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Abstract: In this article, with the help of Leibniz integral rule on time scales, we prove some new
dynamic inequalities of Gronwall–Bellman–Pachpatte-type on time scales. These inequalities can
be used as handy tools to study the qualitative and quantitative properties of solutions of the initial
boundary value problem for partial delay dynamic equation.
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1. Introduction

In [1], the authors discussed the following results:

Γ(Θ(`, t)) ≤ a(`, t) +
∫ θ(`)

0

∫ ϑ(t)

0
=1(ς, η)[ f (ς, η)v(Θ(ς, η))

+
∫ ς

0
=2(χ, η)v(Θ(χ, η))dχ]dηdς,

Γ(Θ(`, t)) ≤ a(`, t) +
∫ θ(`)

0

∫ ϑ(t)

0
=1(ς, η)[ f (ς, η)v(Θ(ς, η))η(Θ(ς, η))

+
∫ ς

0
=2(χ, η)v(Θ(χ, η))dχ]dηdς,

and

Γ(Θ(`, t)) ≤ a(`, t) +
∫ θ(`)

0

∫ ϑ(t)

0
=1(ς, η)[ f (ς, η)ζ(Θ(ς, η))v(Θ(ς, η))

+
∫ ς

0
=2(χ, η)ζ(Θ(χ, η))v(Θ(χ, η))dχ]dηdς,

where Θ, f , = ∈ C(I1 × I2,R+), a ∈ C(ζ,R+) are nondecreasing functions, I1, I2 ∈ R,
θ ∈ C1(I1, I1), ϑ ∈ C1(I2, I2) are nondecreasing with θ(`) ≤ ` on I1, ϑ(t) ≤ t on I2,
=1, =2 ∈ C(ζ,R+), and Γ, ζ, v ∈ C(R+,R+) with {Γ, ζ, v}(Θ) > 0 for Θ > 0, and

lim
Θ→+∞

Γ(Θ) = +∞.

Recently, Gronwall–Bellman-type inequalities, which have several applications in the
qualitative and quantitative behavior, have been developed by many mathematicians and
several refinements and extensions have been made to the previous results; we refer the
reader to the works of [2–13].
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Time scales calculus with the objective to unify discrete and continuous analysis was
introduced by S. Hilger [14]. For additional subtleties on time scales, we refer the reader to
the books by Bohner and Peterson [15,16].

Theorem 1 ([16]). Suppose Π on [a, b], is ∇-integrable then so is |Π|, and∣∣∣∣∫ b

a
Π(η)∇η

∣∣∣∣ ≤ ∫ b

a
|Π(η)|∇η.

Theorem 2 ([11] Leibniz Integral Rule on Time Scales). In the following by Λ∆($, ς) we mean
the delta derivative of Λ($, ς) with respect to $. Similarly, Λ∇($, ς) is understood. If Λ , Λ∆ and
Λ∇ are continuous, and u, h : T→ T are delta differentiable functions, then the following formulas
holds ∀$ ∈ Tκ .

(i)
[∫ h($)

u($)
Λ($, ς)∆ς

]∆

=
∫ h($)

u($)
Λ∆($, ς)∆ς + h∆($)Λ(σ($), h($))− u∆($)Λ(σ($), u($));

(ii)
[∫ h($)

u($)
Λ($, ς)∆ς

]∇
=
∫ h($)

u($)
Λ∇($, ς)∆ς + h∇($)Λ(ρ($), h($))− u∇($)Λ(ρ($), u($));

(iii)
[∫ h($)

u($)
Λ($, ς)∇ς

]∆

=
∫ h($)

u($)
Λ∆($, ς)∇ς+ h∆($)Λ(σ($), h($))− u∆($)Λ(σ($), u($));

(iv)
[∫ h($)

u($)
Λ($, ς)∇ς

]∇
=
∫ h($)

u($)
Λ∇($, ς)∇ς+ h∇($)Λ(ρ($), h($))−u∇($)Λ(ρ($), u($)).

In this article, by employing the results of Theorems 2, we establish the delayed time
scale case of the inequalities proved in [1]. Further, the results that are proved in this paper
extend some known results in [17–19].

2. Main Results

We start with the following basic lemma:

Lemma 1. Suppose T1, T2 are two times scales and a ∈ C(Ω = T1 ×T2,R+) is nondecreasing
with respect to (`, t) ∈ Ω. Assume that =, Θ, f ∈ Crd(Ω,R+), τ1 ∈ C1

rd(T1,T1) and τ2 ∈
C1

rd(T2,T2) be nondecreasing functions with τ1(`) ≤ ` on T1, τ2(t) ≤ t on T2 . Furthermore,
suppose Γ, ζ ∈ C(R+,R+) are nondecreasing functions with {Γ, ζ}(Θ) > 0 for Θ > 0, and

lim
Θ→+∞

Γ(Θ) = +∞. If Θ(`, t) satisfies

Γ(Θ(`, t)) ≤ a(`, t) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=(ς, η) f (ς, η)ζ(Θ(ς, η))∆η∆ς, (1)

for (`, t) ∈ Ω, then

Θ(`, t) ≤ Γ−1
{

G−1G(a(`, t)) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=(ς, η) f (ς, η)∆η∆ς

]
, (2)

for 0 ≤ ` ≤ `1, 0 ≤ t ≤ t1, where

G(v) =
∫ v

v0

∆ς

ζ(Γ−1(ς))
, v ≥ v0 > 0, G(+∞) =

∫ +∞

v0

∆ς

ζ(Γ−1(ς))
= +∞, (3)

and (`1, t1) ∈ Ω is chosen so that(
G(a(`, t)) +

∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

)
∈ Dom

(
G−1

)
.
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Proof. First, we assume that a(`, t) > 0. Fixing an arbitrary (`0, t0) ∈ Ω, we define a
positive and nondecreasing function ϕ(`, t) by

ϕ(`, t) = a(`0, t0) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=(ς, η) f (ς, η)ζ(Θ(ς, η))∆η∆ς (4)

for 0 ≤ ` ≤ `0 ≤ `1, 0 ≤ t ≤ t0 ≤ t1, then ϕ(`0, t) = ϕ(`, t0) = a(`0, t0) and

Θ(`, t) ≤ Γ−1(ϕ(`, t)). (5)

Taking ∆-derivative for (4) with employing Theorem 2(iv), we have

ϕ∆`(`, t) = τ∆
1 (`)

∫ τ2(t)

t0

=(τ1(`), η) f (τ1(`), η)ζ(Θ(τ1(`), η))∆η

≤ τ∆
1 (`)

∫ τ2(t)

t0

=(τ1(`), η) f (τ1(`), η)ζ
(

Γ−1(ϕ(τ1(`), η))
)

∆η

≤ ζ
(

Γ−1(ϕ(τ1(`), τ2(t)))
)

τ∆
1 (`)

∫ τ2(t)

t0

=(τ1(`), η) f (τ1(`), η)∆η. (6)

The inequality (6) can be written in the form

ϕ∆`(`, t)
ζ(Γ−1(ϕ(`, t)))

≤ τ∆
1 (`)

∫ τ2(t)

t0

=(τ1(`), η) f (τ1(`), η)∆η. (7)

Taking ∆-integral for Inequality (7), obtains

G(ϕ(`, t)) ≤ G(ϕ(`0, t)) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=(ς, η) f (ς, η)∆η∆ς

≤ G(a(`0, t0)) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=(ς, η) f (ς, η)∆η∆ς.

Since (`0, t0) ∈ Ω is chosen arbitrary,

ϕ(`, t) ≤ G−1
[

G(a(`, t)) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=(ς, η) f (ς, η)∆η∆ς

]
. (8)

From (8) and (5) we obtain the desired result (2). We carry out the above procedure
with ε > 0 instead of a(`, t) when a(`, t) = 0 and subsequently let ε→ 0.

Remark 1. If we take T = R, `0 = 0 and t0 = 0 in Lemma 1, then, inequality (1) becomes the
inequality obtained in ([1] Lemma 2.1).

Theorem 3. Let Θ, a, f , τ1 and τ2 be as in Lemma 1. Let =1,=2 ∈ Crd(Ω,R+). If Θ(`, t) satisfies

Γ(Θ(`, t)) ≤ a(`, t) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)[ f (ς, η)ζ(Θ(ς, η))

+
∫ ς

`0

=2(χ, η)ζ(Θ(χ, η))∆χ]∆η∆ς, (9)

for (`, t) ∈ Ω, then

Θ(`, t) ≤ Γ−1
{

G−1
(

p(`, t) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

)}
(10)
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for 0 ≤ ` ≤ `1, 0 ≤ t ≤ t1, where G is defined by (3) and

p(`, t) = G(a(`, t)) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)

(∫ ς

`0

=2(χ, η)∆χ

)
∆η∆ς (11)

and (`1, t1) ∈ Ω is chosen so that(
p(`, t) +

∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

)
∈ Dom

(
G−1

)
.

Proof. By the same steps of the proof of Lemma 1 we can obtain (10), with suitable
changes.

Remark 2. If we take =2(`, t) = 0, then Theorem 3 reduces to Lemma 1.

Corollary 1. Let the functions Θ, f , =1, =2, a, τ1 and τ2 be as in Theorem 3. Further suppose that
q > p > 0 are constants. If Θ(`, t) satisfies

Θq(`, t) ≤ a(`, t) +
q

q− p

∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)[ f (ς, η)Θp(ς, η)

+
∫ ς

`0

=2(χ, η)Θp(χ, η)∆χ]∆η∆ς, (12)

for (`, t) ∈ Ω, then

Θ(`, t) ≤
{

p(`, t) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

} 1
q−p

, (13)

where

p(`, t) = (a(`, t))
q−p

q +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)

(∫ ς

`0

=2(χ, η)∆χ

)
∆η∆ς.

Proof. In Theorem 3, by letting Γ(Θ) = Θq, ζ(Θ) = Θp we have

G(v) =
∫ v

v0

∆ς

ζ(Γ−1(ς))
=
∫ v

v0

∆ς

ς
p
q
≥ q

q− p

(
v

q−p
q − v

q−p
q

0

)
, v ≥ v0 > 0

and

G−1(v) ≥
{

v
q−p

q
0 +

q− p
q

v
} 1

q−p

,

we obtain the inequality (13).

Theorem 4. Suppose Γ, ζ, v ∈ C(R+,R+) be nondecreasing functions with {Γ, ζ, v}(Θ) > 0 for
Θ > 0, Θ(`, t) and with the conditions of Theorem 3, satisfies

Γ(Θ(`, t)) ≤ a(`, t) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)[ f (ς, η)ζ(Θ(ς, η))v(Θ(ς, η))

+
∫ ς

`0

=2(χ, η)ζ(Θ(χ, η))∆χ]∆η∆ς, (14)

for (`, t) ∈ Ω, then

Θ(`, t) ≤ Γ−1
{

G−1
(

F−1
[

F(p(`, t)) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

])}
(15)
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for 0 ≤ ` ≤ `1, 0 ≤ t ≤ t1, where G and p are as in (3), (11), respectively, and

F(v) =
∫ v

v0

∆ς

v(Γ−1(G−1(ς)))
, v ≥ v0 > 0, F(+∞) = +∞, (16)

and (`1, t1) ∈ Ω is chosen so that[
F(p(`, t)) +

∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

]
∈ Dom

(
F−1

)
.

Proof. Assume that a(`, t) > 0. Fixing an arbitrary (`0, t0) ∈ Ω, we define a positive and
nondecreasing function ϕ(`, t) by

ϕ(`, t) = a(`0, t0) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)[ f (ς, η)ζ(Θ(ς, η))v(Θ(ς, η))

+
∫ ς

`0

=2(χ, η)ζ(Θ(χ, η))∆χ]∆η∆ς, (17)

for 0 ≤ ` ≤ `0 ≤ `1, 0 ≤ t ≤ t0 ≤ t1, then ϕ(`0, t) = ϕ(`, t0) = a(`0, t0) and

Θ(`, t) ≤ Γ−1(ϕ(`, t)). (18)

Taking ∆-derivative for (17) with employing Theorem 2 (i), gives

ϕ∆`(`, t) = τ∆
1 (`)

∫ τ2(t)

t0

=1(τ1(`), η)[ f (τ1(`), η)ζ(Θ(τ1(`), η))v(Θ(τ1(`), η))

+
∫ τ1(`)

`0

=2(χ, η)ζ(Θ(χ, η))∆χ]∆η

≤ τ∆
1 (`)

∫ τ2(t)

t0

=1(τ1(`), η)
[

f (τ1(`), η)ζ
(

Γ−1(ϕ(τ1(`), η))
)

v
(

Γ−1(ϕ(τ1(`), η))
)

+
∫ τ1(`)

`0

=2(χ, η)ζ
(

Γ−1(ϕ(χ, η))
)

∆χ

]
∆η (19)

≤ τ∆
1 (`).ζ

(
Γ−1(ϕ(τ1(`), τ2(t)))

)
×∫ τ2(t)

t0

=1(τ1(`), η)

[
f (τ1(`), η)v

(
Γ−1(ϕ(τ1(`), η))

)
+
∫ τ1(`)

`0

=2(χ, η)∆χ

]
∆η.

From (19), we have

ϕ∆`(`, t)
ζ(Γ−1(ϕ(`, t)))

≤ τ∆
1 (`)

∫ τ2(t)

t0

=1(τ1(`), η)
[

f (τ1(`), η)v
(

Γ−1(ϕ(τ1(`), η))
)

+
∫ τ1(`)

`0

=2(χ, η)∆χ

]
∆η. (20)

Taking ∆-integral for (20), gives

G(ϕ(`, t)) ≤ G(ϕ(`0, t)) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)
[

f (ς, η)v
(

Γ−1(ϕ(ς, η))
)

+
∫ ς

`0

=2(χ, η)∆χ

]
∆η∆ς

≤ G(a(`0, t0)) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)
[

f (ς, η)v
(

Γ−1(ϕ(ς, η))
)

+
∫ ς

`0

=2(χ, η)∆χ

]
∆η∆ς.
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Since (`0, t0) ∈ Ω is chosen arbitrarily, the last inequality can be rewritten as

G(ϕ(`, t)) ≤ p(`, t) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)v
(

Γ−1(ϕ(ς, η))
)

∆η∆ς. (21)

Since p(`, t) is a nondecreasing function, an application of Lemma 1 to (21) gives us

ϕ(`, t) ≤ G−1
(

F−1
[

F(p(`, t)) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

])
. (22)

From (18) and (22) we obtain the desired inequality (15).
Now, we take the case a(`, t) = 0 for some (`, t) ∈ Ω. Let aε(`, t) = a(`, t) + ε,

for all (`, t) ∈ Ω, where ε > 0 is arbitrary, then aε(`, t) > 0 and aε(`, t) ∈ C(Ω,R+)
be nondecreasing with respect to (`, t) ∈ Ω. We carry out the above procedure with
aε(`, t) > 0 instead of a(`, t), and we get

Θ(`, t) ≤ Γ−1
{

G−1
(

F−1
[

F(pε(`, t)) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

])}
where

pε(`, t) = G(aε(`, t)) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)

(∫ ς

`0

=2(χ, η)∆χ

)
∆η∆ς.

Letting ε→ 0+, we obtain (15). The proof is complete.

Remark 3. If we take T = R, `0 = 0 and t0 = 0 in Theorem 4, then, inequality (14) becomes the
inequality obtained in ([1], Theorem 2.2(A_2)) .

Corollary 2. Let the functions Θ, a, f , =1, =2, τ1 and τ2 be as in Theorem 3. Further suppose that
q, p and r are constants with p > 0, r > 0 and q > p + r. If Θ(`, t) satisfies

Θq(`, t) ≤ a(`, t) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)[ f (ς, η)Θp(ς, η)Θr(ς, η)

+
∫ ς

`0

=2(χ, η)Θp(χ, η)∆χ]∆η∆ς, (23)

for (`, t) ∈ Ω, then

Θ(`, t) ≤
{
[p(`, t)]

q−p−r
q−p +

q− p− r
q

∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

} 1
q−p−r

, (24)

where

p(`, t) = (a(`, t))
q−p

q +
q− p

q

∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)

(∫ ς

`0

=2(χ, η)∆χ

)
∆η∆ς.

Proof. An application of Theorem 4 with Γ(Θ) = Θq, ζ(Θ) = Θp, and v(Θ) = Θr yields
the desired inequality (24).

Theorem 5. Suppose Γ, ζ, v ∈ C(R+,R+) be nondecreasing functions with {Γ, ζ, v}(Θ) > 0
for Θ > 0, Θ(`, t) and with the conditions of Theorem 3. If Θ(`, t) satisfies

Γ(Θ(`, t)) ≤ a(`, t) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)[ f (ς, η)ζ(Θ(ς, η))v(Θ(ς, η))

+
∫ ς

`0

=2(χ, η)ζ(Θ(χ, η))v(Θ(χ, η))∆χ

]
∆η∆ς (25)
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for (`, t) ∈ Ω, then

Θ(`, t) ≤ Γ−1
{

G−1
(

F−1
[

p0(`, t) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

])}
(26)

for 0 ≤ ` ≤ `1, 0 ≤ t ≤ t1 where

p0(`, t) = F(G(a(`, t))) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)

(∫ ς

`0

=2(χ, η)∆χ

)
∆η∆ς

and (`1, t1) ∈ Ω is chosen so that[
p0(`, t) +

∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

]
∈ Dom

(
F−1

)
.

Proof. Assume that a(`, t) > 0. Fixing an arbitrary (`0, t0) ∈ Ω, we define a positive and
nondecreasing function ϕ(`, t) by

ϕ(`, t) = a(`0, t0) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)[ f (ς, η)ζ(Θ(ς, η))v(Θ(ς, η))

+
∫ ς

`0

=2(χ, η)ζ(Θ(χ, η))v(Θ(χ, η))∆χ]∆η∆ς

for 0 ≤ ` ≤ `0 ≤ `1, 0 ≤ t ≤ t0 ≤ t1, then ϕ(`0, t) = ϕ(`, t0) = a(`0, t0), and

Θ(`, t) ≤ Γ−1(ϕ(`, t)). (27)

By the same steps as the proof of Theorem 4, we obtain

ϕ(`, t) ≤ G−1
{

G(a(`0, t0)) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)
[

f (ς, η)v
(

Γ−1(ϕ(ς, η))
)

+
∫ ς

`0

=2(χ, η)v
(

Γ−1(ϕ(χ, η))
)

∆χ

]
∆η∆ς

}
.

We define a nonnegative and nondecreasing function v(`, t) by

v(`, t) = G(a(`0, t0)) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)
[[

f (ς, η)v
(

Γ−1(ϕ(ς, η))
)]

+
∫ ς

`0

=2(χ, η)v
(

Γ−1(ϕ(χ, η))
)

∆χ

]
∆η∆ς

then v(`0, t) = v(`, t0) = G(a(`0, t0)),

ϕ(`, t) ≤ G−1[v(`, t)] (28)

and then

v∆`(`, t) ≤ τ∆
1 (`)

∫ τ2(t)

t0

=1(τ1(`), η)[ f (τ1(`), η)v
(

Γ−1
(

G−1(v(τ1(`), t))
))

+
∫ τ1(`)

`0

=2(χ, η)v
(

Γ−1
(

G−1(v(χ, t))
))

∆χ]∆η

≤ τ∆
1 (`)v

(
Γ−1

(
G−1(v(τ1(`), τ2(t)))

)) ∫ τ2(t)

t0

=1(τ1(`), η)[ f (τ1(`), η)

+
∫ τ1(`)

`0

=2(χ, η)∆χ]∆η,
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or

v∆`(`, t)
v(Γ−1(G−1(v(`, t))))

≤ τ∆
1 (`)

∫ τ2(t)

t0

=1(τ1(`), η)[ f (τ1(`), η)

+
∫ τ1(`)

`0

=2(χ, η)∆χ]∆η.

Taking ∆-integral for the above inequality, gives

F(v(`, t)) ≤ F(v(`0, t)) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)

[
f (ς, η) +

∫ ς

`0

=2(χ, η)∆χ

]
∆η∆ς,

or

v(`, t) ≤ F−1
{

F(G(a(`0, t0))) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)[ f (ς, η)

+
∫ ς

`0

=2(χ, η)∆χ]∆η∆ς

}
. (29)

From (27)–(29), and since (`0, t0) ∈ Ω is chosen arbitrarily, we obtain the desired
inequality (26). If a(`, t) = 0, we carry out the above procedure with ε > 0 instead of a(`, t)
and subsequently let ε→ 0. The proof is complete.

Remark 4. If we take T = R and `0 = 0 and t0 = 0 in Theorem 5, then, inequality (25) becomes
the inequality obtained in ([1], Theorem 2.2(A3)).

Corollary 3. Let the functions Θ, a, f , =1, =2, τ1 and τ2 be as in Theorem 3. Further suppose that
q, p and r are constants with p > 0, r > 0 and q > p + r. If Θ(`, t) satisfies

Θq(`, t) ≤ a(`, t) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)[ f (ς, η)Θp(ς, η)Θr(ς, η)

+
∫ ς

`0

=2(χ, η)Θp(χ, η)Θr(χ, η)∆χ]∆η∆ς, (30)

for (`, t) ∈ Ω, then

Θ(`, t) ≤
{

p0(`, t) +
q− p− r

q

∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

} 1
q−p−r

, (31)

where

p0(`, t) = (a(`, t))
q−p−r

q +
q− p− r

q

∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)

(∫ ς

`0

=2(χ, η)∆χ

)
∆η∆ς.

Proof. An application of Theorem 5 with Γ(Θ) = Θq, ζ(Θ) = Θp, and v(Θ) = Θr yields
the desired inequality (31).

Theorem 6. Suppose Γ, ζ, v ∈ C(R+,R+) be nondecreasing functions with {Γ, ζ, v}(Θ) > 0
for Θ > 0, Θ(`, t) and with the conditions of Theorem 3. If Θ(`, t) satisfies

Γ(Θ(`, t)) ≤ a(`, t) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)v(Θ(ς, η))×[
f (ς, η)ζ(Θ(ς, η)) +

∫ ς

`0

=2(χ, η)∆χ

]
∆η∆ς, (32)
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for (`, t) ∈ Ω, then

Θ(`, t) ≤ Γ−1
{

G−1
1

(
F−1

1

[
F1(p1(`, t)) +

∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

])}
, (33)

for 0 ≤ ` ≤ `2, 0 ≤ t ≤ t2, where

G1(v) =
∫ v

v0

∆ς

v(Γ−1(ς))
, v ≥ v0 > 0, G1(+∞) =

∫ +∞

v0

∆ς

v(Γ−1(ς))
= +∞ (34)

F1(v) =
∫ v

v0

∆ς

ζ
[
Γ−1

(
G−1

1 (ς)
)] , v ≥ v0 > 0, F1(+∞) = +∞ (35)

p1(`, t) = G1(a(`, t)) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)

(∫ ς

`0

=2(χ, η)∆χ

)
∆η∆ς (36)

and (`2, t2) ∈ Ω is chosen so that[
F1(p1(`, t)) +

∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

]
∈ Dom

(
F−1

1

)
.

Proof. Suppose that a(`, t) > 0. Fixing an arbitrary (`0, t0) ∈ Ω, we define a positive and
nondecreasing function ϕ(`, t) by

ϕ(`, t) = a(`0, t0) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)v(Θ(ς, η))[ f (ς, η)ζ(Θ(ς, η))

+
∫ ς

`0

=2(χ, η)∆χ

]
∆η∆ς

for 0 ≤ ` ≤ `0 ≤ `2, 0 ≤ t ≤ t0 ≤ t2, then ϕ(`0, t) = ϕ(`, t0) = a(`0, t0),

Θ(`, t) ≤ Γ−1(ϕ(`, t)) (37)

and

ϕ∆`(`, t) ≤ τ∆
1 (`)

∫ τ2(t)

t0

=1(τ1(`), η)η
[
Γ−1(ϕ(τ1(`), η))

][
f (τ1(`), η)ζ

(
Γ−1(ϕ(τ1(`), η))

)
+
∫ τ1(`)

`0

=2(χ, η)∆χ

]
∆η

≤ τ∆
1 (`)η

[
Γ−1(ϕ(τ1(`), τ2(t)))

] ∫ τ2(t)

t0

=1(τ1(`), η)
[

f (τ1(`), η)ζ
(

Γ−1(ϕ(τ1(`), η))
)

+
∫ τ1(`)

`0

=2(χ, η)∆χ

]
∆η,

then

ϕ∆`(`, t)
η[Γ−1(ϕ(`, t))]

≤ τ∆
1 (`)

∫ τ2(t)

t0

=1(τ1(`), η)[ f (τ1(`), η)ζ
(

Γ−1(ϕ(τ1(`), η))
)

+
∫ τ1(`)

`0

=2(χ, η)∆χ]∆η.



Symmetry 2022, 14, 1804 10 of 13

Taking ∆-integral for the above inequality, gives

G1(ϕ(`, t)) ≤ G1(ϕ(0, t)) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)[ f (ς, η)ζ
(

Γ−1(ϕ(ς, η))
)

+
∫ ς

`0

=2(χ, η)∆χ]∆η∆ς

then

G1(ϕ(`, t)) ≤ G1(a(`0, t0)) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)
[

f (ς, η)ζ
(

Γ−1(ϕ(ς, η))
)

+
∫ ς

`0

=2(χ, η)∆χ]∆η∆ς.

Since (`0, t0) ∈ Ω is chosen arbitrary, the last inequality can be restated as

G1(ϕ(`, t)) ≤ p1(`, t) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)ζ
(

Γ−1(ϕ(ς, η))
)

∆η∆ς (38)

It is easy to observe that p1(`, t) is positive and nondecreasing function for all (`, t) ∈ Ω,
then an application of Lemma 1 to (38) yields the inequality

ϕ(`, t) ≤ G−1
1

(
F−1

1

[
F1(p1(`, t)) +

∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

])
. (39)

From (39) and (37) we get the desired inequality (33).
If a(`, t) = 0, we carry out the above procedure with ε > 0 instead of a(`, t) and

subsequently let ε→ 0. The proof is complete.

Remark 5. If we take T = R and `0 = 0 and t0 = 0 in Theorem 6, then, inequality (33) becomes
the inequality obtained in ([1], Theorem 2.7).

Theorem 7. Suppose Γ, ζ, v ∈ C(R+,R+) be nondecreasing functions with {Γ, ζ, v}(Θ) > 0
for Θ > 0, Θ(`, t) and with the conditions of Theorem 3 and let p be a nonnegative constant. If
Θ(`, t) satisfies

Γ(Θ(`, t)) ≤ a(`, t) +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)Θp(ς, η)×[
f (ς, η)ζ(Θ(ς, η)) +

∫ ς

`0

=2(χ, η)∆χ

]
∆η∆ς, (40)

for (`, t) ∈ Ω, then

Θ(`, t) ≤ Γ−1
{

G−1
1

(
F−1

1

[
F1(p1(`, t)) +

∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

])}
, (41)

for 0 ≤ ` ≤ `2, 0 ≤ t ≤ t2, where

G1(v) =
∫ v

v0

∆ς

[Γ−1(ς)]
p , v ≥ v0 > 0, G1(+∞) =

∫ +∞

v0

∆ς

[Γ−1(ς)]
p = +∞, (42)

and F1, p1 are as in Theorem 6 and (`2, t2) ∈ Ω is chosen so that[
F1(p1(`, t)) +

∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

]
∈ Dom

(
F−1

1

)
.

Proof. An application of Theorem 6, with v(Θ) = Θp yields the desired inequality (41).
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Remark 6. Taking T = R. The inequality established in Theorem 7 generalizes ([19], Theorem
1) (with p = 1, a(`, t) = b(`) + c(t), `0 = 0, t0 = 0, =1(ς, η) f (ς, η) = h(ς, η), and =1(ς, η)(∫ ς

`0
=2(χ, η)∆χ

)
= g(ς, η)).

Corollary 4. Suppose Γ, ζ, v ∈ C(R+,R+) be nondecreasing functions with {Γ, ζ, v}(Θ) > 0
for Θ > 0, Θ(`, t) and with the conditions of Theorem 3 and let p be a nonnegative constant, and
q > p > 0 be constants. If Θ(`, t) satisfies

Θq(`, t) ≤ a(`, t) +
p

p− q

∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)Θp(ς, η)×[
f (ς, η)ζ(Θ(ς, η)) +

∫ ς

`0

=2(χ, η)∆χ

]
∆η∆ς (43)

for (`, t) ∈ Ω, then

Θ(`, t) ≤
{

F−1
1

[
F1(p1(`, t)) +

∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η) f (ς, η)∆η∆ς

]} 1
q−p

(44)

for 0 ≤ ` ≤ `2, 0 ≤ t ≤ t2, where

p1(`, t) = [a(`, t)]
q−p

q +
∫ τ1(`)

`0

∫ τ2(t)

t0

=1(ς, η)

(∫ ς

`0

=2(χ, η)∆χ

)
∆η∆ς,

and F1 is defined in Theorem 7.

Proof. An application of Theorem 7 with Γ(Θ(`, t)) = Θp to (43) yields the inequality (44);
to save space we omit the details.

Remark 7. Taking T = R, `0 = 0, t0 = 0, a(`, t) = b(`) + c(t), =1(ς, η) f (ς, η) = h(ς, η), and
=1(ς, η)

(∫ ς
`0
=2(χ, η)∆χ

)
= g(ς, η) in Corollary 4 we obtain ([20], Theorem 1).

Remark 8. Taking T = R, `0 = 0, t0 = 0, a(`, t) = c
p

p−q , =1(ς, η) f (ς, η) = h(η), and =1(ς, η)(∫ ς
`0
=2(χ, η)∆χ

)
= g(η) and keeping t fixed in Corollary 4, we obtain ([21], Theorem 2.1).

3. Application

In the following, we discus the boundedness of the solutions of the initial boundary
value problem for partial delay dynamic equation, which maybe describe environmental
phenomena, physical and engineering sciences, of the form:

(ϕq)∆`∆t(`, t) = A
(
`, t, ϕ(`− h1(`), t− h2(t)),

∫ `

`0

B(ς, t, ϕ(ς− h1(ς), t))∆ς

)
(45)

ϕ(`, t0) = a1(`), ϕ(`0, t) = a2(t), a1(`0) = at0(0) = 0

for (`, t) ∈ Ω, where ϕ, b ∈ C(Ω,R+), A ∈ C(Ω × R2, R), B ∈ C(ζ × R, R) and h1 ∈
C1

rd(T1,R+), h2 ∈ C1
rd(T2,R+) are nondecreasing functions such that h1(`) ≤ ` on T1,

h2(t) ≤ t on T2, and h∆
1 (`) < 1, h∆

2 (t) < 1.

Theorem 8. Assume that the functions b, A, B in (45) satisfy the conditions

|a1(`) + a2(t)| ≤ a(`, t) (46)

|A(ς, η, ϕ, Θ)| ≤ q
q− p

=1(ς, η)
[

f (ς, η)|ϕ|p + |Θ|
]

(47)

|B(χ, η, ϕ)| ≤ =2(χ, η)|ϕ|p, (48)
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where a(`, t),=1(ς, η), f (ς, η), and =2(χ, η) are as in Theorem 3, q > p > 0 are constants. If
ϕ(`, t) satisfies (45), then

|ϕ(`, t)| ≤
{

p(`, t) + M1M2

∫ τ1(`)

`0

∫ τ2(t)

t0

−
=1(ς, η)

−
f (ς, η)∆η∆ς

} 1
q−p

, (49)

where

p(`, t) = (a(`, t))
q−p

q

+M1M2

∫ τ1(`)

`0

∫ τ2(t)

t0

−
=1(ς, η)

(
M1

∫ ς

`0

−
=2(χ, η)∆χ

)
∆η∆ς

and
M1 = Max

`∈I1

1
1− h∆

1 (`)
, M2 = Max

t∈I2

1
1− h∆

2 (t)

and
−
=1(γ, ξ) = =1(γ + h1(ς), ξ + h2(η)),

−
=2(µ, ξ) = =2(µ, ξ + h2(η)),

−
f (γ, ξ) = f (γ + h1

(ς), ξ + h2(η)).

Proof. If ϕ(`, t) is any solution of (45), then

ϕq(`, t) = a1(`) + a2(t)

+
∫ `

`0

∫ t

t0

A
(

ς, η, ϕ(ς− h1(ς), η − h2(η)),
∫ ς

`0

B(χ, η, ϕ(χ− h1(χ), η))∆χ

)
∆η∆ς. (50)

Using the conditions (46)–(48) in (50) we obtain

|ϕ(`, t)|q ≤ a(`, t) +
q− p

q

∫ `

`0

∫ t

t0

=1(ς, η)
[

f (ς, η)|ϕ(ς− h1(ς), η − h2(η))|p

+
∫ ς

`0

=2(χ, η)|ϕ(χ, η)|p∆χ]∆η∆ς. (51)

Now making a change of variables on the right side of (51), ς− h1(ς) = γ, η− h2(η) =
ξ, `− h1(`) = τ1(`) for ` ∈ T1, t− h2(t) = τ2(t) for t ∈ T2 we obtain the inequality

|ϕ(`, t)|q ≤ a(`, t) +
q− p

q
M1M2

∫ τ1(`)

`0

∫ τ2(t)

t0

−
=1(γ, ξ)

[−
f (γ, ξ)|ϕ(γ, ξ)|p

+M1

∫ γ

`0

−
=2(µ, ξ)|ϕ(µ, η)|p∆µ

]
∆ξ∆γ. (52)

We can rewrite the inequality (52) as follows:

|ϕ(`, t)|q ≤ a(`, t) +
q− p

q
M1M2

∫ τ1(`)

`0

∫ τ2(t)

t0

−
=1(ς, η)

[−
f (ς, η)|ϕ(ς, η)|p

+M1

∫ ς

`0

−
=2(χ, η)|ϕ(χ, η)|p∆χ

]
∆η∆ς. (53)

As an application of Corollary 1 to (53) with Θ(`, t) = |ϕ(`, t)| we obtain the desired
inequality (49).

4. Conclusions

Using the Leibniz integral rule on time scales, we examined additional generalisations
of the integral retarded inequality presented in [1] and generalised a few of those inequal-
ities to a generic time scale. We also looked at the qualitative characteristics of various
different dynamic equations’ time-scale solutions. Furthermore, in the future, we think to
extend these results in other directions by using (q, ω)-Hahn difference operator.
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