P[s,t]

Assume that P[s,t] is a network of benzenoid aromatic nuclei in polyphenylenes. The
1st hyper Banhatti index is then determined using Equation (2) and Table 2

HB1(P[s,t]) = 8(118st + 17s + 25t)

By using Table 2 and Equation (10) as described below,

ENTHB1(P[s,t]) = log (HB1)−
1

HB1
log
{

∏
E(2,2)

(dai + daj)
2(dai+daj )

2
× ∏

E(2,3)

(dai + daj)
2(dai+daj )

2

× ∏
E(3,3)

(dai + daj)
2(dai+daj )

2

= log (8(118st + 17s + 25t))− 1
8(118st + 17s + 25t)

log
{

4(2st + t)432

× 4(6st + s− t)550 × (6st + s− t)672 (23)

• Entropy related to the 2nd K hyper Banhatti index of P[s,t]
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Assume that P[s,t] is a network of benzenoid aromatic nuclei in polyphenylenes. The
2nd K hyper Banhatti index is then calculated using the Equation (2) and Table 2:

HB2(P[s,t]) = 225s + 289t + 1478st

By using Table 2 and Equation (10) as described below,

ENTHB1(P[s,t]) = log (HB1)−
1

HB1
log
{

∏
E(2,2)

(dai + daj)
2(dai+daj )

2
× ∏

E(2,3)

(dai + daj)
2(dai+daj )

2

× ∏
E(3,3)

(dai + daj)
2(dai+daj )

2

= log (225s + 289t + 1478st)− 1
225s + 289t + 1478st

log
{

4(2st + t)432

× 4(6st + s− t)550 × (6st + s− t)672 (24)

• Entropy related to the 1st redefined Zagreb index of P[s,t]

Assume that P[s,t] is a network of benzenoid aromatic nuclei in polyphenylenes. The
1st redefined Zagreb index is then obtained by using Equation (4) and Table 2

ReZG1(P[s,t]) = 8(12st + s + 2t)

By using Table 2 and Equation (11) as described below,

ENTReZG1(P[s,t]) = log (ReZG1)−
1

ReZG1
log
{

∏
E(2,2)

[
dai + daj

dai daj

]

[
dai +daj

dai dv
]

× ∏
E(2,3)

[
dai + daj

dai daj

]

[
dai +dv
dai daj

]

× ∏
E(3,3)

[
dai + daj

dai daj

]

[
dai +daj
dai daj

]}

= log 8(12st + s + 2t)− 1
8(12st + s + 2t)

log
{

4(2st + t)× 4(6st + s− t)(
5
6
)

5
6

× (6st + s− t)(
2
3
)

2
3}

. (25)

• Entropy related to the 2nd redefined Zagreb in the index of P[s,t]

Assume that P[s,t] is a network of benzenoid aromatic nuclei in polyphenylenes. The
2nd redefined Zagreb index is then obtained by utilizing Equation (4) and Table 2:

ReZG2(P[s,t]) = 158st + 13s + 27t

By using Table 2 and Equation (12) as described below,
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ENTReZG2(P[s,t]) = log (ReZG2)−
1

ReZG2
log
{

∏
E(2,2)

[
dai daj

dai + daj

]

[
dai daj

dai +daj
]

× ∏
E(2,3)

[
dai daj

dai + daj

]

[
dai daj

du+daj
]

× ∏
E(3,3)

[
dai daj

dai + daj

]

[
dai daj

dai +daj
]}

= log (158st + 13s + 27t)

− 1
158st + 13s + 27t

log
{

4(2st + t)× 4(6st + s− t)(
6
5
)

6
5

× (6st + s− t)(
3
2
)

3
2}

. (26)

• Entropy related to the 3rd redefined Zagreb index of P[s,t]

Assume that P[s,t] is a network of benzenoid aromatic nuclei in polyphenylenes. The
3rd redefined Zagreb index is then obtained using Equation (5) and Table 2

ReZG3(P[s,t]) = 1172st + 174s− 110t

By using Table 2 and Equation (13) as described below,

ENTReZG3(P[s,t]) = log (ReZG3)−
1

ReZG3
log
{

∏
E(2,2)

[(dudaj)(du + daj)]
[(dai daj )(dai+daj )]

× ∏
E(2,3)

[(dai daj)(dai + daj)]
[(dudaj )(dai+daj )]

×∏
E(3,3)

[(dai daj)(dai + daj)]
[(dai daj )(dai+daj )]

}
= log (1172st + 174s− 110t)− 1

1172st + 174s− 110t
log
{

4(2st + t)264

× 4(6st + s− t)3030 × (6st + s− t)5454
}

. (27)

Comparison of K-Banhatti and Redefined Zagreb Indices of P(s,t)

In this section, we present numerical and graphical comparison of B1, B23, HB1,
HB1, ReZG1, ReZG2 and ReZG3, of polyphenylenes P(s,t) for s, t = 1, 2, 3, . . ., 11, in Table 3
and Figure 4 respectively.

Table 3. K-Banhatti and redefined Zagreb indices of P(s,t).

(s, t) B1 B2 HB1 HB2 ReZG1 ReZG2 ReZG3

(1, 1) 256 312 1280 1992 120 198 1236
(2, 2) 888 1084 4448 6940 432 712 4816
(3, 3) 1896 2316 9504 14,844 936 1542 10,740
(4, 4) 3280 4008 16,448 25,704 1632 2688 19,008
(5, 5) 5040 6160 25,280 39,520 2520 4150 29,620
(6, 6) 7176 8772 36,000 56,292 3600 5928 42,576
(7, 7) 9688 11,844 48,608 76,020 4872 8022 57,876
(8, 8) 12,576 15,376 63,104 98,704 6336 10,432 75,520
(9, 9) 15,840 19,368 79,488 124,344 7992 13,158 95,508

(10, 10) 19,480 23,820 97,760 152,940 9840 16,200 117,840
(11, 11) 23,496 28,732 117,920 184,492 11,880 19,558 142,516
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( 1 , 1 ) ( 2 , 2 ) ( 3 , 3 ) ( 4 , 4 ) ( 5 , 5 ) ( 6 , 6 ) ( 7 , 7 ) ( 8 , 8 ) ( 9 , 9 ) ( 1 0 , 1 0 )
- 2 0 0 0 0

0
2 0 0 0 0
4 0 0 0 0
6 0 0 0 0
8 0 0 0 0

1 0 0 0 0 0
1 2 0 0 0 0
1 4 0 0 0 0
1 6 0 0 0 0

( s , t )

 B 1
 B 2
 H B 1
 H B 2
 R e Z G 1
 R e Z G 2
 R e Z G 3

Figure 4. Graphical representation of indices P(s,t).

4. Conclusions

We investigated a variety of imperative molecules, namely boron B12 and poly-
phenylenes P[s,t] and estimated their valency-based K Banhatti indices using four K Banhatti
polynomials by a set partition using an atom-bonds approach. The acquired results are
valuable in anticipating numerous molecular features of chemical substances, such as
boiling point, electron energy, pi, pharmaceutical configuration, and many more concepts.
Using Shannon’s entropy and Chen et al. entropy’s definitions, we looked into the graph
entropies connected to a novel information function and assessed the link between degree-
based topological indices and degree-based entropies in this work. Industrial chemistry has
a strong foundation in the concept of distance-based entropy. It is employed to determine
the electronic structure, signal processing, physicochemical reactions, and complexity of
molecules and molecular ensembles. Together with chemical structure, thermodynamic
entropy, energy, and computer sciences, the K-Banhatti entropy can be crucial in linking
different fields and serving as the basis for future interdisciplinary research. We intend to
extend this idea to different chemical structures in the future, opening up new directions for
study in this area. Furthermore, we can compute more results by using the valency-based
technique for these symmetrical chemical structures.

Author Contributions: Conceptualization, M.U.G. and F.J.H.C.; methodology, M.U.G.; software,
F.J.H.C.; validation, S.D. and S.A.; formal analysis, S.A.; investigation, M.U.G.; resources, A.M.G.;
data curation, F.J.H.C.; writing—review and editing, S.D.; visualization, M.C.; supervision, F.J.H.C.
and S.A.; project administration, F.M.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This study is supported via funding from Prince Sattam bin Abdulaziz University project
number (PSAU/2023/R/1444).

Data Availability Statement: No data were used to support this study.



Symmetry 2023, 15, 143 16 of 17

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tag El Din, E.S.M.; Sultan, F.; Ghani, M.U.; Liu, J.-B.; Dehraj, S.; Cancan, M.; Alharbi, F.M.; Alhushaybari, A. Some Novel Results

Involving Prototypical Computation of Zagreb Polynomials and Indices for SiO 4 Embedded in a Chain of Silicates. Molecules
2022, 28, 201. [CrossRef]

2. Chu, Y.M.; Khan, A.R.; Ghani, M.U.; Ghaffar, A.; Inc, M. Computation of Zagreb Polynomials and Zagreb Indices for Benzenoid
Triangular & Hourglass System. Polycycl. Aromat. Compd. 2022. [CrossRef]

3. Kulli, V.R. HDR Zagreb Indices of Remdesivir, Chloroquine, Hydroxychloroquine: Research for the Treatment of COVID-19.
SSRG Int. J. Appl. Chem. 2022, 9, 1–9.

4. Ghani, M.U.; Sultan, F.; El Sayed, M.; Cancan, M.; Ali, S. SiO4 Characterization in a Chain and C6H6 Embedded in a Non-Kekulean
Structure for Kulli Temperature Indices. Preprints 2022, under review. [CrossRef]
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