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Abstract: This paper presents a stochastic model for the least-mean-square algorithm with symmet-
ric/antisymmetric properties (LMS-SAS), operating in a system identification setup with Gaussian
input data. Specifically, model expressions are derived to describe the mean weight behavior of
the (global and virtual) adaptive filters, learning curves, and evolution of some correlation-like
matrices, which allow predicting the algorithm behavior. Simulation results are shown and discussed,
confirming the accuracy of the proposed model for both transient and steady-state phases.
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1. Introduction

In several practical applications, adaptive filtering techniques are used to obtain
an approximate representation for the input–output relationship of an unknown system
in real-time, such as occurs in system identification problems, echo and noise cancella-
tion, as well as in adaptive control [1–5]. In some of these applications, the system to be
identified exhibits known special characteristics (e.g., sparseness, symmetry or antisym-
metry, among others), which can be exploited by the adaptive algorithm to improve its
convergence and/or reduce computational complexity. For instance, proportionate-type
algorithms [6–11] exploit the sparseness of the system impulse response. In turn, algo-
rithms operating with bilinear forms [12,13] consider a more efficient representation for
characterizing multiple-input/single-output (MISO) spatiotemporal systems. While the
least-mean-square with symmetric/antisymmetric properties (LMS-SAS) algorithm and its
normalized version [14] exploit the intrinsic symmetric or antisymmetric characteristics of
some systems to decompose their impulse responses into two smaller vectors using the
Kronecker product. Therefore, considering the practical applicability, theoretical studies on
the behavior of these algorithms become relevant.

In this context, stochastic models may serve as a theoretical basis for studying the
behavior of adaptive algorithms without relying only on extensive Monte Carlo (MC)
simulations [15–23]. Such models are useful to establish (through mathematical expressions)
stability conditions for the algorithm and a suitable range of values for its parameters,
as well as interesting cause-and-effect relationships between performance metrics and
algorithm parameters, which can then help the designer [24–29]. Moreover, models can be
used to identify undesirable behavior of the algorithm, leading thereby to the development
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of enhanced algorithms [30,31]. However, despite the inherent importance, a stochastic
model for the LMS-SAS algorithm [14] has not been discussed (to the best of our knowledge)
in the literature so far. So, aiming to fill this gap, the present research work has the
following goals:

(i) To develop a stochastic model describing the behavior of the algorithm, considering
(uncorrelated and correlated) Gaussian input data;

(ii) To derive expressions characterizing the mean weight behavior of the adaptive filters,
learning curves, and evolution of some correlation-like matrices; and

(iii) To verify and discuss the accuracy of the model for different operating scenarios.

Note that performance comparisons with other algorithms from the literature are beyond
the scope of this research work (for such, see [14]).

The remainder of the paper is organized as follows. Section 2 introduces the system
model and revisits the LMS-SAS algorithm. Section 3 presents the proposed stochastic
model. Section 4 provides simulation results for different operating scenarios. Section 5
presents a brief discussion about the results and highlights some algorithm characteristics.
Finally, Section 6 summarizes conclusions and suggestions for future research works.

The mathematical notation adopted in this paper follows the standard practice of
using lower-case boldface letters for vectors, upper-case boldface letters for matrices, and
both italic Roman and Greek letters for scalar quantities. Superscripts T and B stand
for the transpose and block-transpose operators [32], ⊗ denotes the Kronecker product,
vec( · ) characterizes the vectorization operator [33], Tr( · ) represents the trace of a matrix,
and E( · ) is the expected value operator. Still, the notation [A](i,j) represents the scalar
(i, j)-entry of matrix A, while Ai,j denotes the i, j-block/submatrix of A.

2. Problem Formulation

In a system identification setup (as depicted in Figure 1), let us consider a linear single-
input/single-output (SISO) system whose output signal y(n) corrupted by an additive
measurement noise w(n) at time index n yields the so-called desired signal which can be
expressed as

d(n) = y(n) + w(n)

= hT(h1, h2)x(n) + w(n)
(1)

where x(n) = [x(n) x(n− 1) . . . x(n− L2
0 + 1)]T contains the L2

0 most recent samples of
the input signal x(n), while

h(h1, h2) = h1 ⊗ h2 ± h2 ⊗ h1 (2)

denotes an L2
0-dimensional (unknown) symmetric (+) or antisymmetric (−) system impulse

response which depends on two (virtual) impulse responses h1 and h2 of length L0. Note
that the symmetric or antisymmetric characteristic considered here is not related to the
samples of the impulse response such as in linear-phase finite impulse response filters (for
details, see the discussion presented in [14]). So, the error signal can be written as

e(n) = d(n)− d̂(n) (3)

with d̂(n) denoting the output signal of the adaptive filter ĥ(n) whose weights are adjusted
based on x(n) and e(n).
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Figure 1. Block diagram of a system identification setup.

In this context, instead of estimating h(h1, h2) directly, the LMS-SAS algorithm [14]
can be used to identify h1 and h2 [in (2)] through two (virtual) adaptive filters with weight
vectors ĥ1(n) and ĥ2(n), both of length L0, in such a way that the (global) adaptive filter
can be computed as

ĥ(n) = ĥ1(n)⊗ ĥ2(n)± ĥ2(n)⊗ ĥ1(n). (4)

Thus, the adjustment of ĥ1(n) and ĥ2(n) in (4) is carried out using the following up-
date rules:

ĥ1(n) = ĥ1(n− 1) + µ1x2(n)e(n) (5)

and
ĥ2(n) = ĥ2(n− 1) + µ2x1(n)e(n) (6)

where µ1 and µ2 represent step-size parameters,

x1(n) = ĤT
1 (n− 1)x(n) (7)

and
x2(n) = ĤT

2 (n− 1)x(n) (8)

with
Ĥ1(n) = ĥ1(n)⊗ IL0 ± IL0 ⊗ ĥ1(n) (9)

and
Ĥ2(n) = IL0 ⊗ ĥ2(n)± ĥ2(n)⊗ IL0 (10)

characterizing matrices of size L2
0 × L0, in which IL0 denotes the identity matrix with

dimension L0 × L0, while the error signal (3) can conveniently be expressed as

e(n) = d(n)− ĥT
1 (n− 1)x2(n)

= d(n)− ĥT
2 (n− 1)x1(n).

(11)

Therefore, the system identification setup and the LMS-SAS algorithm [defined
through (4)–(11)] have now been characterized.

3. Proposed Model

In this section, the proposed stochastic model describing the behavior of the LMS-
SAS algorithm is derived. Specifically, model expressions are obtained for predicting the
mean weight behavior of the (global and virtual) adaptive filters, learning curves, and the
evolution of some correlation-like matrices related to the adaptive weight vectors. To this
end, the following assumptions and approximations are used:

Assumption 1. The input signal x(n) is obtained from a zero-mean (uncorrelated or correlated)
Gaussian process with variance σ2

x and autocorrelation matrix R = E[x(n)xT(n)] [2,5].

Assumption 2. The measurement noise w(n) is obtained from a white Gaussian process with
variance σ2

w, which is uncorrelated with any other signal in the system [2,5].
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Assumption 3. The adaptive weight vectors ĥ1(n), ĥ2(n), and ĥ(n) are assumed independent of
each other as well as from any other variable in the system [2,5,13,29].

Note that these assumptions have been commonly used in the stochastic modeling of
adaptive algorithms to make the development mathematically tractable (see [2,5]) and have
led to satisfactory results (as shown later in Section 4).

3.1. Mean Weight Behavior

Taking into account the similar forms of (5) and (6), let us start replacing the subindexes
1 and 2 by α and α (or vice-versa) such that both update rules can be expressed through

ĥα(n) = ĥα(n− 1) + µαxα(n)e(n). (12)

Then, substituting (1) and (11) into (12), taking the expected value of both sides of the
resulting expression, and using Assumptions 2 and 3, the mean weight behavior of the
(virtual) adaptive filters can be determined as

E[ĥα(n)] = [IL0 − µαSα(n)]E[ĥα(n− 1)] + µαS′α(n)h (13)

where
Sα(n) = E[xα(n)xT

α(n)] (14)

and
S′α(n) = E[xα(n)xT(n)]. (15)

Notice from (13) that the convergence of the (virtual) adaptive filters depends on

• The step sizes µα, the system impulse response h, the estimate of the system impulse
response ĥα(n), as well as the correlation-like matrices Sα(n) and S′α(n);

• The initialization condition ĥα(0) which may impair the initial convergence or cause
instability of the algorithm; and

• Each other, i.e., the behavior of one (virtual) adaptive filter is affected by the behavior
of the other one and vice-versa.

Next, substituting either (7) or (8) into (14), using the properties of the Kronecker
product [33,34], as well as considering Assumption 3, we have

Sα(n) = S(1)
α (n)± S(2)

α (n)± S(2)
α

T
(n) + S(3)

α (n) (16)

with
S(1)

α (n) = E{[IL0 ⊗ ĥα(n− 1)]TR[IL0 ⊗ ĥα(n− 1)]}

=

 Tr[R1,1Gα(n− 1)] · · · Tr[R1,L0 Gα(n− 1)]
...

. . .
...

Tr[RL0,1Gα(n− 1)] · · · Tr[RL0,L0 Gα(n− 1)]

 (17)

S(2)
α (n) = E{[IL0 ⊗ ĥα(n− 1)]TR[ĥα(n− 1)⊗ IL0 ]}

=



L0

∑
i=1

gT
α,i(n− 1)R1,i

...
L0

∑
i=1

gT
α,i(n− 1)RL0,i


(18)
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and
S(3)

α (n) = E{[ĥα(n− 1)⊗ IL0 ]
TR[ĥα(n− 1)⊗ IL0 ]}

=
L0

∑
i=1

L0

∑
j=1

[Gα(n− 1)](i,j)Ri,j
(19)

in which
Gα(n) = E[ĥα(n)ĥT

α(n)] (20)

is the autocorrelation matrix of ĥα(n), gα,i(n) represents the i-th column of Gα(n), [Gα(n)](i,j)
characterizes the (i, j)-th element of Gα(n), while Ri,j denotes an L0 × L0-block/submatrix
of R, i.e.,

R =

 R1,1 · · · R1,L0
...

. . .
...

RL0,1 · · · RL0,L0

. (21)

Similarly, from (7) and (8), (15) can be simplified as

S′α(n) = E[ĤT
α(n− 1)]R (22)

with E[ĤT
α(n − 1)] being obtained by taking the expected value of both sides of either

(9) or (10).
Finally, the mean weight behavior of the (global) adaptive filter ĥ(n) can be determined

by applying the expected value to both sides of (4) and using Assumption 3. Thereby,
one obtains

E[ĥ(n)] = E[ĥ1(n)]⊗ E[ĥ2(n)]± E[ĥ2(n)]⊗ E[ĥ1(n)] (23)

which depends on (13); hence, the characteristics observed in the convergence of the (virtual)
adaptive filters hold also for the convergence of the (global) adaptive filter. Therefore, the
mean weight behavior of ĥ1(n), ĥ2(n), and ĥ(n) can be predicted [from (13) and (23)] if
the evolution of (20) is known.

3.2. Learning Curves

Aiming to characterize the learning curves, let us start by rewriting (11) using the
weight-error vector

v(n) = h− ĥ(n) (24)

as
e(n) = vT(n− 1)x(n) + w(n). (25)

Then, squaring both sides of (25), taking the expected value of the resulting expression,
and using Assumption 2, one obtains the following expression describing the evolution of
the mean-square error (MSE):

J(n) = Jmin + Jex(n) (26)

where
Jmin = σ2

w (27)

is the minimum MSE attainable in steady state, while

Jex(n) = E[vT(n− 1)x(n)xT(n)v(n− 1)] (28)

is the excess MSE (EMSE) introduced by the algorithm. Next, considering the properties of
the trace operator [33] and using Assumption 3, (28) reduces to

Jex(n) = Tr[RK(n− 1)] (29)

with
K(n) = E[v(n)vT(n)] (30)
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being the autocorrelation matrix of the weight-error vector. Therefore, if the evolution of
(30) is known, the MSE and EMSE learning curves are completely characterized by (26),
(27), and (29).

3.3. Correlation-like Matrices

The aim is now to derive recursive expressions describing the evolution of the
correlation-like matrices Gα(n) [given by (20)] and K(n) [given by (30)]. To this end,
substituting (12) into (20), and using Assumptions 2 and 3, we obtain

Gα(n) = Gα(n− 1)− µαSα(n)Gα(n− 1)

− µαGα(n− 1)Sα(n) + µαG′α(n− 1)S′α
T
(n)

+ µαS′α(n)G
′
α

T
(n− 1) + µ2

αFα(n) + µ2
ασ2

wSα(n)

(31)

where
G′α(n) = E[ĥα(n)]hT (32)

with E[ĥα(n)] being computed from (13),

Fα(n) = E[ĤT
α(n− 1)x(n)xT(n)v(n− 1)vT(n− 1)x(n)xT(n)Ĥα(n− 1)]

∼= E[ĤT
α(n− 1)E(n)Ĥα(n− 1)]

(33)

in which
E(n) = E[x(n)xT(n)K(n− 1)x(n)xT(n)]

= 2RK(n− 1)R + RTr[RK(n− 1)]
(34)

due to the factorization theorem of Gaussian variables [2,3,5] (also known as Isserlis’
theorem [35]). Thereby, such as in (16), (33) can be expressed [using (34)] as

Fα(n) = F(1)
α (n)± F(2)

α (n)± F(2)
α

T
(n) + F(3)

α (n) (35)

where
F(1)

α (n) = E{[IL0 ⊗ ĥα(n− 1)]TE(n)[IL0 ⊗ ĥα(n− 1)]}

=

 Tr[E1,1(n)Gα(n− 1)] · · · Tr[E1,L0(n)Gα(n− 1)]
...

. . .
...

Tr[EL0,1(n)Gα(n− 1)] · · · Tr[EL0,L0(n)Gα(n− 1)]

 (36)

F(2)
α (n) = E{[IL0 ⊗ ĥα(n− 1)]TE(n)[ĥα(n− 1)⊗ IL0 ]}

=



L0

∑
i=1

gT
α,i(n− 1)E1,i(n)

...
L0

∑
i=1

gT
α,i(n− 1)EL0,i(n)


(37)

and
F(3)

α (n) = E{[ĥα(n− 1)⊗ IL0 ]}
TE(n)[ĥα(n− 1)⊗ IL0 ]}

=
L0

∑
i=1

L0

∑
j=1

[Gα(n− 1)](i,j)Ei,j(n).
(38)

In turn, calculating v(n)vT(n) from (24) and taking the expected value of both sides
of the resulting expression, it is possible to rewrite (30) as

K(n) = hhT − hE[ĥT(n)]− E[ĥ(n)]hT + G(n) (39)
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where
G(n) = E[ĥ(n)ĥT(n)]

= G1(n)⊗G2(n)± {vec[G2(n)]vec[G1(n)]T}B

± {vec[G1(n)]vec[G2(n)]T}B + G2(n)⊗G1(n)

(40)

denotes the autocorrelation matrix of ĥ(n) and ( · )B represents the transposition of blocks [32]
of dimension L0× L0. Note that (40) is obtained by calculating the outer product ĥ(n)ĥT(n)
from (4), taking the expected value of both sides of the resulting expression, and considering
Assumption 3.

Therefore, since the evolution of the correlation-like matrices Gα(n), K(n), G(n) has
been properly characterized, the behavior of the LMS-SAS algorithm can now be predicted.

4. Simulation Results

This section aims to assess the accuracy of the proposed model by comparing results
obtained from MC simulations (average of 200 independent runs) with model predictions.
To this end, three examples are presented, covering uncorrelated and correlated Gaussian
input data, several signal-to-noise ratio (SNR) values, as well as distinct system impulse
responses and initialization conditions for the adaptive filters. Specifically, the input signal
x(n) is obtained from an autoregressive (AR) process [5], given by

x(n) = −a1x(n− 1)− a2x(n− 2) + v(n) (41)

in which a1 and a2 denote the AR(2) coefficients, while v(n) is a white Gaussian noise
whose variance is determined as

σ2
v = σ2

x

(
1− a2

1 + a2

)
[(1 + a2)

2 − a2
1] (42)

such that σ2
x = 1. The SNR is defined (in dB) as [14,29]

SNR = 10 log10

(
σ2

y

σ2
w

)
(43)

with σ2
y = hT(h1, h2)Rh(h1, h2) characterizing the variance of the system output signal;

in particular, three values of SNR are considered here, i.e., 10, 20, and 30 dB. The (vir-
tual) adaptive filters 1 and 2 are initialized, respectively, as ĥ1(0) = [1 0 . . . 0]T and
ĥ2(0) = L−1

0 [1 1 . . . 1]T unless otherwise stated to prevent them from stalling at the begin-
ning of the adaptation process [14], while the step sizes are chosen as µ1 = µ2 = 10−3.

4.1. Example 1

Here, the proposed model is verified for uncorrelated Gaussian input data, different
SNR values, and a system impulse response with antisymmetric characteristic. Specifically,
the input signal is obtained from (41) by making a1 = a2 = 0, which results in an eigenvalue
spread [2,3,5] for the input autocorrelation matrix of χ = 1. The antisymmetric system
impulse response h(h1, h2) is obtained from (2), with h1 containing the first L0 = 16
weights of the echo path model 1 given in the ITU-T G.168 Recommendation [36] while
[h2]l = (−0.9)l−1 for l = 1, 2, . . . , L0; consequently, the length of h(h1, h2) is L2

0 = 256.
The results obtained for this operating scenario are presented in Figure 2.
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Figure 2. Example 1. Results obtained from MC simulations (gray-ragged lines) and predicted from
the proposed model (dark-dashed lines): (a) Evolution of (five) weights of the (virtual) adaptive
filter 1; (b) Evolution of (five) weights of the (virtual) adaptive filter 2; (c) Evolution of (five) weights
of the (global) adaptive filter; (d) Evolution of the EMSE learning curves.

4.2. Example 2

This example aims now to assess the proposed model for correlated Gaussian input
data, different SNR values, and a system impulse response with symmetric characteristic.
Particularly, the input signal is taken from (41) with a1 = −0.6 and a2 = 0.8, which results
in an eigenvalue spread of χ = 162.13 for the input autocorrelation matrix. The symmetric
system impulse response h(h1, h2) is obtained from (2), with h1 containing the first L0 = 32
weights of the echo path model 1 given in the ITU-T G.168 Recommendation [36] while
[h2]l = 0.5l−1 for l = 1, 2, . . . , L0; consequently, the length of h(h1, h2) is L2

0 = 1024. The
results obtained for this operating scenario are presented in Figure 3.

4.3. Example 3

In this example, the accuracy of the proposed model is verified considering different
initialization conditions for the adaptive weight vectors. To this end, the input signal is
obtained from (41) by making a1 = −0.6 and a2 = 0.8, yielding an eigenvalue spread of
χ = 160.55 for the input autocorrelation matrix. Symmetric and antisymmetric system
impulse responses are used, which are determined from (2) with h1 and h2 given as
in Example 2 but now with L0 = 16 weights; hence, the length of h(h1, h2) becomes
L2

0 = 256. In turn, the adaptive weight vectors are initialized as ĥ1(0) = L−1
0 [1 1 . . . 1]T

and ĥ2(0) = c+L−1
0 [1 1 . . . 1]T with c+ = {10−1, 1− 10−6, 1} when the system impulse

response is symmetric, while ĥ1(0) = [1 0 . . . 0]T and ĥ2(0) = c−L−1
0 [1 1 . . . 1]T with

c− = {1, 5, 7.5} when the antisymmetric impulse response is used. The obtained results
are presented in Figure 4, considering only SNR = 20 dB for simplicity.
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Figure 3. Example 2. Results obtained from MC simulations (gray-ragged lines) and predicted from
the proposed model (dark-dashed lines): (a) Evolution of (five) weights of the (virtual) adaptive
filter 1; (b) Evolution of (five) weights of the (virtual) adaptive filter 2; (c) Evolution of (five) weights
of the (global) adaptive filter; (d) Evolution of the EMSE learning curves.
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Figure 4. Example 3. Results obtained from MC simulations (gray-ragged lines) and predicted from
the proposed model (dark-dashed lines): (a) Evolution of (two) weights of the (global) adaptive filter
for the symmetric impulse response; (b) Evolution of (two) weights of the (global) adaptive filter for
the antisymmetric impulse response; (c) Evolution of the EMSE learning curves for the symmetric
impulse response; (d) Evolution of the EMSE learning curves for the antisymmetric impulse response.
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5. Discussion

Figures 2–4 present the results obtained from MC simulations and model predictions
for the operating scenarios described in Examples 1, 2, and 3, respectively. Specifically,
Figures 2a–c and 3a–c depict the evolution of (five) adaptive weights of ĥ1(n), ĥ2(n), and
ĥ(n), while Figures 2d and 3d show EMSE learning curves. [Results obtained for SNR
values of 10 and 30 dB have been omitted in Figures 2a–c and 3a–c since they are very
similar.] In turn, Figure 4a,b illustrate the impact of the initialization of the adaptive weight
vectors on the evolution of (two) adaptive weights of ĥ(n), while Figure 4c,d depict the
effect on the EMSE learning curves, from which one verifies that the convergence speed
and the steady-state EMSE are affected by the choice of the initialization vectors of the
adaptive filters; in this particular case, when ĥ1(0) and ĥ2(0) assume small and distinct
values, improved convergence and lower steady-state EMSE are achieved. Despite that, one
observes from these figures that the behavior predicted from the proposed model matches
very well the one obtained from MC simulations, during both transient and steady-state
phases. Therefore, the accuracy of the model is confirmed for uncorrelated and correlated
Gaussian input data, different SNR values and initialization conditions for the adaptive
weight vectors, as well as for system impulse responses with symmetric and antisymmetric
characteristics.

6. Conclusions

A stochastic model for the LMS-SAS algorithm was derived in this paper. The pro-
posed model allows predicting the mean weight behavior of the (global and virtual) adap-
tive filters, learning curves, and evolution of some correlation-like matrices. Simulation
results confirmed the accuracy of the model irrespective of the input data correlation level,
SNR value, initialization condition of the adaptive weight vectors, and system impulse
response. Based on the proposed model, further research could address the derivation
of stability bounds for the step size, analytical expressions characterizing the algorithm
behavior in steady state, and the development of models for the normalized version of the
LMS-SAS algorithm.
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