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Abstract: Considered herein is the initial-boundary value problem for a semilinear parabolic
equation with a memory term and non-local source wt − ∆Bw − ∆Bwt +

∫ t
0 g(t − τ)∆Bw(τ)dτ =

|w|p−1w − 1
|B|
∫
B |w|

p−1w dx1
x1

dx′ on a manifold with conical singularity, where the Fuchsian type
Laplace operator ∆B is an asymmetry elliptic operator with conical degeneration on the boundary
x1 = 0. Firstly, we discuss the symmetrical structure of invariant sets with the help of potential well
theory. Then, the problem can be decomposed into two symmetric cases: if w0 ∈W and Π(w0) > 0,
the global existence for the weak solutions will be discussed by a series of energy estimates under
some appropriate assumptions on the relaxation function, initial data and the symmetric structure of
invariant sets. On the contrary, if w0 ∈ V and Π(w0) < 0, the nonexistence of global solutions, i.e.,
the solutions blow up in finite time, is obtained by using the convexity technique.

Keywords: pseudo-parabolic equation; non-local source; cone Sobolev spaces; blow-up

1. Introduction

In this paper, the author studied the initial boundary value problem for the following
semilinear parabolic equation with non-local source and conical singularity

wt − ∆Bw− ∆Bwt +
∫ t

0
g(t− τ)∆Bw(τ)dτ

= |w|p−1w− 1
|B|

∫
B
|w|p−1w

dx1

x1
dx′, x ∈ intB, t > 0, (1)

∇Bw · ν = 0, x ∈ ∂B, t ≥ 0, (2)

w(x, 0) = w0(x), x ∈ intB, (3)

where the initial data w0(x) ∈ H̃1, n
2

2,0 (B) \ {0}, where B = [0, 1)× X, ∂B = {0} × X and X
is an (n− 1)-dimensional closed compact manifold. ν is the unit normal vector pointing
toward the exterior of B. We also assume that the volume |B| =

∫
B

dx1
x1

dx′ < +∞. Moreover,
the Fuchsian-type Laplace operator ∆B in (1) is defined by (x1∂x1)

2 + ∂2
x2
+ · · ·+ ∂2

xn and
is an asymmetry elliptic operator with conical degeneration on the boundary x1 = 0, and
the divergence operator divB is defined by x1∂x1 + ∂x2 + · · · + ∂xn . The corresponding
gradient operator is denoted by ∇B = (x1∂x1 , ∂x2 , . . . , ∂xn). In the neighbourhood of ∂B,
we will use the coordinates (x1, x′) = (x1, x2, . . . , xn) for 0 ≤ x1 < 1, x′ ∈ X. The function
g represents the relaxation function (or kernel of the memory term). The problem (1)–(3)
can be decomposed into two symmetric cases: if w0 ∈W, then w ∈W. On the contrary, if
w0 ∈ V, we have w ∈ V.

This type of equation describes a variety of important physical processes, such as
the analysis of heat conduction in materials with memory and viscous flow in materials
with memory, and arises in the model of phenomena in population dynamics, biological
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sciences [1] and nuclear sciences [2]. In recent years, the nonlinear heat equations and thin-
film equations with a nonlocal source |w|p−1w− 1

|Ω|
∫

Ω |w|
p−1wdx have attracted many

authors’ attention (see [1,3–16] and papers cited therein). Not only were the existence
and uniqueness results obtained, but some other properties of solutions, such as blow-up,
asymptotic behavior and regularity, were also investigated. For example, Soufi, Jazar and
Monneau [3] considered the initial boundary value problem for the following semilinear
parabolic equation:

wt = ∆w + |w|p − 1
|Ω|

∫
Ω
|w|pdx. (4)

They constructed a symmetrical situation: for the case 1 < p ≤ 2, Soufi et al. [3]
obtained a blow-up criterion by using the maximum principle. For the case p > 2, Jazar
and Kiwan in [4] established the blow-up result in finite time with the initial energy being
non-positive. Qu et al. [7,8] considered the p-Laplace equation

wt − div(|∇w|p−2∇w) = |w|q − 1
|Ω|

∫
Ω
|w|qdx, (x, t) ∈ Ω× (0, T) (5)

with a nonlinear source. For Equation (5), the authors obtained the nonexistence of global
sign-changing weak solutions in the case of a slow diffusive type (p > 2). At the same
time, the fast diffusive type (1 < p < 2) was also studied. More recently, Guo et al. [9]
established a non-extinction result for the changing sign solutions with negative initial
energy. Their results gave an answer to Equation (5), unsolved in [8] for 0 < q ≤ p− 1. For
more works on the above problems, we refer the reader to [10–16] and references therein.

Another interesting type of model is the evolution equation with conical singularity
(see [17–27]). Chen et al. established some classic inequalities on the cone Sobolev spaces
in [17,18]. On this basis, they obtained the existence and blow-up results using potential
well methods for the following equation on a manifold with conical singularity [19],

wt − ∆Bw = w|w|p−1, x ∈ intB, t > 0. (6)

Later, Li et al. [20] studied the global existence and finite time blow-up of weak
solutions for a class of semilinear pseudo-parabolic equation with conical singularity.

In the absence of memory term (g ≡ 0), the model (1) is reduced to a nonlocal semilin-
ear equation with damping terms ∆Bwt, which appears in the study of thermodynamics,
hydrodynamics, filtration theory, etc. (see [28,29]). Regarding the qualitative properties for
parabolic Equation (1) without g, many authors have focused attention on this equation for
quite a long time. Di and Shang [21] considered the nonlocal nonlinear parabolic equation

wt − ∆Bw− ∆Bwt = w|w|p−1 − 1
|B|

∫
B
|w|p−1w

dx1

x1
dx′, x ∈ intB, t > 0 (7)

with conical degeneration. The authors studied global existence, nonexistence and general
decay of the solutions by constructing a modified method of the potential well.

Regarding the works mentioned above, we remark that for the nonlocal semilinear
pseudo-parabolic equation with conical degeneration, most experts have been concerned
with the global well-posedness of initial-boundary value problems without the kernel
of the memory term g (see [20,21]). However, to the best of our knowledge, there is
little information involving the global existence and blow-up phenomenon of the above
problems with the memory term g on a manifold with conical singularity. Majdoub and
Mliki in [30] considered local existence and uniqueness for the nonlinear integro-differential
equations of parabolic type under the effect of an additive fractional Brownian noise with
Hurst parameter H > max{1/2, N/4}. El-Borai et al. [31] studied the existence, uniqueness
and stability of solutions for the fractional parabolic integro-partial differential equations
without any restrictions on the characteristic forms when the Hurst parameter of the
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fractional Brownian motion is less than half. Hence, the goal of the present work is to study
the global existence and blow-up phenomenon for the initial-value problem (1)–(3).

In practical applications, compared with the case (g(t) = 0), the problem (1)–(3) can
describe some physical phenomena more accurately. Naturally, we want to know what
will happen to the qualitative properties of the solutions for the problem (1)–(3), and
in particular whether the appearance of the memory term g(t) will have and influence
on the blow-up results of reference [21]. This question is a very interesting and eye-
opening. In mathematics studies, the memory term

∫ t
0 g(t− τ)∆Bw(τ)dτ, damping term,

non-local source |w|p−1w− 1
|B|
∫
B |w|

p−1w dx1
x1

dx′ and conical singularity simultaneously
appear in the initial-boundary value problem (1)–(3), which causes some difficulties in
the method of the proof when we consider the qualitative theory of the solutions. In
particular, the interactions among the above terms mean that it requires a rather delicate
analysis. Thus, we need to utilize some new skills and methods to overcome these above
difficulties. In doing so, the first intention of this paper is to prove the global existence of
the solutions with the number of a priori estimates by the combination of potential well
and monotonicity-compactness methods. Another goal in this paper is to investigate the
finite time blow-up phenomena of the solutions by means of the perturbed energy method
and integro-differential inequalities.

This article is organized as follows. In Section 2, we recall the cone Sobolev spaces,
introduce some function spaces and important lemmas and state the main results of this
paper. In Section 3, we give some properties associated with the potential wells and the
symmetric structure of invariant sets to the problem (1)–(3), which is useful in the process
of our main results. In Section 4, we give the proofs for the results of global existence and
finite time blowup for our problems. Finally, the main results are summarized and we
briefly illustrate the results of the paper with one example.

2. Preliminaries and Main Results

In this section, we will recall the cone Sobolev spaces and some basic notations,
concepts and lemmas.

Definition 1 ([17]). Let B = [0, 1)× X be the stretched manifold of the manifold B with
conical singularity. Then, the cone Sobolev spaceHm,γ

p (B) for m ∈ N, γ ∈ R and 1 < p < ∞,
is defined as

Hm,γ
p (B) = {v ∈Wm,p

loc (intB)|ωv ∈ Hm,γ
p (XΛ)},

for any cut-off function ω, supported by a collar neighborhood of (0, 1)× ∂B. Moreover,
the subspaceHm,γ

p,0 (B) ofHm,γ
p (B) is defined by

Hm,γ
p,0 (B) = [ω]Hm,γ

p,0 (XΛ) + [1−ω]Wm,p
0 (intB),

where XΛ = R+×X as the corresponding open stretched cone with the base X, Wm,p
0 (intB)

denotes the closure of C∞
0 (intB) in Sobolev spaces and Wm,p(X̄) when X̄ is a closed compact

C∞ manifold of dimension n that containing B as a submanifold with boundary.

Definition 2 ([17]). Let B = [0, 1)× X. Then v(x) ∈ Lγ
p(B) with 1 < p < ∞ and γ ∈ R if

‖v(x)‖p
Lγ

p (B)
=
∫
B

xn
1
∣∣x−γ

1 v(x)
∣∣p dx1

x1
dx′ < +∞.
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Lemma 1 ([18], Hölder’s inequality). Let u(x) ∈ L
n
p
p (B), v(x) ∈ L

n
q
q (B) with p, q ∈ (1,+∞)

and 1
p + 1

q = 1. Then

∫
B
|u(x)v(x)|dx1

x1
dx′ ≤ (

∫
B
|u(x)|p dx1

x1
dx′)

1
p (
∫
B
|v(x)|q dx1

x1
dx′)

1
q . (8)

For convenience, we denote

(u, v)2 =
∫
B

u(x)v(x)
dx1

x1
dx′, ‖u‖p

L
n
p
p (B)

=
∫
B
|u(x)|p dx1

x1
dx′, κ =

∫ t

0
g(τ)dτ.

(g ◦ ∇Bu)(t) =
∫ t

0
g(t− τ)‖∇Bu(t)−∇Bu(τ)‖2

L
n
2
2 (B)

dτ.

H̃1, n
2

2,0 (B) :=
{

u(x) ∈ H1, n
2

2 (B)|∇Bu · ν = 0 on ∂B
}

with the norm

‖u‖2

H̃
1, n

2
2,0 (B)

= ‖u‖2

L
n
2
2 (B)

+ ‖∇Bu‖2

L
n
2
2 (B)

.

The space H̃1, n
2

2,0 (B) with the norm ‖u‖
H̃

1, n
2

2,0 (B)
is a Banach space, where the norm

‖u‖
H̃

1, n
2

2,0 (B)
is equivalent to the norm ‖∇Bu‖

L
n
2
2 (B)

.

Lemma 2. Let u(x), v(x) ∈ H̃1, n
2

2,0 (B). Then,

∫
B

v∆Bu
dx1

x1
dx′ = −

∫
B
∇Bu · ∇Bv

dx1

x1
dx′. (9)

Proof. See the Appendix A.

Lemma 3 ([19], Poincaré inequality). Let B = [0, 1)× X be a bounded subspace in Rn
+ with

X ⊂ Rn−1, and 1 < p < +∞, γ ∈ R. If u(x) ∈ H̃1,γ
p,0(B), then

‖u(x)‖Lγ
p (B) ≤ c∗‖∇Bu(x)‖Lγ

p (B), (10)

where ∇B = (x1∂x1 , ∂x2 , · · · , ∂xn) and the constant c∗ depends only on B.

Lemma 4 ([19]). For 1 < p < 2n
n−2 , the embedding H̃1, n

2
2,0 (B) ↪→ H̃

0, n
p

p,0 (B) is continuous.

Moreover, we give the following assumptions to the problems (1)–(3).
(A1), so the constant p satisfies

1 < p < +∞, i f n = 1, 2;

1 < p <
n + 2
n− 2

= p∗, i f n ≥ 3,

where p∗ is the critical Sobolev exponent.
(A2) The relaxation function g : R+ → R+ is a differentiable function satisfying

g′(τ) ≤ 0, 1− κ > 1−
∫ ∞

0
g(τ)dτ = r > 0, (11)
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and ∫ ∞

0
g(τ)dτ <

(p + 1)(p− 1)
(p + 1)(p− 1) + 1

. (12)

Now, we give the weak solutions of problems (1)–(3) as follows:

Definition 3. The function w(x, t) ∈ L∞(0, T; H̃1, n
2

2,0 (B)) with wt(x, t) ∈ L2(0, T; H̃1, n
2

2,0 (B)) is

called a weak solution of (1)–(3), if w(x, 0) = w0(x) ∈ H̃1, n
2

2,0 (B) \ {0} and w(x, t) satisfies

(wt, v)2 + (∇Bw,∇Bv)2 + (∇Bwt,∇Bv)2 −
( ∫ t

0
g(t− τ)∇Bw(τ)dτ,∇Bv

)
2

=
(
|w|p−1w− 1

|B|

∫
B
|w|p−1w

dx1

x1
dx′, v

)
2
, (13)

for any v ∈ L2(0, T; H̃1, n
2

2,0 (B)
)
.

Considering the non-local source |w|p−1w− 1
|B|
∫
B |w|

p−1w dx1
x1

dx′ of problems (1)–(3),
it is easy to obtain that

d
dt

∫
B

w
dx1

x1
dx′ =

∫
B

wt
dx1

x1
dx′

=
∫
B

[
∆Bw + ∆Bwt + |w|p−1w−

∫ t

0
g(t− τ)∆Bw(τ)dτ

− 1
|B|

∫
B
|w|p−1w

dx1

x1
dx′
]dx1

x1
dx′

=
∫

∂B
∇Bw · ν dx1

x1
dx′ +

d
dt

∫
∂B
∇Bw · ν dx1

x1
dx′

−
∫ t

0
g(t− τ)

∫
∂B
∇Bw · ν dx1

x1
dx′dτ +

∫
B
|w|p−1w

dx1

x1
dx′

− 1
|B|

∫
B
|w|p−1w

dx1

x1
dx′

∫
B

dx1

x1
dx′

= 0

(14)

From the above equation, the function
∫
B w dx1

x1
dx′ is a constant for all t ∈ [0, T), which

means that

Π(w0) =
∫
B

w
dx1

x1
dx′ =

∫
B

w0
dx1

x1
dx′. (15)

Next, we introduce the following functionals and potential well sets on the cone

Sobolev space H̃1, n
2

2,0 (B):

J (w(t)) =
1
2
(1− κ)‖∇Bw‖2

L
n
2
2 (B)
− 1

p + 1
‖w‖p+1

L
n

p+1
p+1 (B)

, (16)

I(w(t)) = (1− κ)‖∇Bw‖2

L
n
2
2 (B)
− ‖w‖p+1

L
n

p+1
p+1 (B)

, (17)



Symmetry 2023, 15, 122 6 of 19

E(t) =
∫ t

0
‖wτ‖2

H̃
1, n

2
2,0 (B)

dτ +
1
2
(g ◦ ∇Bw)(t) + J (w(t))

=
∫ t

0
‖wτ‖2

H̃
1, n

2
2,0 (B)

dτ +
1
2
(g ◦ ∇Bw)(t)

+
1
2
(1− κ)‖∇Bw‖2

L
n
2
2 (B)
− 1

p + 1
‖w‖p+1

L
n

p+1
p+1 (B)

(18)

defined on H̃1, n
2

2,0 (B). The Nehari manifold is defined as

N = {w ∈ H̃1, n
2

2,0 (B)|I(w) = 0, ‖∇Bw‖
L

n
2
2 (B)

6= 0}. (19)

d = inf{sup
γ≥0
J (γw), w ∈ H̃1, n

2
2,0 (B)), ‖∇Bw‖

L
n
2
2 (B)

6= 0}, (20)

W = {w ∈ H̃1, n
2

2,0 (B)|I(w) > 0,J (w) < d} ∪ {0}. (21)

V = {w ∈ H̃1, n
2

2,0 (B)|I(w) < 0,J (w) < d}. (22)

One has 0 < d = inf
w∈N
J (w).

Lemma 5. Assume that (A1) − (A2) hold. Let w(x, t) be the solution of the problem (1)–(3).
Then, the energy functional E(t) defined by (18) is non-increasing, that is,

E ′(t) ≤ 0. (23)

Proof. See Appendix A.

Now, for δ > 0, we define some modified functionals and potential well sets as follows:

Jδ(w) =
δ

2
(1− κ)‖∇Bw‖2

L
n
2
2 (B)
− 1

p + 1
‖w‖p+1

L
n

p+1
p+1 (B)

, (24)

Iδ(w) = δ(1− κ)‖∇Bw‖2

L
n
2
2 (B)
− ‖w‖p+1

L
n

p+1
p+1 (B)

. (25)

The Functions Jδ(w), Iδ(w) are also associated with the integral kernel function g(τ).

Nδ =
{

w ∈ H̃1, n
2

2,0 (B)|Iδ(w) = 0, ‖∇Bw‖
L

n
2
2 (B)

6= 0
}

. (26)

Γ(δ) =
( (1− κ)δ

Cp+1
∗

) 1
p−1

, (27)

where C∗ = sup

{ ‖w‖
L

n
p+1
p+1 (B)

‖∇Bw‖
L

n
2
2 (B)

}
. For 0 < δ < p+1

2 , we define

Wδ = {w ∈ H̃
1, n

2
2,0 (B)|Iδ(w) > 0,Jδ(w) < dδ} ∪ {0}, (28)
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Vδ = {w ∈ H̃
1, n

2
2,0 (B)|Iδ(w) < 0,Jδ(w) < dδ}. (29)

Remark 1. The potential depth is given by

dδ = inf{sup
γ≥0
Jδ(γw), w ∈ H̃1, n

2
2,0 (B), ‖∇Bw‖

L
n
2
2 (B)

6= 0}.

Fixing w ∈ H̃1, n
2

2,0 (B) with ‖∇Bw‖
L

n
2
2 (B)

6= 0, it follows from the next Lemma 6 that there exists

a unique positive constant γ∗ satisfying γ∗w ∈ Nδ, and Jδ(γw) takes the maximum at γ = γ∗.
Hence, the potential depth dδ is also be defined as

dδ = inf
w∈Nδ

Jδ(w).

We are now in a positive to state our main results as follows.

Theorem 1 (Global existence). Let p and g satisfy (A1)- (A2). Suppose that w0 ∈ H̃
1, n

2
2,0 (B),

w0 ∈W and Π(w0) > 0. Then, problems (1)–(3) show a global weak solution

w(x, t) ∈ L∞(0, ∞; H̃1, n
2

2,0 (B)) with wt(x, t) ∈ L2(0, ∞; H̃1, n
2

2,0 (B))

and w(t) ∈W for 0 ≤ t < ∞.

Theorem 2 (Finite time blow-up). Let the assumptions (A1)-(A2) hold. Suppose that E(w0) <

d, w0 ∈ H̃
1, n

2
2,0 (B), w0 ∈ V and Π(w0) < 0. Then, the weak solution w(x, t) of the problems

(1)–(3) blows up in finite time, that is, there exists a T∗ ∈ (0, ∞) such that

lim
t→T∗−

∫ t

0
‖w(τ)‖2

H̃
1, n

2
2,0 (B)

dτ = +∞.

3. Properties of Potential Wells and Symmetric Structure of Invariant Sets

In this section, we will give some properties about the potential wells defined above.
In particular, Lemmas 6–8 are similar to the results of [20].

Lemma 6. Assume w ∈ H̃1, n
2

2,0 (B), and ‖∇Bw‖2

L
n
2
2 (B)

6= 0. Then:

(1) lim
γ→0
J (γw) = 0. lim

γ→+∞
J (γw) = −∞.

(2) There exists a unique γ∗ = γ∗(w), such that d
dγJ (γw)|γ=γ∗ = 0.

(3) J (γw) is increasing on 0 ≤ γ ≤ γ∗, decreasing on γ∗ ≤ γ ≤ ∞ and takes the maximum at
γ = γ∗.
(4) I(γw) > 0 for 0 < γ < γ∗, I(γw) < 0 for γ∗ < γ < ∞, and I(γ∗w) = 0.

Lemma 7. Let w ∈ H̃1, n
2

2,0 (B). Then:
(1) 0 < ‖∇Bw‖

L
n
2
2 (B)

< Γ(δ), then Iδ(w) > 0. In particular, if 0 < ‖∇Bw‖
L

n
2
2 (B)

< Γ(1), then

I(w) > 0.
(2) If Iδ(w) < 0, then ‖∇Bw‖

L
n
2
2 (B)

> Γ(δ). In particular, if I(w) < 0, then ‖∇Bw‖
L

n
2
2 (B)

>

Γ(1).
(3) If Iδ(w) = 0 and ‖∇Bw‖

L
n
2
2 (B)

6= 0, then ‖∇Bw‖
L

n
2
2 (B)

≥ Γ(δ).

(4) If Iδ(w) = 0 and ‖∇Bw‖
L

n
2
2 (B)

6= 0, then J (w) > 0 for 0 < δ < p+1
2 , J (w) = 0 for

δ = p+1
2 , J (w) < 0 for δ > p+1

2 .

Now, we show the properties of potential wells d(δ) in the following lemmas.
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Lemma 8. d(δ) satisfies the following properties:

(1) d(δ) ≥ A(δ)Γ2(δ), for A(δ) =
(

1
2 −

1
p+1

)
(1− κ)δ and 0 < δ < p+1

2 . Moreover, we have

d ≥
(1

2
− 1

p + 1

)(1− κ

C2∗

) p+1
p−1

>
(1

2
− 1

p + 1

)( r
C2∗

) p+1
p−1

. (30)

(2) lim
δ→0

d(δ) = 0, d
( p+1

2
)
= 0, and d(δ) < 0 for δ > p+1

2 .

(3) d(δ) is increasing on 0 < δ ≤ 1, decreasing on 1 ≤ δ ≤ p+1
2 and takes the maximum d(1) = d.

Lemma 9. Let w ∈ H̃1, n
2

2,0 (B) and ‖∇Bw‖
L

n
2
2 (B)

6= 0. Assume that 0 < J (w) < d and δ1 < δ2

are two roots of equation Jδ(w) = d(δ). Then, the sign of Iδ(w) is unchangeable for δ1 < δ < δ2.

Proof. Assuming that the sign of Iδ(w) is changeable for δ1 < δ < δ2, then we choose
δ̃ ∈ (δ1, δ2) and Iδ̃(w) = 0. Thus, by the definition of Nδ, we can obtain that w ∈ Nδ̃. Thus,
we have Jδ(w) ≥ d(δ̃). By using Lemma 8 (3), d(δ̃) > d(δ1) = d(δ2) = Jδ(w), which
contradicts with Jδ(w) ≥ d(δ̃).

Lemma 10. Suppose that w0 ∈ V, then we have

w(t) ∈ V, ∀t ∈ [0, T). (31)

d <
( 1

2(1− κ)
− 1

p + 1

)
‖w‖p+1

L
n

p+1
p+1 (B)

, ∀t ∈ [0, T). (32)

Proof. See the Appendix A.

Now, we give the symmetric structure of invariant sets corresponding to the problem (1)–(3).

Lemma 11. Let w(x, t) be the weak solutions of problems (1)–(3). Assume that w ∈ H̃1, n
2

2,0 (B),
0 < e < d, δ1, δ2 satisfy d(δ) = e and δ1 < δ2. T is the maximal existence time.
(1) If J (w0) = e and I(w0) > 0, then w(x, t) ∈Wδ for δ1 < δ < δ2 and 0 < t < T.
(2) If J (w0) = e and I(w0) < 0, then w(x, t) ∈ Vδ for δ1 < δ < δ2 and 0 < t < T.

4. Proofs of the Main Results

In this section, we prove the main results by making use of the family of potential
wells introduced above.

Proof of Theorem 1. Let {ψj(x)} be the eigenfunctions of the Laplace operator subject to
Neumann boundary value condition{

− ∆Bψj = λjψj, x ∈ intB,

∇Bψj · ν = 0, x ∈ ∂B.
(33)

The eigenfunctions {ψj(x)} are orthogonal in H̃1, n
2

2,0 (B) and L
n
2
2 (B) scalar product. Now, we

construct the following approximate solution wm(x, t) of problems (1)–(3):

wm(x, t) =
m

∑
j=1

αjm(t)ψj(x), m = 1, 2, . . . ,
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which satisfies 

(wmt, ψj)2 + (∇Bwm,∇Bψj)2 + (∇Bwmt,∇Bψj)2

−
( ∫ t

0
g(t− τ)∇Bwm(τ)dτ,∇Bψj

)
2
= (|wm|p−1wm

− 1
|B|

∫
B
|wm|p−1wm

dx1

x1
dx′, ψj)2, s = 1, 2, . . . .

um(x, 0) =
m

∑
j=1

(w0, ψj)2ψj(x).

(34)

It is easy to obtain wm(x, 0) = w0m → w0 in H̃1, n
2

2,0 (B) as m → +∞. This gives an initial
value problem of an ordinary differential equation system

α̇jm(t) + λjαjm(t) + λjα̇jm(t)− λj

∫ t

0
g(t− τ)αjm(τ)dτ

= (|wm|p−1wm −
1
|B|

∫
B
|wm|p−1wm

dx1

x1
dx′, ψj)2,

αjm(0) = (w0, ψj)2.

(35)

It is easy to find that the above problem admits a local solution.Next, we show that the
sign-changing weak solution w(x, t) of problem (1)–(3) can be approximated by the function
wm(x, t). Multiplying (34) by α′sm(t), summing for s, and integrating from 0 to t, we obtain∫ t

0
‖wmτ‖2

H̃
1, n

2
2,0 (B)

dτ + J (wm) +
1
2
(g ◦ ∇Bwm)(t) = J (wm(0)). (36)

By (34), we can find J (wm(0))→ J (w0); then, for sufficiently large m, we have∫ t

0
‖wmτ‖2

H̃
1, n

2
2,0 (B)

dτ + J (wm) +
1
2
(g ◦ ∇Bwm)(t) < d. (37)

From (37) and Lemma 11, we can find wm(t) ∈ W for 0 ≤ t < ∞ and sufficiently large m.
Hence, by (37) and the definition of J (w), we obtain∫ t

0
‖wmτ‖2

H̃
1, n

2
2,0 (B)

dτ +
p− 1

2(p + 1)
‖∇Bwm‖2

L
n
2
2 (B)

+
1

p + 1
I(wm) < d, (38)

for sufficiently large m and 0 ≤ t < ∞. From the definition of W, we have I(wm) > 0,
which yields ∫ t

0
‖wmτ‖2

H̃
1, n

2
2,0 (B)

dτ +
p− 1

2(p + 1)
‖∇Bwm‖2

L
n
2
2 (B)

< d, 0 ≤ t < ∞, (39)

for sufficiently large m. Then,

‖∇Bwm‖2

L
n
2
2 (B)

<
2(p + 1)

p− 1
d, 0 ≤ t < ∞, (40)

∫ t

0
‖wmτ‖2

H̃
1, n

2
2,0 (B)

dτ < d, 0 ≤ t < ∞, (41)
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∫
B

∣∣wm|p−1um
∣∣ p+1

p dx1

x1
dx′ =

∫
B
|wm|p+1 dx1

x1
dx′ = ‖wm‖p+1

L
n

p+1
p+1 (B)

≤ Cp+1
∗ ‖∇Bwm‖p+1

L
n
2
2 (B)

≤ Cp+1
∗
(2(p + 1)

p− 1
d
) p+1

2
.

(42)

Therefore, there exists a w and a subsequence still denotes {wm} for which m → ∞,
such that

wm → w in L∞(0, ∞; H̃1, n
2

2,0 (B)) weakly star and a.e. in intB× [0, ∞),

wmt → wt in L2(0, ∞; H̃1, n
2

2,0 (B)) weakly,

|wm|p−1wm → |w|p−1w in L∞(0, ∞; L
np

p+1
p+1

p
(B)) weakly star.

In (34), we fixed s, letting m→ ∞. Then, we have

(wt, ψj)2 + (∇Bw,∇Bψj)2 + (∇Bwt,∇Bψj)2

−
( ∫ t

0
g(t− τ)∇Bw(τ)dτ,∇Bψj

)
2
= (|w|p−1w

− 1
|B|

∫
B
|w|p−1w

dx1

x1
dx′, ψj)2,

(43)

and
(wt, v)2 + (∇Bw,∇Bv)2 + (∇Bwt,∇Bv)2

−
( ∫ t

0
g(t− τ)∇Bw(τ)dτ,∇Bv

)
2
= (|w|p−1w−

1
|B|

∫
B
|w|p−1w

dx1

x1
dx′, v)2, ∀v ∈ L2(0, T; H̃1, n

2
2,0 (B)).

(44)

From (34), we obtain w(x, 0) = w0(x) in H̃1, n
2

2,0 (B), t ∈ (0, T). By density, we find that

w(x, t) ∈ L∞(0, ∞; H̃1, n
2

2,0 (B))
(
with wt(x, t) ∈ L2(0, ∞; H̃1, n

2
2,0 (B))

)
is a global weak solution

of the problems (1)–(3) with I(w) ≥ 0 and J (w) < d for 0 < t < ∞. The whole proof of
this theorem is completed.

Proof of Theorem 2. Assume by contradiction that the solution w(x, t) is global. Then, we
consider Ψ : [0, T]→ R+ defined by

Ψ(t) =
∫ t

0
‖w(τ)‖2

H̃
1, n

2
2,0 (B)

dτ + (T − t)‖w0‖2

H̃
1, n

2
2,0 (B)

, (45)

We see that Ψ(t) > 0 for all t ∈ [0, T]. Furthermore,

Ψ′(t) = ‖w(t)‖2

H̃
1, n

2
2,0 (B)

− ‖w0‖2

H̃
1, n

2
2,0 (B)

= 2
∫ t

0
(w(τ), wτ(τ))2dτ + 2

∫ t

0
(∇Bw(τ),∇Bwτ(τ))2dτ,

(46)

and
Ψ′′(t) = 2

∫
B

wwt
dx1

x1
dx′ + 2

∫
B
∇Bw∇Bwt

dx1

x1
dx′. (47)
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Replacing v by w in (13), we obtain that

(wt, w)2 + (∇Bw,∇Bwt)2 = −
∫
B

∫ t

0
g(t− τ)∆w(τ)dτw(t)

dx1

x1
dx′

− ‖∇Bw‖2

L
n
2
2 (B)

+ ‖w‖p+1

L
n

p+1
p+1 (B)

− Π(w0)

|B| ‖w‖
p

L
n
p
p (B)

. (48)

This implies

Ψ′′(t) = −2
∫
B

∫ t

0
g(t− τ)∆w(τ)dτw(t)

dx1

x1
dx′ − 2‖∇Bw‖2

L
n
2
2 (B)

+ 2‖w‖p+1

L
n

p+1
p+1 (B)

− 2
Π(w0)

|B| ‖w‖
p

L
n
p
p (B)

dx1

x1
dx′.

(49)

Therefore, we have

Ψ(t)Ψ′′(t)− p + 3
4

Ψ′(t)2

= 2Ψ(t)
[
−
∫
B

∫ t

0
g(t− τ)∆w(τ)dτw(t)

dx1

x1
dx′

− ‖∇Bw‖2

L
n
2
2 (B)

+ ‖w‖p+1

L
n

p+1
p+1 (B)

− Π(w0)

|B| ‖w‖
p

L
n
p
p (B)

dx1

x1
dx′
]

− p + 3
4

[
2
∫ t

0
(w(τ), wτ(τ))2dτ

+ 2
∫ t

0
(∇Bw(τ),∇Bwτ(τ))2dτ

]2

= 2Ψ(t)
[
−
∫
B

∫ t

0
g(t− τ)∆w(τ)dτw(t)

dx1

x1
dx′ − ‖∇Bw‖2

L
n
2
2 (B)

+ ‖w‖p+1

L
n

p+1
p+1 (B)

− Π(u0)

|B| ‖w‖
p

L
n
p
p (B)

dx1

x1
dx′
]

+ (p + 3)
{

H(t)−
[
Ψ(t)− (T − t)‖w0‖2

H̃
1, n

2
2,0 (B)

]
·
∫ t

0
‖wτ‖2

H̃
1, n

2
2,0 (B)

}
,

(50)

where

H(t) =
( ∫ t

0
‖w‖2

L
n
2
2 (B)

dτ +
∫ t

0
‖∇Bw‖2

L
n
2
2 (B)

dτ
)

·
( ∫ t

0
‖wτ‖2

L
n
2
2 (B)

dτ +
∫ t

0
‖∇Bwτ‖2

L
n
2
2 (B)

dτ
)

−
[ ∫ t

0
(w(τ), wτ(τ))2dτ +

∫ t

0
(∇Bw(τ),∇Bwτ(τ))2dτ

]2
.

(51)

Applying the Schwarz’s inequalities, we have from (51) that H(t) ≥ 0. Moreover, combin-
ing (50) and (51), we obtain

Ψ(t)Ψ′′(t)− p + 3
4

Ψ′(t)2 ≥ Ψ(t)G(t), (52)
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where
G(t) = 2

∫
B

wwt
dx1

x1
dx′ + 2

∫
B
∇Bw∇Bwt

dx1

x1
dx′

− (p + 3)
∫ t

0
‖wτ‖2

H̃
1, n

2
2,0 (B)

dτ.
(53)

Making use of (1), (18) and (53), we deduce from Π(w0) < 0 that

G(t) ≥ 2
∫
B
|w|p+1 dx1

x1
dx′ − 2

∫
B
|∇Bw|2 dx1

x1
dx′ − 2Π(w0)

|B| ‖w‖
p

L
n
p
p (B)

− 2
∫
B

∫ t

0
g(t− τ)∆Bw(τ)dτw(t)

dx1

x1
dx′

− (p + 3)
∫ t

0
‖wτ‖2

H̃
1, n

2
2,0 (B)

dτ.

(54)

For the forth on the right (54), we obtain

−
∫
B

∫ t

0
g(t− τ)∆Bw(τ)dτw(t)

dx1

x1
dx′

=
∫ t

0
g(t− τ)

∫
B
∇Bw(τ)∇Bw(t)

dx1

x1
dx′dτ

=
∫ t

0
g(t− τ)

∫
B
∇Bw(t)∇B

[
w(τ)− w(t)

]dx1

x1
dx′dτ

+
∫ t

0
g(t− τ)‖∇Bw(t)‖2

L
n
2
2 (B)

dτ.

(55)

By (54) and (55), we find

G(t) ≥ −(p + 3)
∫ t

0
‖wτ‖2

H̃
1, n

2
2,0 (B)

dτ + 2
∫
B
|w|p+1 dx1

x1
dx′

− 2
(

1−
∫ t

0
g(t− τ)dτ

)
‖∇Bw‖2

L
n
2
2 (B)

+ 2
∫ t

0
g(t− τ)

∫
B
∇Bw(t)∇B

[
w(τ)− w(t)

]dx1

x1
dx′dτ

≥ −(p + 3)
∫ t

0
‖wτ‖2

H̃
1, n

2
2,0 (B)

dτ + 2
∫
B
|w|p+1 dx1

x1
dx′

− 2
(

1−
∫ t

0
g(t− τ)dτ

)
‖∇Bw‖2

L
n
2
2 (B)

− 2
[ p + 1

2

∫ t

0
g(t− τ)‖∇Bw(τ)−∇Bw(t)‖2

L
n
2
2 (B)

dτ

+
1

2(p + 1)

∫ t

0
g(t− τ)‖∇Bw(t)‖2

L
n
2
2 (B)

dτ
]

= −2(p + 1)
[1

2

∫ t

0
g(t− τ)‖∇Bw(τ)−∇Bw(t)‖2

L
n
2
2 (B)

dτ

+
1
2

(
1−

∫ t

0
g(t− τ)dτ

)
‖∇Bw‖2

L
n
2
2 (B)
− 1

p + 1
‖w‖p+1

L
n

p+1
p+1 (B)

]
+ (p− 1)

(
1−

∫ t

0
g(t− τ)dτ

)
‖∇Bw‖2

L
n
2
2 (B)

− (p + 3)
∫ t

0
‖wτ‖2

H̃
1, n

2
2,0 (B)

dτ − 1
p + 1

∫ t

0
g(τ)dτ‖∇Bw‖2

L
n
2
2 (B)

.

(56)
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Using Lemma 5, we obtain

E(t) ≤ E(0).

Thus,

G(t) ≥ −2(p + 1)E(0) + (p− 1)
∫ t

0
‖wτ‖2

H̃
1, n

2
2,0 (B)

dτ

+ (p− 1)
(

1−
∫ t

0
g(t− τ)dτ

)
‖∇Bw‖2

L
n
2
2 (B)

− 1
p + 1

∫ t

0
g(τ)dτ‖∇Bw‖2

L
n
2
2 (B)

= 2(p + 1)
{ p− 1

2(p + 1)

[(
1−

∫ t

0
g(τ)dτ

)
‖∇Bw‖2

L
n
2
2 (B)

− 1
(p + 1)2

∫ t

0
g(τ)dτ‖∇Bw‖2

L
n
2
2 (B)

]
− E(0)

}
+ (p− 1)

∫ t

0
‖wτ‖2

H̃
1, n

2
2,0 (B)

dτ

= 2(p + 1)
{ p− 1

2(p + 1)

[(
1−

∫ t

0
g(τ)dτ

)
‖∇Bw‖2

L
n
2
2 (B)

− 1
(p + 1)(p− 1)

∫ t

0
g(τ)dτ‖∇Bw‖2

L
n
2
2 (B)

]
− E(0)

}
+ (p− 1)

∫ t

0
‖wτ‖2

H̃
1, n

2
2,0 (B)

dτ.

(57)

If E(0) < 0, using the assumption of (A2), it follows that

G(t) > θ, (58)

where θ > 0. If 0 < E(0) < d, using the assumption of (A2), we have

0 < 1−
∫ t

0
g(τ)dτ − 1

(p + 1)(p− 1)

∫ t

0
g(τ)dτ ≤ r.

By the Lemma 10, we see that

d <
(1

2
− 1− κ

p + 1

)
‖∇Bw‖2

L
n
2
2 (B)

.

This implies G(t) > θ for θ is a positive constant.
From what has been discussed above, we have

Ψ(t)Ψ′′(t)− p + 3
4

Ψ′(t)2 ≥ Ψ(t)θ. (59)

By (45), there exists a positive constant λ > 0 such that

Ψ(t) ≥ λ, f or t ∈ [0, T).

Then, we deduce that

Ψ(t)Ψ′′(t)− p + 3
4

Ψ′(t)2 ≥ λθ. (60)
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Then, (
Ψ−

p−1
4 (t)

)′′
=
(
− p− 1

4

)
Ψ−

p−1
4 −2(t)

[
Ψ(t)Ψ′′(t)− p + 3

4
Ψ′(t)2

]
≤
(
− p− 1

4

)
λθΨ−

p+7
4 (t) < 0.

(61)

Then, since a concave function must lie below any tangent line, we can see that

Ψ−
p−1

4 (t) ≤ Ψ−
p−1

4 (0) +
[
Ψ−

p−1
4 (0)

]′
t (62)

or

Ψ(t) ≥ Ψ
p+3
p−1 (t)

[
Ψ(0)− p− 1

4
Ψ′(0)t

]− p−1
4

. (63)

We choose T large enough such that

T ≥ 4Ψ(0)
(p− 1)Ψ′(0)

.

Thus, from the last above inequality, it follows that the interval of existence of solutions

w(x, t) must be contained in
[
0, 4Ψ(0)

(p−1)Ψ′(0)

]
. Hence, there exists T∗ ∈ [0, T], such that

Ψ(t)→ +∞ as t→ T∗−

i.e., ∫ t

0
‖w(τ)‖2

H̃
1, n

2
2,0 (B)

dτ → +∞ as t→ T∗−.

This contradicts our assumption.This completes the proof of this theorem.

5. Conclusions

In this work, we consider the initial boundary value problem for a class of pseudo-
parabolic equations with power nonlinearity and nonlocal source on a manifold with
conical singularity. Some new results of global existence, blow-up and blow-up time under
the condition of J (w0) < d are obtained. The blow-up results of problems (1)–(3) with
arbitrary initial energy will be the direction of further research. From Theorems 1 and 2, we
can moreover obtain the following exact conditions for the global existence of solutions for
problems (1)–(3):

Let w0 ∈ H̃
1, n

2
2,0 (B) and J (w0) < d. Then, the sign of I(w0) plays a critical role in the

solutions of problems (1)–(3), namely

(1) When I(w0) ≥ 0, the problem (1)–(3) admits a global weak solution

w(x, t) ∈ L∞(0, ∞; H̃1, n
2

2,0 (B)) with wt(x, t) ∈ L2(0, ∞; H̃1, n
2

2,0 (B)).

(2) When I(w0) < 0, there is no global weak solution for problems (1)–(3), such that the
solution of problems (1)–(3) blows up in finite time in the sense of

lim
t→T∗−

∫ t

0
‖w(τ)‖2

H̃
1, n

2
2,0 (B)

dτ = +∞.

Example 1. As an example, with g(t) = b/(1 + t)2(0 < b < 6
7 ) and p = 2, conditions (A1)

and (A2) are satisfied. For the initial boundary value problems (1)–(3), we take specific functions
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w0(x) = − sin x and let B = [0, 1); obviously, w0 ∈ H̃
1, n

2
2,0 (B). After some simple calculation, it

implies ‖w0x‖2
L2(B) =

1
2 (1 +

sin 2
2 ), ‖w0‖3

L3(B) =
1
3 (sin2 1 + 4), Π(w0) = −2 < 0 and

E(w0) =
1
2
(1− κ)‖∇Bw0‖2

L2(B) −
1
3
‖w0‖3

L3(B)

=
1
4
(1− κ)(1 +

sin 2
2

)− 1
9
(sin2 1 + 4),

(64)

I(w0) = (1− κ)‖∇Bw0‖2
L2(B) − ‖w0‖3

L3(B)

=
1
2
(1− κ)(1 +

sin 2
2

)− 1
3
(sin2 1 + 4).

(65)

Hence, we see from (64), (65) that E(w0) < 0 and I(w0) < 0. Then, the conditions of Theorem 2 are
satisfied. Hence, there exists a T∗ ∈ (0, ∞) such that

∫ t
0 ‖w(τ)‖2

H̃
1, n

2
2,0 (B)

dτ → ∞ as t→ t→ T∗−.
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Appendix A

Proof of Lemma 2. Here, we first suppose u(x), v(x) ∈ C∞
0 (B). From the definition of ∆B,

it follows that ∫
B

v∆Bu
dx1

x1
dx′

=
∫
B

x1∂x1(x1∂x1 u) · v dx1

x1
dx′ +

∫
B
(∂2

x2
u + · · ·+ ∂2

xn u) · v dx1

x1
dx′

=
∫
B

∂x1(x1∂x1 u) · vdx +
∫
B
(∂2

x2
u + · · ·+ ∂2

xn u) · v dx1

x1
dx′

=
∫
B

div
(
x1∂x1 u,

∂x2 u
x1

, · · · ,
∂xn u

x1

)
· vdx

= −
∫
B

(
x1∂x1 u,

∂x2 u
x1

, · · · ,
∂xn u

x1

)
· ∇vdx

= −
∫
B

(
x2

1∂x1 u, ∂x2 u, · · · , ∂xn u
)
· ∇v

dx1

x1
dx′

= −
∫
B

(
x1∂x1 u, ∂x2 u, · · · , ∂xn u

)
·
(
x1∂x1 v, ∂x2 v, · · · , ∂xn v

)dx1

x1
dx′

= −
∫
B
∇Bu · ∇Bv

dx1

x1
dx′.

(A1)

Finally, since C∞
0 (B) is dense in H̃1, n

2
2,0 (B), the equation above holds in case of u(x), v(x) ∈

H̃1, n
2

2,0 (B).
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Proof of Lemma 5. Replacing v by wt in (13), it is easy to obtain

d
dt

[ ∫ t

0
‖wτ‖2

H̃
1, n

2
2,0 (B)

dτ +
1
2

∫
B
|∇Bw|2 dx1

x1
dx′

− 1
p + 1

∫
B
|w|p+1 dx1

x1
dx′
]

−
∫ t

0
g(t− τ)

∫
B
∇Bwt(t)∇Bw(τ)

dx1

x1
dx′dτ = 0.

(A2)

For the last term on the left side of (A2), it follows that∫ t

0
g(t− τ)

∫
B
∇Bwt(t)∇Bw(τ)

dx1

x1
dx′dτ

=
∫ t

0
g(t− τ)

∫
B
∇Bwt(t)

[
∇Bw(τ)−∇Bw(t)

]dx1

x1
dx′dτ

+
∫ t

0
g(t− τ)

∫
B
∇Bwt(t)∇Bw(t)

dx1

x1
dx′dτ

= −1
2

∫ t

0
g(t− τ)

[ d
dt

∫
B
|∇Bw(τ)−∇Bw(t)|2 dx1

x1
dx′
]
dτ

+
1
2

∫ t

0
g(τ)

[ d
dt

∫
B
|∇Bw(t)|2 dx1

x1
dx′
]
dτ

= −1
2

d
dt

[ ∫ t

0
g(t− τ)

∫
B
|∇Bw(τ)−∇Bw(t)|2 dx1

x1
dx′dτ

]
+

1
2

d
dt

[ ∫ t

0
g(τ)

∫
B
|∇Bw(t)|2 dx1

x1
dx′dτ

]
+

1
2

∫ t

0
g′(t− τ)

∫
B
|∇Bw(τ)−∇Bw(t)|2 dx1

x1
dx′dτ

− 1
2

g(t)
∫
B
|∇Bw(t)|2 dx1

x1
dx′.

(A3)

Inserting (A3) into (A2), we obtain

d
dt

[ ∫ t

0
‖wτ‖2

H̃
1, n

2
2,0 (B)

dτ +
1
2

∫
B
|∇Bw|2 dx1

x1
dx′

− 1
p + 1

∫
B
|w|p+1 dx1

x1
dx′
]

+
1
2

d
dt

[ ∫ t

0
g(t− τ)

∫
B
|∇Bw(τ)−∇Bw(t)|2 dx1

x1
dx′dτ

]
− 1

2
d
dt

[ ∫ t

0
g(τ)

∫
B
|∇Bw(t)|2 dx1

x1
dx′dτ

]
=

1
2

∫ t

0
g′(t− τ)

∫
B
|∇Bw(τ)−∇Bw(t)|2 dx1

x1
dx′dτ

− 1
2

g(t)
∫
B
|∇Bw(t)|2 dx1

x1
dx′ ≤ 0

(A4)

for a regular solution. The proof of the Lemma 5 is completed.

Proof of Lemma 10. Since w0 ∈ V, now we will prove that w(t) ∈ V for all t ∈ [0, T).
Assume that there exists t0 ∈ [0, T) such that w(t0) 6∈ V. Then, we have

(1− κ)‖∇Bw(t0)‖2

L
n
2
2 (B)

≥ ‖w(t0)‖
p+1

L
n

p+1
p+1 (B)

.
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By the continuity of w(t), there exists at least one s ∈ (0, t0] such that

(1− κ)‖∇Bw(s)‖2

L
n
2
2 (B)

= ‖w(s)‖p+1

L
n

p+1
p+1 (B)

.

Let

t? = inf
{

s ∈ (0, t0] : (1− κ)‖∇Bw(s)‖2

L
n
2
2 (B)

= ‖w(s)‖p+1

L
n

p+1
p+1 (B)

}
.

In particular, the regularity of w(t) implies that t? ∈ (0, t0]. Then, we have

(1− κ)‖∇Bw(t?)‖2

L
n
2
2 (B)

= ‖w(t?)‖p+1

L
n

p+1
p+1 (B)

.

and w(t) ∈ V, for all t ∈ [0, t?). Next, two cases can be considered.
First case: ‖∇Bw(t?)‖2

L
n
2
2 (B)

= 0.

In this case, by the continuity of w(t), we have

lim
t→t?−

‖∇Bw(t)‖2

L
n
2
2 (B)

= 0. (A5)

On the other hand, the fact that w(t) ∈ V, for all t ∈ [0, t?) implies that ‖∇Bw(t)‖2

L
n
2
2 (B)

6= 0,

(1− κ)‖∇Bw(t)‖2

L
n
2
2 (B)

< ‖w(t)‖p+1

L
n

p+1
p+1 (B)

, t ∈ [0, t?). (A6)

By the definition of C∗, we find

‖w‖p+1

L
n

p+1
p+1 (B)

=

‖w‖p+1

L
n

p+1
p+1 (B)

‖∇Bw‖p+1

L
n
2
2 (B)

‖∇Bw‖p+1

L
n
2
2 (B)

≤ Cp+1
∗ ‖∇Bw‖p+1

L
n
2
2 (B)

.

(A7)

Then, by (A6), (A7), we have

lim
t→t?−

‖∇Bw(t)‖
L

n
2
2 (B)

>
(1− κ

Cp+1
∗

) 1
p−1

.

This contradicts (A5).
Second case: ‖∇Bw(t?)‖2

L
n
2
2 (B)

6= 0.

By using (20), we have J (w(t?)) ≥ d, which contradicts the fact that J (w(t)) ≤ J (w0) <
d. Hence, in either case, we conclude that w(t) ∈ V, for all t ∈ [0, T). Since

J (γw) =
1
2

γ2(1− κ)‖∇Bw‖2

L
n
2
2 (B)
− γp+1

p + 1
‖w‖p+1

L
n

p+1
p+1 (B)

.

We obtain

d
dγ
J (γw) = γ(1− κ)‖∇Bw‖2

L
n
2
2 (B)
− γp‖w‖p+1

L
n

p+1
p+1 (B)

.
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d2

dγ2J (γw) = (1− κ)‖∇Bw‖2

L
n
2
2 (B)
− pγp−1‖w‖p+1

L
n

p+1
p+1 (B)

.

Let d
dγJ (γw) = 0, which implies

γ̄1 = 0, γ̄2 =

( (1− κ)‖∇Bw‖2

L
n
2
2 (B)

‖w‖p+1

L
n

p+1
p+1 (B)

) 1
p−1

.

An elemeatary calculation shows

d2

dγ2J (γ̄1w) > 0,
d2

dγ2J (γ̄2w) < 0.

So, we have

sup
γ≥0
J (γw) = J (γ̄2w) =

p− 1
2(p + 1)

‖∇Bw‖
2(p+1)

p−1

L
n
2
2 (B)

‖w‖
2(p+1)

p−1

L
n

p+1
p+1 (B)

.

By I(w) < 0, we have

d ≤ sup
γ≥0
J (γw) = J (γ̄2w) =

(1
2
− 1− κ

p + 1

)[(1− κ)‖∇Bw‖p+1
] 2

p−1

L
n
2
2 (B)

‖w‖
2(p+1)

p−1

L
n

p+1
p+1 (B)

<
( 1

2(1− κ)
− 1

p + 1

)
‖w‖p+1

L
n

p+1
p+1 (B)

.

(A8)
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