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Abstract: In this paper, we construct a new Lagrangian discrete distribution, named the Lagrangian
zero truncated Poisson distribution (LZTPD). It can be presented as a generalization of the zero
truncated Poissson distribution (ZTPD) and an alternative to the intervened Poisson distribution
(IPD), which was elaborated for modelling both over-dispersed and under-dispersed count datasets.
The mathematical aspects of the LZTPD are thoroughly investigated, and its connection to other
discrete distributions is crucially observed. Further, we define a finite mixture of LZTPDs and
establish its identifiability condition along with some distributional aspects. Statistical work is then
performed. The maximum likelihood and method of moment approaches are used to estimate the
unknown parameters of the LZTPD. Simulation studies are also undertaken as an assessment of the
long-term performance of the estimates. The significance of one additional parameter in the LZTPD is
tested using a generalized likelihood ratio test. Moreover, we propose a new count regression model
named the Lagrangian zero truncated Poisson regression model (LZTPRM) and its parameters are
estimated by the maximum likelihood estimation method. Two real-world datasets are considered to
demonstrate the LZTPD’s real-world applicability, and healthcare data are analyzed to demonstrate
the LZTPRM’s superiority.

Keywords: Lagrangian zero truncated Poisson distribution; intervened Poisson distribution; index of
dispersion; regression; maximum likelihood estimation; generalized likelihood ratio test; simulation

1. Introduction

In several cases, researchers are not capable of perceiving the unabridged distribution
of counts; in particular, the zeros are not often observed, which indicates that zero truncation
is found to be an important and common characteristic for various count data processes.
With this in mind, ref. [1] employed the zero truncated Poisson distribution (ZTPD) to
interpret a chance mechanism whose experimental device becomes active only when
at least one event occurs. Ref. [2] discussed numerical examples to demonstrate the
statistical applications of the ZTPD in such situations. An alternative to the ZTPD was
proposed by [3], the so-called intervened Poisson distribution (IPD), to deal with the
real-life situation of a manager in a supermarket who provided extra assistance to the
customers at a service counter. An attraction of the IPD over the ZTPD is that it gives
information on the effectiveness of intervention in the situation. Ref. [4] applied the IPD
in the fields of reliability analysis, queuing problems, and epidemiological studies, etc.
Ref. [5] considered a modified version of the IPD which has an advantage over the IPD in
stretching the probability in all directions so that clustering of probabilities at initial values
of the operating mechanism is overlooked. Ref. [6] illustrated an alternative to the IPD for
prevalence reduction. However, the IPD proposed by [3] has a restriction that the variance
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should be less than the mean. This is referred to as ‘under-dispersion’in the literature, and
this phenomenon is only observed on rare occasions. To solve this limitation, we propose a
new ZTPD based on a Lagrangian approach, dubbed the Lagrangian zero truncated Poisson
distribution (LZTPD), that can model both under-dispersed and over-dispersed (variance
greater than mean) count datasets. More information on the Lagrangian distributional
approach is given below.

First, the Lagrangian family (LF) of distributions was derived from the Lagrangian
expansion, which was first introduced by [7]. Later, refs. [8,9] proposed a discrete LF
(DLF), which itself forms a very large and important class containing numerous families
of probability distributions. For example, the Lagrangian negative binomial distribution,
obtained by [10], shows its usefulness in a queuing process. The Lagranian Katz family
was developed by [11]. Ref. [12] considered the applications of Lagrangian probability
distributions to inferential problems in a random mapping theory. Ref. [13] derived
the generalized Poisson gamma dependence model from Lagrangian probability models.
Recently, ref. [14] applied the Lagrangian probability density function models for collisional
turbulent fluid particle flows. Furthermore, ref. [9] proved that all discrete Lagrangian
distributions converge to the normal distribution and to the inverse Gaussian distribution
under certain conditions. Thus, we propose the LZTPD in this article, motivated by the
adaptability of the Lagrangian distributions and the need to propose a flexible model
capable of modelling versatile count datasets.

On the other hand, the regression model for count data is gaining more and more
attention these days. The use of regression models to describe count data is relatively
recent, as detailed in [15]. However, in some real-world situations, the system will only be
engaged if at least one event occurs. Examples include the number of international conflicts,
daily accidents, industrial injuries, etc. In many circumstances, counting outcomes directly
with a normal linear regression model will result in inefficient, inconsistent, and biased
estimation, as described in [16]. Positive count data are analyzed using the zero truncated
Poisson regression model (ZTPRM), which is more accurate than the traditional Poisson
regression model for this type of data. Ref. [17] has discussed the application of Poisson
regression models to the analysis of truncated samples of count data. Recently, ref. [18]
developed the intervened Poisson regression model (IPRM), which is an alternative to the
ZTPRM. In this paper, we offer an alternative regression model to both the ZTPRM and
IPRM, the so-called Lagrangian zero truncated Poisson regression model (LZTPRM). The
LZTPD and the LZTPRM are motivated by their suitability for both under-dispersed and
over-dispersed count datasets, as well as their applicability in situations where the modeled
data excludes zero-counts.

The remaining sections of the presented study can be summarized as follows: A brief
introduction to the Lagrangian expansion and DLF are given in Section 2. The LZTPD
along with its statistical properties are discussed in Section 3. In Section 4, we propose a
mixture LZTPD and present the identifiability conditions of finite mixtures of LZTPDs. The
maximum likelihood (ML) estimation method used to investigate the parameter estimation
of the LZTPD is discussed in Section 5. In Section 6, we test the significance of an additional
parameter of the LZTPD using a generalized likelihood ratio test. The simulation results of
the considered estimation method are presented in Section 7. The LZTPRM is elucidated
in Section 8. Empirical illustrations of the proposed LZTPD and LZTPRM are given in
Section 9. Discussions and conclusions are given in Section 10 and Section 11, respectively.

2. Some Preliminaries
2.1. Basics on the Discrete Lagrangian Family

In order to introduce the LZTPD, some mathematical background on the Lagrangian
expansion and DLF must be recalled. Let f1(z) and f2(z) be two analytic and succes-
sively differentiable functions defined on the interval [−1, 1] such that f1(1) = f2(1) = 1,
f1(0) 6= 0, and f2(0) ≥ 0. The following power series expansion was obtained by inverting
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the Lagrange transformation u = z
f1(z)

, which provided the value of z as a power series
in u:

f2(z)

1− z f ′1(z)
f1(z)

=
∞

∑
j=0

bj uj, (1)

where b0 = f2(0) and bj =
1
j! Dj

[
( f1(z))

j f2(z)
]∣∣∣∣

z=0
, with Dj = ∂j

∂zj and f ′1(z) =
∂ f1(z)

∂z .

The details can be found in [19].
Furthermore, if

0 < f ′1(1) < 1 and Dj
[
( f1(z))j f2(z)

]∣∣∣∣
z=0
≥ 0, j ≥ 0, (2)

the Lagrangian expansion (1) defines the DLF. Thus, a random variable (rv) Y belonging to
the DLF has the following pmf:

P(Y = y) = (1− f ′1(1))
Dy[( f1(z))y f2(z)]

y!

∣∣∣∣
z=0

, y = 0, 1, 2, . . . (3)

See [19,20] for more information. The corresponding probability generating function
(pgf) is given by

G(u) =
(1− f ′1(z)) f2(z)

1− z f ′1(z)
f1(z)

, (4)

where z = u f1(z).

2.2. Importance of the Lagrangian Family

In the following, we list some results highlighting the choice of the following paramet-
ric exponential function:

f1(z) = eλ(z−1), (5)

with 0 < λ < 1, into the DLF definition, which has generated several distributions
of importance.

Proposition 1. The distribution of the DLF defined with f1(z) as in (5) and f2(z) =
(ezθ−1)(1−λz)
(eθ−1)(1−λ)

corresponds to the zero truncated generalized Poisson distribution (ZTGPD) defined by [21].

Proof. Based on (3), the pmf of the considered distribution is obtained as

h1(y) =
1− λ

y!
Dy
[

eλy(z−1) (e
zθ − 1)(1− λz)
(eθ − 1)(1− λ)

]∣∣∣∣
z=0

=
θ(θ + λy)y−1e−θ−λy

(1− e−θ)y!
, y = 1, 2, 3, . . . ,

which corresponds to the pmf of the ZTGPD. Hence, the result.

Proposition 2. The distribution of the DLF defined with f1(z) as in (5) and f2(z) = eθ(z−1)

corresponds to the Lagrangian type linear function Poisson distribution given by [22].
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Proof. Based on (3), the pmf of the considered distribution is obtained as

h2(y) =
1− λ

y!
Dy
[
eλy(z−1)eθ(z−1)

]∣∣∣∣
z=0

=
1− λ

y!
(θ + λy)ye−θ−λy, y = 0, 1, 2, . . . ,

which is the pmf of the Lagrangian type linear function Poisson distribution. The distribu-
tion correspondence is proved.

Proposition 3. The distribution of the DLF defined with f1(z) as in (5) and f2(z) = z corresponds
to the Sudha Lagrangian distribution given in [23].

Proof. Based on (3), the pmf of the considered distribution is obtained as

h3(y) =
1− λ

y!
Dy
[
eλy(z−1) z

]∣∣∣∣
z=0

= (1− λ)
e−λy(λy)y−1

(y− 1)!
, y = 1, 2, 3, . . . ,

which is the Sudha Lagrangian distribution. Hence, the result.

Proposition 4. The distribution of the DLF defined with f1(z) as in (5) and f2(z) = zn corre-
sponds to the Lagrangian type weighted delta Poisson distribution given in [23].

Proof. Based on (3), the pmf of the considered distribution is indicated as

h4(y) =
1− λ

y!
Dy
[
eλy(z−1) zn

]∣∣∣∣
z=0

= (1− λ)
e−λy(λy)y−n

(y− n)!
, y = n, n + 1, . . . ,

which is the pmf of the Lagrangian weighted delta Poisson distribution. The desired
result follows.

In view of the applications of the DLF configured with the function f1(z) in (5), it is
motivating to explore a new horizon of distribution with the choice of a new function f2(z).
The new distribution of the study presented below is based on this idea.

3. Lagrangian Zero Truncated Poisson Distribution (LZTPD)

In this section, based on the DLF, we explicitly define the LZTPD. We also examine
its properties, such as median, mode, pgf, moment generating function (mgf), factorial
moments, index of dispersion (IOD), coefficient of variation (CV) and hazard rate function
(hrf), etc. Several propositions are made here to discuss the connections between the LZTPD
and certain other Lagrangian distributions.

Definition 1. The LZTPD is the special distribution of the DLF under the following original
configuration: f1(z) = eλ(z−1) and f2(z) = ezθ−1

eθ−1 . Then, a rv Y is said to follow the LZTPD, if its
pmf has the following form:

h(y) =
(1− λ)e−θ−λy[(θ + λy)y − (λy)y]

(1− e−θ)y!
, y = 1, 2, 3, . . . , (6)

where θ > 0 and 0 < λ < 1.
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Proof. First, note that f1(z) and f2(z) satisfy the conditions in (2). Then the pmf given in
(3) can be derived as

P(Y = y) =
1− λ

y!
Dy
[

eλy(z−1) ezθ − 1
eθ − 1

]∣∣∣∣
z=0

=
(1− λ)e−θ−λy[(θ + λy)y − (λy)y]

(1− e−θ)y!
.

Hence, the proof.

A distribution with the pmf given in (6) will be denoted as LZTPD(θ, λ). For λ→ 0,
the LZTPD(θ, λ) reduces to the ZTPD (see [24]). As a result, we can say that the LZTPD(θ, λ)
is a generalization of the ZTPD. Figures 1 and 2 display the graphical representation of the
pmf of the LZTPD for different parameter values of θ and λ.
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Figure 1. Various shapes of the LZTPD pmf when λ increases.
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Figure 2. Various shapes of the pmf of the LZTPD when θ increases.

The hrf of the LZTPD is obtained by substituting the pmf in the following equation

hy = P(Y = y|Y ≥ y) =
h(y)

∑∞
j=y h(j)

. (7)
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From (7), it is clear that determining the closed form expression of the hrf is more
intricate. We have drawn the graph of the hrf to determine its possible shapes.

Figure 3 demonstrates that the LZTPD has an increasing hrf.
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Figure 3. Plots of the hrf of the LZTPD distribution.

Proposition 5. Let Y be a rv following the LZTPD. Then the median of Y is defined by the smaller
integer m in {1, 2, . . .} such that

m

∑
y=1

e−λy((θ + λy)y − (λy)y)

y!
≥ eθ − 1

2(1− λ)
. (8)

Proof. By the definition, m is the smaller integer in {1, 2, . . .} such that P(Y ≤ m) ≥ 1
2 ,

which is equivalent to the desired result.

Proposition 6. Let Y be a rv following the LZTPD. Then, the mode of Y, denoted by ym, exists in
{1, 2, . . .}, and lies in the case:

$(ym + 1)
$(ym)

− eλ ≤ ym eλ ≤ $(ym)

$(ym − 1)
, (9)

where $(ym) = (θ + λym)ym − (λym)ym .

Proof. By the definition of the mode, we must find the integer y = ym for which h(y) has
the greatest value. That is, we aim to solve h(y) ≥ h(y− 1) and h(y) ≥ h(y + 1). First, note
that h(y) can also be written as:

h(y) =
1− λ

eθ − 1
e−λy$(y)

y!
, (10)

where $(y) = (θ + λy)y − (λy)y.

Obviously, h(y) ≥ h(y− 1) implies that

$(y)
$(y− 1)

≥ y eλ. (11)

Also, h(y) ≥ h(y + 1) implies that

$(y + 1)
$(y)

≤ (y + 1) eλ. (12)
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By combining (11) and (12), we get (9), hence, the proof.

Proposition 7. The LZTPD(θ, λ) is a member of the modified power series family of distributions
defined by [25].

Proof. According to [25], the pmf of the modified power series distribution (MPSD) is
given by

h5(y) =
ry[Ψ(θ)]y

κ(θ)
, y ∈ G ⊆ N,

where N is the set of non-negative integers, G is a subset of N, ry ≥ 0 for all y ∈ N, and
κ(θ) = ∑y∈G ry[Ψ(θ)]y can be viewed as a normalization constant. By its basic definition,
the pmf of the LZTPD in (6) satisfies

∞

∑
y=1

h(y) = 1,

which implies that
∞

∑
y=1

e−λy[(θ + λy)y − (λy)y]

y!
=

eθ − 1
1− λ

.

Also, we have

eθ − 1
1− λ

=
∞

∑
y=1

(1 + y)y−1(θe−θ)y

(1− λ)y!
=

∞

∑
y=1

ry[Ψ(θ)]y,

where

ry =
(1 + y)y−1

(1− λ)y!
, Ψ(θ) = θe−θ ,

and κ(θ) = ∑∞
y=1 ry[Ψ(θ)]y.

Hence, the pmf of the LZTPD given in (6) can be expressed under the following form:

h(y) =
ry[Ψ(θ)]y

κ(θ)
.

This completes the proof.

Proposition 8. The pgf of a rv Y following the LZTPD(θ, λ) is expressed as

G(u) = E(uY) =
(1− λ)(ezθ − 1)
(eθ − 1)(1− λz)

, (13)

where we recall that z and u are related by the following equation: z = u eλ(z−1).

Proof. Based on (4), we directly obtain

G(u) =
(1− f ′1(1)) f2(z)

1− z f ′1(z)
f2(z)

=
(1− λ)(ezθ − 1)
(eθ − 1)(1− λz)

.

Thus, the proof is obtained.
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Corollary 1. The mgf of a rv Y following the LZTPD(θ, λ) is obtained by putting z = es and
u = ek in (13), and we get

M(k) = E(ekY) =
(1− λ)(eθ es − 1)
(eθ − 1)(1− λes)

,

where s = k + λ(es − 1).

Corollary 2. The cumulant generating function (cgf) of a rv Y following the LZTPD(θ, λ) given
in (6) becomes

C(k) = log [MY(k)] = log

[
(1− λ)(eθ es − 1)
(eθ − 1)(1− λes)

]
,

where s = k + λ(es − 1).

Proposition 9. Let Y1, Y2, . . . , Yn be n independently and identically distributed (iid) rvs following
the LZTPD(θ, λ). Then the distribution of the sample sum V = ∑n

k=1 Yi has the following pgf:

Ψ(u) =
(1− λ)n(ezθ − 1)n

(eθ − 1)n(1− λz)n ,

where z = u eλ(z−1).

Proof. Based on the pgf of the LZTPD given in (13), the pgf of the rv V becomes

Ψ(u) = E(uV) = E(uY1+Y2+...+Yn) =
n

∏
k=1

E(uYk ) =
n

∏
k=1

G(u) = [G(u)]n

=
(1− λ)n(ezθ − 1)n

(eθ − 1)n(1− λz)n .

This completes the proof.

Proposition 10. For any integer r ≥ 1, the rth factorial moment of a rv Y following the
LZTPD(θ, λ) is given by

µ[r] = E[Y(Y− 1) . . . (Y− r + 1)]

=

(eθ − 1)−1 Dr

(
ezθ
)
+ λ

∑r
i=1(r− i + 1)µ[r−i]Di

(
u eλ(z−1)

)
1− λ


∣∣∣∣
u=z=1

,
(14)

where z = u eλ(z−1).

Proof. By its definition, it is obtained by successively differentiating G(u) given in (4) in r
times with respect to u and by putting u = z = 1. Thus, it is given by

G(u) =
(1− f ′1(1)) f2(z)

1− u f ′1(z)
,

implying that
(1− u f ′1(z))G(u) = (1− f ′1(1)) f2(z).

Taking the first derivative with respect to u on both sides, we get

G(u)D1(1− u f ′1(z)) + G′(u)(1− u f ′1(z)) = (1− f ′1(1))D1 f2(z). (15)
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Again, by taking the derivative of (15) with respect to u on both sides, we get

G(u)D2(1− u f ′1(z)) + 2D1(1− u f ′1(z))G
′(u) + (1− u f ′1(z))G

′′(u)

= (1− f ′1(1))D2 f2(z).

Proceeding like this, we get the rth derivative is of the following form:

Gr(u) =
(1− f ′1(1))Dr f2(z)−∑r

i=1(r− i + 1) Di(1− u f ′1(z)) Gr−i(u)
1− u f ′1(z)

(16)

Substitute f1(z) = eλ(z−1) , f2(z) = ezθ−1
eθ−1 and z = u = 1 in (16), we get (14).

Thus the proof is obtained.

Proposition 11. The mean and variance of a rv Y following the LZTPD(θ, λ) are

µ = E(Y) =
λ

(1− λ)2 +
θ

(1− e−θ)(1− λ)

and

σ2 = Var(Y) =
λ + λ2

(1− λ)4 +
θ2(1− λ) + θ

(1− e−θ)(1− λ)3 −
θ2

(1− e−θ)2(1− λ)2 ,

respectively.

Proof. The first two factorial moments can be obtained by using (14) as follows:

E(Y) = µ =
f ′2(1)

1− f ′1(1)
+

f ′′1 (1) + f ′1(1)− ( f ′1(1))
2

(1− f ′1(1))
2

=
λ

(1− λ)2 +
θ

(1− e−θ)(1− λ)

and

E[Y(Y− 1)] =
f ′2(1) + f ′′1 (1) + 4 f ′2(1) f ′1(1) + 2( f ′1(1))

2

(1− f ′1(1))
2

+
f ′′′1 (1) + f ′′1 (1) + 3 f ′2(1) f ′′1 (1) + 5 f ′1(1) f ′′1 (1)

(1− f ′1(1))
3

+
3( f ′′1 (1))

2

(1− f ′1(1))
4 .

Furthermore, we have

Var(Y) = σ2 = E[Y(Y− 1)] + E(Y)− [E(Y)]2

=
f ′′2 (1) + f ′2(1)− ( f ′2(1))

2

(1− f ′1(1))
2 +

(1 + f ′2(1))( f ′′1 (1) + f ′1(1)− ( f ′1(1))
2)

(1− f ′1(1))
3

+
f ′′′1 (1) + f ′1(1) f ′′1 (1) + 2 f ′′1 (1)

(1− f ′1(1))
3 +

2( f ′′1 (1))
2

(1− f ′1(1))
4

=
λ + λ2

(1− λ)4 +
θ2(1− λ) + θ

(1− e−θ)(1− λ)3 −
θ2

(1− e−θ)2(1− λ)2 ,

where f ′1(1), f ′′1 (1), f ′′′1 (1), f ′2(1), f ′′2 (1) denote the values of the successive derivatives of
f1(z) and f2(z), respectively, evaluated at the special value z = 1.
Hence, the proof.



Symmetry 2022, 14, 1775 10 of 25

Proposition 12. The index of dispersion and coefficient of variation of a rv Y following the
LZTPD(θ, λ) are

IOD =
(λ + λ2)(1− e−θ)2 + (θ2 − λθ2 + θ)(1− λ)(1− e−θ)− θ2(1− λ)2

λ(1− e−θ)2(1− λ)2 + θ(1− e−θ)(1− λ)3

and

CV =

√
(λ + λ2)(1− e−θ)2 + (θ2 − λθ2 + θ)(1− λ)(1− e−θ)− θ2(1− λ)2

λ(1− e−θ) + θ(1− λ)
,

respectively.

Proof. A normalized measure of dispersion can be obtained by using the variance to mean
relationship. This measure is the well-known IOD, and it is given by

IOD =
σ2

µ

=
(λ + λ2)(1− e−θ)2 + (θ2 − λθ2 + θ)(1− λ)(1− e−θ)− θ2(1− λ)2

λ(1− e−θ)2(1− λ)2 + θ(1− e−θ)(1− λ)3 .

Analogously, the CV is given by

CV =

√
σ2

µ

=

√
(λ + λ2)(1− e−θ)2 + (θ2 − λθ2 + θ)(1− λ)(1− e−θ)− θ2(1− λ)2

λ(1− e−θ) + θ(1− λ)
.

Hence, the proof.

The coefficients of skewness and kurtosis, respectively, are used to calculate the
asymmetry degree and flatness of a distribution. The first is derived by dividing the third
central moment by the variance raised to the power of 3/2, and the second is acquired by
dividing the fourth central moment by the square of the variance. These coefficients are
required to determine the shape of any distribution. The mean, variance, median, mode,
CV, IOD, skewness and kurtosis for selected values of parameters of the LZTPD(θ, λ) are
summarized in Table 1.

From Table 1, it can be observed that the LZTPD(θ, λ) is both under-dispersed, i.e.,
IOD < 1, and over-dispersed, i.e., IOD > 1. This makes a strong difference with the ZTPD
and IPD, defined on a similar mathematical basis.

Table 1. Values for some moment measures of the LZTPD for different values of θ and λ.

θ λ Mean Variance Median Mode IOD CV Skewness Kurtosis

0.5 0.05 1.4045 1.0797 1 1 0.7687 0.7398 1.4039 5.1257
0.1 1.5531 1.3000 1 1 0.8370 0.7341 1.9099 7.8036
0.2 1.9061 1.9476 1 1 1.0217 0.7321 2.0265 10.0765
0.3 2.3599 3.0631 2 1 1.2979 0.7416 1.3564 14.9253
0.4 2.9650 5.1144 2 1 1.7248 0.7627 2.8461 15.4684
0.5 3.8122 9.2482 3 1 2.4259 0.7977 3.5461 17.4684

1 0.05 1.6652 2.4915 1 1 1.4962 0.9478 1.9810 5.1030
0.1 1.7577 2.8956 2 1 1.6473 0.9680 2.0319 9.7862
0.2 1.9774 4.0345 2 1 2.0402 1.0157 2.4052 10.8162
0.3 2.2599 5.9023 2 1 2.6117 1.0750 2.9737 12.2294
0.4 2.6366 9.1847 3 1 3.4835 1.1494 3.1804 15.0489
0.5 3.1639 15.5245 4 1 4.9066 1.2453 3.6804 17.0489
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Table 1. Cont.

θ λ Mean Variance Median Mode IOD CV Skewness Kurtosis

2 0.05 2.3739 6.7172 2 2 2.8296 1.0917 2.0589 6.1850
0.1 2.4415 7.6566 2 2 3.1359 1.1333 2.8669 9.0253
0.2 2.6021 10.2187 3 2 3.9270 1.2284 3.1943 11.4901
0.3 2.8086 14.2461 3 2 5.0721 1.3438 3.5848 15.2456
0.4 3.0840 21.0251 4 2 6.8173 1.4867 3.8983 16.0534
0.5 3.4695 33.5493 5 2 9.6696 1.6694 3.9983 17.0534

3 0.05 3.2125 13.0707 3 3 4.0686 1.1253 1.4589 6.9185
0.1 3.2741 14.7966 3 3 4.5192 1.1748 1.9866 10.0253
0.2 3.4202 19.4386 4 3 5.6833 1.2890 2.6943 11.4901
0.3 3.6082 26.5960 5 3 7.3709 1.4292 2.9848 13.2456
0.4 3.8587 38.3929 5 4 9.9494 1.6057 3.1983 16.7534
0.5 4.2095 59.6845 7 4 14.1782 1.8352 3.8983 18.0534

4. Finite Mixtures of Lagrangian Zero Truncated Poisson Distribution

In recent years, finite mixture models have been given much attention in practical
situations. Mixture models are widely used in astronomy, biology, genetics, medicine,
psychiatry, marketing, etc. For the details, see [26]. The properties of finite mixtures of the
IPD and the modified IPD are discussed by [27]. In this section, we derive finite mixtures
based on the LZTPD(θ, λ). This mixture model may be consistent with the situation of
further interventions.

Let Z be a discrete rv with pmf h(z) = ∑
g
i=1 lihi(z), where i = 1, 2, . . . g, li > 0 such

that ∑
g
i=1 li = 1, hi(z) ≥ 0 and ∑z hi(z) = 1. Then, we state Z has a mixture distribution

and h(z) is a finite mixture of distributions. The parameters l1, l2, . . . , lg are known as the
mixing weights and h1, h2, . . . , hg as the components of the mixture. The collection of all
parameters occurring in the components is represented as Θ and the complete collection of
all parameters in the mixture model is represented as Ψ.

Suppose that ∆ = {U(z; θi) : θi ∈ Θ, z ∈ R} is the class of pmf’s from which mixtures
are to be formed. Then the class of finite mixtures of ∆ with the appropriate class of pmf’s
is Ĥ = {H(z) : H(z) = ∑

g
i=1 liU(z; θi), li > 0, U(z; θi) ∈ ∆, i = 1, 2, . . . g}. In this setting, Ĥ

is the convex hull of ∆.

Definition 2. A rv Z is said to have a g component mixture of LZTPDs if it has the pmf h(z) =
P(Z = z) of the following form:

h(z) =
g

∑
i=1

lihi(z), z = 1, 2, . . . , (17)

where 0 ≤ li ≤ 1, ∑
g
i=1 li = 1, and for each i = 1, 2, 3, . . . g,

hi(z) =
(1− λi)e−θi−λiz[(θi + λiz)x − (λiz)z]

(1− e−θi )z!
,

with 0 < λi < 1 and θi > 0.

A distribution with the pmf given in (17) is called the Lagrangian zero truncated Poisson
mixture distribution with g components, or in short, LZTPMDg.

The following theorem from [28] is adopted to construct the identifiability condition
of the finite mixture model:

Theorem 1. A necessary and sufficient condition for Ĥ to be identifiable is that ∆ is linearly
independent over the field of real numbers.
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Proof. Proof is given in [28] and hence omitted.

We are now able to present the identifiability conditions of the LZTPMDg.

Theorem 2. The identifiability conditions for the LZTPMDg with the pmf h(z) as given in (17)
are θi 6= θj, λi 6= λj for i, j ∈ {1, 2, . . . , g} such that i 6= j.

Proof. Take g = 2 and consider the equation

d1H1(z) + d2H2(z) = 0, (18)

where d1 and d2 are any two arbitrary real numbers, H1(z) = ∑z
j=1 h(j) and H2(z) =

∑z
j=1 φ(j) for z = 1, 2, . . . , in which φ(j) is obtained from h(j) by replacing θj by δj and λj

by γj.
Assume that, θi 6= θj, λi 6= λj for i, j ∈ (1, 2) such that i 6= j, θi 6= θj and λi 6= λj. Thus,

for l1 = l, we have

H1(z) =
z

∑
j=1

{
l
(1− λ1)e−θ1−λ1 j[(θ1 + λ1 j)j − (λ1 j)j]

(1− e−θ1)j!

+ (1− l)
(1− λ2)e−θ2−λ2 j[(θ2 + λ2 j)j − (λ2 j)j]

(1− e−θ2)j!

} (19)

and

H2(z) =
z

∑
j=1

{
l
(1− γ1)e−δ1−γ1 j[(δ1 + γ1 j)j − (γ1 j)j]

(1− e−δ1)j!

+ (1− l)
(1− γ2)e−δ2−γ2 j[(δ2 + γ2 j)j − (γ2 j)j]

(1− e−δ2)j!

}
.

(20)

Now, from (18)–(20), we obtain the following equations:

d1

z

∑
j=1

(1− λ1)e−θ1−λ1 j[(θ1 + λ1 j)j − (λ1 j)j]

(1− e−θ1)j!

+ d2

z

∑
j=1

(1− γ1)e−δ1−γ1 j[(δ1 + γ1 j)j − (γ1 j)j]

(1− e−δ1)j!
= 0

(21)

and

d1

z

∑
j=1

(1− λ2)e−θ2−λ2 j[(θ2 + λ2 j)j − (λ2 j)j]

(1− e−θ2)j!

+ d2

x

∑
j=1

(1− γ2)e−δ2−γ2 j[(δ2 + γ2 j)j − (γ2 j)j]

(1− e−δ2)j!
= 0.

(22)

Solving (21) and (22), we get

d1

z

∑
j=1

(1− λ1)(1− γ2)e−θ1−λ1 j−δ2−γ2 j[(θ1 + λ1 j)j − (λ1 j)j][(δ2 + γ2 j)j − (γ2 j)j]

(1− e−θ1)(1− e−δ2)j!

= d1

z

∑
j=1

(1− λ2)(1− γ1)e−θ2−λ2 j−δ1−γ1 j[(θ2 + λ2 j)j − (λ2 j)j][(δ1 + γ1 j)j − (γ1 j)j]

(1− e−θ2)(1− e−δ1)j!
,

(23)

which implies d1 = 0 and, logically, d2 = 0 by (18). Hence, by Theorem 1, it can be
concluded that H1 and H2 are linearly independent. Now, the argument can be extended
to the case of any positive integer g and thus the proof follows.
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Proposition 13. The pgf of a rv following the LZTPMDg with pmf given in (17) is given by

G(u) =
g

∑
i=1

li
(1− λi)(ezθi − 1)
(eθi − 1)(1− λiz)

,

where z = ueλi(z−1).

Proof. Given the pgf of the LZTPD(θ, λ) stated in (13), the proof follows directly from
Definition 2.

5. Estimation

In this section , we explore two popular methods of estimation, namely the method
of moments (MM) and maximum likelihood (ML), for estimating the parameters of the
LZTPD(θ, λ).

5.1. Maximum Likelihood

Let Y1, Y2, . . . , Yn be n iid rvs derived from a rv Y following the LZTPD(θ, λ) (so with
the pmf given in (6)), and y1, y2, . . . , yn be n observations. Then, the likelihood function of
the parameter vector Θ = (θ, λ) is given by

Ln = Ln(Θ) =
(1− λ)ne−λ ∑n

i=1 yi ∏n
i=1[(θ + λyi)

yi − (λyi)
yi ]

(eθ − 1)n .

The log-likelihood function is given by

Ln = Ln(Θ) = log(Ln) = n log(1− λ)− λ
n

∑
i=1

yi +
n

∑
i=1

log[(θ + λyi)
yi − (λyi)

yi ]

− n log(eθ − 1).

(24)

The first partial derivatives of Ln with respect to the parameters θ and λ are, respec-
tively, given by

∂Ln

∂θ
=

n

∑
i=1

yi(θ + yi)
yi−1

[(θ + λyi)yi − (λyi)yi ]
− n eθ

eθ − 1

and
∂Ln

∂λ
=

n

∑
i=1

y2
i [(θ + λyi)

yi−1 − (λyi)
yi−1]

(θ + λyi)yi − (λyi)yi
−

n

∑
i=1

yi −
n

1− λ
.

The ML estimate (MLE) (vector) of Θ, say Θ̂ = (θ̂, λ̂), is obtained by the solutions of
the likelihood equations ∂Ln

∂θ = 0 and ∂Ln
∂λ = 0 with respect to θ and λ. With these notations,

θ̂ and λ̂ are also called MLEs of θ and λ, respectively. Analytical solutions to the likelihood
equations are not possible. However, one can still compute the MLEs numerically by
maximizing the log-likelihood function given in (24) by using the optim function in the R
programming language under the L-BFGS-B algorithm. The associated R-code is provided
in Appendix A.

In order to obtain the asymptotic confidence intervals for the parameters θ and λ, we
consider the second partial derivatives of Ln taken at Θ̂ = (θ̂, λ̂). In this way, the Hessian
matrix of the LZTPD(θ, λ) can be obtained, and it is given by

H(Θ̂) =

 ∂2Ln
∂θ2

∂2Ln
∂θ∂λ

∂2Ln
∂λ∂θ

∂2Ln
∂λ2


∣∣∣∣∣∣∣
Θ=Θ̂

,
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where
∂2Ln

∂λ2 = − n
(1− λ)2 +

n

∑
i=1

y3
i

{
(yi − 1)[(θ + λyi)

yi − (λyi)
yi ]
[
(θ + λyi)

yi−2 − (λyi)
yi−2]

[(θ + λyi)yi − (λyi)yi ]2

}

−
n

∑
i=1

y3
i

{
yi
[
(θ + λyi)

yi−1 − (λyi)
yi−1]2

[(θ + λyi)yi − (λyi)yi ]2

}
,

∂2Ln

∂θ2 =

{
yi(θ + λyi)

yi−2[(yi − 1){(θ + λyi)
yi − (λyi)

yi} − (θ + λyi)
yi ]

[(θ + λyi)yi − (λyi)yi ]2

}
+

n
eθ(1− e−θ)2

and
∂2Ln

∂θ∂λ
=

n

∑
i=1

y2
i (θ + λyi)

yi−1

{
{(θ + λyi)

yi − (λyi)
yi}(θ + λyi)

−1 − yi{(θ + λyi)
yi−1 − (λyi)

yi−1}
[(θ + λyi)yi − (λyi)yi ]2

}
.

Therefore, the observed Fisher information matrix J(Θ̂) can be obtained by the neg-
ative of the Hessian matrix. That is, J(Θ̂) = −H(Θ̂). Moreover, the variance-covariance
matrix of the MLEs is the inverse of the observed Fisher information matrix. It is given as
follows:

Σ = J−1(Θ̂) =

Σ11 Σ12

Σ21 Σ22


and Σij = Σji for i 6= j = 1, 2.

The asymptotic distribution of the random version of Θ̂ follows a normal distribution
that has been thoroughly established under the regularity constraints. That is, the random
version of Θ̂−Θ follows the multivariate normal distribution N2(0, Σ) asymptotically. For
ρ ∈ (0, 1), we calculate the 100× (1− ρ)% asymptotic confidence intervals for parameters
using the following formulae:

θ ∈
{

θ̂ ∓ Zρ/2
√

Σ11

}
, λ ∈

{
λ̂∓ Zρ/2

√
Σ22

}
,

where Zρ is the upper ρth percentile of the standard normal distribution.

5.2. Method of Moments

In this portion, the parameters of the LZTPD are estimated by means of the method
of moments (MM). This method’s concept is to solve theoretical moments using empirical
moments. So we use the first and second sample moments, say m1 and m2, respectively.
Using this idea, we have

m1 = µ′1 =
λ

(1− λ)2 +
θ

(1− e−θ)(1− λ)
(25)

and

m2 = µ′2 =
λ + λ2

(1− λ)4 +
θ2(1− λ) + θ

(1− e−θ)(1− λ)3 −
θ2

(1− e−θ)2(1− λ)2

+
λ

(1− λ)2 +
θ

(1− e−θ)(1− λ)
.

(26)

Solving the above two equations, we get the method of moment estimates (MMEs) of
θ and λ, say θ̂MM and λ̂MM, respectively, governed by the following equations:

θ̂MM =
m1(1− λ̂MM)2 − λ̂MM

(1− λ̂MM)5[
(m2 −m2

1)(1− λ̂MM)4 − (m1 + λ̂2
MM)(1− λ̂MM)2 + (m1(1− λ̂MM)2 − λ̂MM)2

]
and

λ̂MM =

√
(1 + 2m1 − q)2 − 4m1(m1 − q) + (1 + 2m1 − q)

2m1
,
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where q = θ̂MM

1−e−θ̂MM
.

6. Generalized Likelihood Ratio Test

In this section, we test the significance of an additional parameter included in the
LZTPD using the generalized likelihood ratio test (GLRT). For the details, see [29].

Thus, in order to test the significance of the additional parameter λ of the LZTPD(θ, λ),
we take over the GLRT procedure. Here, the null hypothesis is H0 : Y follows the ZTPD,
against the alternative hypothesis: H1 : Y follows the LZTPD(θ, λ).

In the case of the GLRT, the test statistic is

− 2 log Λ = −2 log

(
Ln(Θ̂∗)
Ln(Θ̂)

)
, (27)

where Θ̂ is the MLE of Θ = (θ, λ) with no restrictions and Θ̂∗ is the MLE of Θ under H0.
The random version of the test statistic given in (27) is asymptotically distributed as the
chi-square distribution with one degree of freedom.

7. Simulation Study

In this section, we present a brief simulation exercise to assess the limited sample
performance of estimates derived using the ML estimation approach by the R programming
language (see [30]). Here, the iteration process is repeated N = 1000 times. The specification
of the parameter values is as follows: θ = 1 and λ = 0.5 (over-dispersion case), and θ = 0.5
and λ = 0.1 (under-dispersion case). Thus, we computed the average of the mean square
error (MSE), and bias using the MLEs. The results obtained are summarized in Table 2
corresponding to the samples of sizes 25, 50, 200, 500, and 1000.

The average bias of the simulated estimates equals 1
1000 ∑1000

i=1 (Θ̂i −Θ) and the average
MSE of the simulated estimates equals 1

1000 ∑1000
i=1 (Θ̂i −Θ)2, in which i is the rank of the

considered iteration, Θ ∈ {θ, λ} and Θ̂ is the MLE of Θ.

Table 2. Estimates of the parameters and the corresponding bias and MSE.

Parameter Set Sample Size Parameters Estimates MSE Bias

n = 25 θ 0.7554 0.0598 −0.2464
λ 0.0379 0.0031 −0.0590

n = 50 θ 0.7592 0.0579 −0.2488
λ 0.4490 0.0026 −0.0510

θ = 1, λ = 0.5 n = 200 θ 0.7801 0.0483 −0.2199
λ 0.4601 0.0015 −0.0399

n = 500 θ 0.8023 0.0390 −0.1977
λ 0.4780 0.0004 −0.0220

n = 1000 θ 0.9567 0.0018 −0.0433
λ 0.4901 0.0001 −0.0099

n = 25 θ 0.3646 0.0183 −0.1354
λ 0.0300 0.0049 −0.0700

n = 50 θ 0.3699 0.0169 −0.1301
λ 0.0542 0.0020 −0.0458

θ = 0.5, λ = 0.1 n = 200 θ 0.3978 0.0104 −0.1022
λ 0.0801 0.0003 −0.0199

n = 500 θ 0.4736 0.0006 −0.0264
λ 0.0891 0.0001 −0.0109

n = 1000 θ 0.4983 0.00001 −0.0017
λ 0.0940 0.00003 −0.0060
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From Table 2, it can be observed that the MSE in both the cases of the parameter sets
is in decreasing order as the sample size increases, and also, the MLEs of the parameters
come closer to the original parameter values as the sample size increases.

8. Lagrangian Zero Truncated Poisson Regression Model

The first thought that comes to mind when modelling a discrete response variable with
associated covariates is a Poisson regression model. Except in the case of equi-dispersion,
it can be seen that the Poisson regression provides erroneous findings when the response
variable is over-dispersed or under-dispersed. Several models have been proposed to deal
with these dispersions, including mixed Poisson models, generalized Poisson models, etc.
However, we frequently encounter cases in which count data has no zeros; refs. [31,32]
provided examples of length of hospital stay data. In this case, the ZTPRM performs
well. Here, we introduce a novel count regression model called the LZTPRM, which is
based on the LZTPD and provides additional options for predicting over-dispersed and
under-dispersed zero truncated counts. Finally, we see that the LZTPRM performs well
compared to the ZTPRM, ZTGPRM, and IPRM in the case of length of hospital stay data.

To link the covariates to the mean of the response rv X, we use the log-link function
such that

µ = E(X) = eyTα, i = 1, 2, . . . , n, (28)

where yT = (y1, y2, . . . , yk) is the vector of k covariates and α = (α1, α2, . . . , αk) is the
unknown vector of regression coefficients. Now, by considering the notations involved for
the LZTPD(θ, λ) and the following re-parametrization:

λ =

√[
θ

1−e−θ − (2µ + 1)
]2
− 4µ

(
µ− θ

1−e−θ

)
−
[

θ
1−e−θ − (2µ + 1)

]
2µ

,

the pmf of the LZTPD can be re-expressed as

h(x|θ, µ) =
1−V

(eθ − 1)x!
e−Vx [(θ + Vx)x − (Vx)x], (29)

where

V =

√[
θ

1−e−θ − (2µ + 1)
]2
− 4µ

(
µ− θ

1−e−θ

)
−
[

θ
1−e−θ − (2µ + 1)

]
2µ

,

θ > 0 and µ ≥ max
{

θ
1−e−θ , 1

4

(
2θ

1−e−θ − θ2

(1−e−θ)2 − 1
)}

. Based on n independent obser-

vations of the regression model, say (x1, yT
1 ), (x2, yT

2 ), . . . , (xn, yT
n ), and substituting (28)

in (29), Xi|yT
i follows the LZTPRM(θ, µi), where yT

i = (yi1, yi2, . . . , yik), with the following
pmf:

h(xi|yT
i , θ) =

1−Wi

(eθ − 1)xi!
e−Wi xi [(θ + Wi xi)

xi − (Wi xi)
xi ],

where

Wi =

√[
θ

1−e−θ − (2 eyT
i α + 1)

]2
− 4 eyT

i α
(

eyT
i α − θ

1−e−θ

)
−
[

θ
1−e−θ − (2eyT

i α + 1)
]

2eyT
i α

.

The log-likelihood function of the LZTPRM based on a sample of n independent
observations (x1, yT

1 ), (x2, yT
2 ), . . . , (xn, yT

n ) is expressed as

log L =
n

∑
i=1
{log(1−Wi)−Wixi + log[(θ + Wixi)

xi − (Wixi)
xi ]− log xi!}

− n log(eθ − 1).

(30)
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As in Section 5, for finding the MLEs of the parameters, we use the optim function in
the R programming language under the L-BFGS-B algorithm.

9. Applications and Empirical Study

This section contains three real datasets to demonstrate the empirical importance of
the LZTPD. The first two datasets are used to compare the LZTPD’s modeling ability to that
of some competing models, while the third dataset is for the regression study. The form
of the hrf of the datasets is determined using a graphical method based on Total Time on
Test (TTT). If the empirical TTT plot is convex, concave, convex then concave, and concave
then convex, then the form of the associated hrf is decreasing, increasing, bathtub shape,
and upside-down bathtub shape, respectively (see [33]). The following distributions are
considered to demonstrate the potential advantage of the LZTPD:

• The ZTPD proposed by [1], and defined by the following pmf:

h6(y) =
θy

y!(eθ − 1)
, y = 1, 2, . . . ,

with θ > 0.
• The ZTGPD proposed by [21], and specified by the following pmf:

h7(y) =
θ(θ + λy)y−1e−λy

y!(eθ − 1)
, y = 1, 2, . . . ,

wih θ, λ > 0.
• The IPD elaborated by [3], and indicated by the following pmf:

h8(y) =
[(1 + ϕ)y − ϕy]ζy

eϕζ(eζ − 1)y!
, y = 1, 2, . . .

with ζ > 0 and ϕ ≥ 0.
• The zero truncated discrete Shankar distribution (ZTDSD) proposed by [34], and

defined by the following pmf:

h9(y) =
(θ2 + 1 + θy)(1− e−θ)− θe−θ

(θ2 + θ + 1)
, y = 1, 2, . . . ,

with θ > 0.
• The two-parameter zero truncated Poisson-Lindley distribution (ZTPLD) introduced

by [35], and indicated by the following pmf:

h10(y) =
θ2

θ2 + 2θα + θ + α

αy + θ + α + 1
(θ + 1)y , y = 1, 2, . . . ,

with θ, α > 0.
• The zero truncated generalized negative binomial distribution (ZTGNBD) proposed

by [36], and defined by the following pmf:

h11(y) =
θ

θ + λy

(
θ + λy

y

)
αy(1− α)θ+λy−y

1− (1− α)θ
, y = 1, 2, . . . ,

with θ, λ > 0 and 0 < α < 1.

The MLEs of the parameters, negative estimated Log Likelihood (−L̂n), Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC), and the χ2 statistic value are
now calculated for the first two datasets. The best model is the one with minimum values
for its model adequacy measures, such as the AIC and BIC, and the best fitted model is the
one having a minimum value for the goodness of fit statistic (χ2).
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9.1. University Course Enrollments

Ref. [37] provided the following data on student enrollments in selected senior mathe-
matics and statistics courses at the University of Calgary over a five-year period:
1, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 13, 13, 14,
16, 16, 17, 17, 17, 18, 19, 20, 24, 24, 24, 24, 27, 31, 33, 35, 37.

Table 3 shows the descriptive measures of the data, which include sample size n,
minimum (min), first quartile (Q1), median (Md), third quartile (Q3), maximum (max), and
interquartile range (IQR).

Table 3. Descriptive statistics for the university course enrollments data.

Statistics n min Q1 Md Q3 max IQR

Values 56 1 4 7 17 37 13

The empirical IOD of the data is equal to 7.7131. As a result, our model employed
to describe the current data set is capable of dealing with over-dispersion. In addition,
Figure 4 shows an empirical TTT plot of the data and it reveals an increasing hrf.

0.0 0.2 0.4 0.6 0.8 1.0
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8
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Figure 4. TTT plot for the university course enrollments data.

The MLEs, model adequacy measures, and χ2-value for the data are computed. They
are given in Table 4. From Table 4, it is clear that the LZTPD has better performance
compared to all the other competing models considered here since it has the smallest
χ2-value and model adequacy measures.

Now, the Hessian matrix related to the MLEs is given as

H(Θ̂) =

1392.5626 57.7502

57.7502 4.8318


and the quadrated estimated variance-covariance matrix is

Σ =

 0.0014 −0.0170

−0.0170 0.4103

.
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Table 4. MLEs, model adequacy measures and χ2 value for the university course enrollments data.

Model MLEs −L̂n χ2 AIC BIC

ZTPD θ = 11.25 300.1443 2997.476 602.2886 604.3140

IPD ϕ = 11.249 300.1443 2998.871 604.2886 608.3393
ζ = 3.3197× 10−8

ZTDSD θ = 0.1709 187.8862 144.3541 377.7725 381.7978

ZTPLD θ = 0.1785 187.856 144.7294 379.7121 383.7628
α = 0.2975

ZTGPD θ = 3.8053 186.8137 154.0068 377.6273 381.6780
λ = 0.6540

ZTGNBD θ = 20.5554 186.8197 153.9518 379.6394 385.7154
λ = 4.0554
α = 0.1687

LZTPD θ = 2.5878 186.7358 126.0983 377.4716 381.5223
λ = 0.6113

It is noticed that the determinant value of the observed information matrix J(Θ̂) is
non-zero and hence meets the non-singularity conditions of the information matrix.

For comparison purposes only, we compute the MMEs of the LZTPD parameters
for the university course enrollments data, and they are obtained as θ̂MM = 2.0154 and
λ̂MM = 0.5815. It is concluded that MMEs and MLEs are approximately equal.

In the case of the GLRT, the calculated value based on the test statistic (27) is 2(−186.7358
+ 300.1443) = 226.817 (p-value = 0.00002). As a result, at any level >0.00002, the null
hypothesis is rejected in favor of the alternative hypothesis. Hence, we conclude that the
additional parameter λ in the LZTPD is significant in the light of the test procedure outlined
in Section 6. Furthermore, the approximate 95% confidence intervals for θ and λ are given
by (2.3321, 2.7431) and (0.5374, 0.6853), respectively.

9.2. Demographic Data

Secondly, we utilize the data available in [38] as a demographic study, which represent
the number of mothers of the completed fertility having experienced at least one child
death. Table 5 provides the descriptive measures of the data, such as n, min, Q1, Md, Q3,
max and IQR.

Table 5. Descriptive statistics for the demographic data.

Statistics n min Q1 Md Q3 max IQR

Values 135 1 1 1 2 6 1

The empirical IOD of the data is equal to 0.6787. As a result our model is employed to
explain this data set. Furthermore, Figure 5 shows an empirical TTT plot of the data. It can
be concluded that the data have an increasing hrf.

Table 6 displays the MLEs, model adequacy measures, and χ2-value for the data.
From Table 6, it is clear that the LZTPD has better performance compared to all the other
competing models considered here since it has the smallest χ2-value and model adequacy
measures.
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Figure 5. TTT plot for the demographic data.

Table 6. MLEs, model adequacy measures and χ2-value for the demographic data.

Model MLEs −L̂n χ2 AIC BIC

ZTPD θ = 1.0381 150.0619 7.9012 302.12 305.029

IPD ϕ = 1.0382 150.0619 14.863 304.70 309.93
ζ = 4.5998× 10−10

ZTDSD θ = 0.9999 148.8624 12.1887 299.7248 302.6301

ZTPLD θ = 1.6466 143.8747 2.8235 291.7493 297.5599
α = 0.00038

ZTGPD θ = 0.2838 143.3546 1.746 290.709 296.520
λ = 0.2855

ZTGNBD θ = 0.2041 143.2366 1.5554 292.4731 301.189
λ = 1.0002
α=0.5281

LZTPD θ = 4.5593× 10−8 143.0373 1.304 290.6747 296.4852
λ = 0.2112

Now, the Hessian matrix related to the MLEs is obtained as

H(Θ̂) =

500.0923 95.5925

95.5925 13.5116


and the quadrated estimated variance-covariance matrix is

Σ =

 0.0020 −0.0108

−0.0108 0.0740

.
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Here again, the observed information matrix’s determinant value J(Θ̂) is non-zero,
indicating that the non-singularity condition is satisfied.

For comparison purposes only, we compute the MMEs of the LZTPD parameters for
the demographic data, and they are obtained as θ̂MM = 4.1979× 10−8 and λ̂MM = 0.2361.
It is concluded that MMEs and MLEs are approximately equal.

In the case of GLRT, the computed value based on the test statistic (27) is 2(−143.0373+
150.0619) = 14.0492 (p-value = 0.0001). As a result, the null hypothesis is rejected in
favor of the alternative hypothesis at any level >0.0001. Hence, we conclude that the
additional parameter λ in the LZTPD is significant in the light of the test procedure
outlined in Section 6. The approximate 95% confidence intervals for θ and λ are given by
(8.7193× 10−9, 9.7470× 10−9) and (0.5787, 0.7276), respectively.

9.3. Biological Science

The third data set, which is included in the ‘azpro’ package of the R software (also,
available in the ‘COUNT’ package of the R software), is about a 1991 Arizona cardiovascular
patient. We have 3589 patients and the aim is to model the length of hospital stay, say
xi for the ith patient, with the following covariates: yi1 represents the cardiovascular
procedure (the variable takes the value 1 for CABG procedure and 0 for PTCA procedure),
yi2 represents the sex of the patients (the variable takes the value 1 for male and 0 for female
patients), yi3 represents the type of the admission (the variable takes the value 1 for urgent
and 0 for electiive), and yi4 represents the age of the patients (the variable takes the value 1
for the age > 75 and 0 for the age ≤ 75).

The empirical IOD of the response variable is calculated as 5.432. So the response
variable is over-dispersed. Therefore, the LZTPRM is able to handle this over-dispersion,
with the configuration

µi = eα0+α1yi1+α2yi2+α3yi3+α4yi4 .

The following regression models are used to compare the LZTPRM:

• the ZTPRM given in [39];
• the ZTGPRM given in [40];
• the IPRM given in [18].

Table 7 compares the LZTPRM’s performance to that of the ZTPRM, ZTGPRM, and
IPRM, as well as summaries based on the real data set, such as standard errors (SEs), p-
values, negative log-likelihood (-logL), and AIC values. According to Table 7, the LZTPRM
has the lowest values across all model selection criteria, indicating that it is the best count
regression model among the ZTPRM, ZTGPRM, and IPRM.

Table 7. The results of the regression models for the length of hospital stay data (SEs in brackets).

Covariates ZTPRM ZTGPRM IPRM LZTPRM
Estimate p-Value Estimate p-Value Estimate p-Value Estimate p-Value

α0 1.2367 <0.001 1.1961 <0.001 1.1981 <0.001 2.0181 <0.001
(0.0213) (0.0160) (0.0019) (0.0021)

α1 0.5609 <0.001 0.5931 <0.001 0.5751 <0.001 0.1361 <0.001
(0.0305) (0.0280) (0.0345) (0.0145)

α2 −0.0739 <0.001 −0.0781 <0.001 −0.0766 <0.001 −0.0141 <0.001
(0.0365) (0.0156) (0.0019) (0.0232)

α3 0.1452 <0.001 0.1499 <0.001 0.2908 <0.001 0.0982 <0.001
(0.0168) (0.0255) (0.0217) (0.0251)

α4 0.0934 <0.001 0.0991 <0.001 0.1352 <0.001 0.0142 <0.001
(0.0134) (0.0346) (0.0109) (0.0019)

−logL 6921.34 6629.25 6579.37 6494.85
AIC 13854.68 13272.50 13172.74 13003.70
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10. Discussion
10.1. Brief Summary

In the case of over-dispersion and under-dipersion, new count models must be discov-
ered, which could provide additional options for better fitting real datasets by selecting the
appropriate models for the situation. We developed a new over-dispersed count model
and analysed its regression characteristics in this regard. The primary reason for creating
this model is also explained. We discovered that the suggested model outperformed the
compared models in every way, including its main competitors: the ZTPD and IPD.

10.2. This Work

A novel discrete distribution, the LZTPD, is developed and thoroughly examined. The
median, mode, pgf, cgf, factorial moments, mean, variance, CV, skewness, and kurtosis
were all given precise formulations. The distribution parameters were estimated using the
classical ML and MM techniques. A simulation study on the MLEs was also conducted. On
the basis of a real data set, a new LZTPD-based regression model for count data is developed
and compared to competitive regression models. The new model was demonstrated using
three real-world datasets: one with university course enrollments data, another with
demographic data, and the third with healthcare data.

10.3. Contributions and Limitations

A new discrete distribution with its own count model and its own regression model is
proposed in this work. We feel the proposed models are suitable for the in-depth analysis of
data in the domains of demography and health care, and we hope that they can be applied
to other fields of study as well. The proposed distribution’s potential shortcoming is the
inability to display a bimodal character.

10.4. Future Work

Based on the demand of applied scientists for our proposed LZTPD, one may explore
more features, such as its generalizations using conventional ideas as well as its bivariate
and multivariate extensions. This requires significant investigation, which we will delegate
to further research.

11. Concluding Remarks

The LZTPD is suitable in both under-dispersed and over-dispersed count datasets,
whereas the IPD is only useful in under-dispersed cases. Several key LZTPD features
have been determined, and it has been observed that they are more flexible than those
of the IPD. The LZTPD is compared to the well-known IPD and a few other competing
distributions, and it is discovered that the LZTPD outperforms competing models for the
datasets under consideration.
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Abbreviations

The following abbreviations are used in this manuscript:

LZTPD Lagrangian Zero Truncated Poisson Distribution
ZTPD Zero Truncated Poisson Distribution
IPD Intervened Poisson Distribution
LF Lagrangian Family
DLF Discrete Lagrangian Family
LZTPRM Lagrangian Zero Truncated Poisson Regression Model
ZTPRM Zero Truncated Poisson Regression Model
ZTGPRM Zero Truncated Generalized Poisson Regression Model
IPRM Intervened Poisson Regression Model
pmf Probability Mass Function
hrf Hazard Rate Function
IOD Index Of Dispersion
pgf Probability Generating Function
mgf Moment Generating Function
cgf Cumulant Generating Function
CV Coefficient of Variation
iid independent and identically distributed
rv random variable
ML Maximum Likelihood
MLEs Maximum Likelihood Estimates
MM Method of Moments
MMEs Method of Moments Estimates
GLRT Generalized Likelihood Ratio Test
MSE Mean Squared Error
LZTPMDg Lagrangian Zero Truncated Poisson Mixture Distribution with g components
TTT Total Time on Test
ZTGPD Zero Truncated Generalized Poisson Distribution
ZTDSD Zero Truncated Discrete Shankar Distribution
ZTPLD Zero Truncated Poisson Lindley Distribution
ZTGNBD Zero Truncated Generalized Negative Binomial Distribution
AIC Akaike Information Criterion
BIC Bayesian Information Criterion
IQR Inter Quartile Range
Md Median
min Minimum
max Maximum
SE Standard Error

Appendix A

Below is the main R-code for determining the MLEs of the LZTPD parameters, as well
as the model adequacy measures.

library(fitdistrplus)

dfn <- function(y, theta, lambda){
d <- (exp(-lambda*y)/(factorial(y)*(exp(theta)-1)))
* (theta *((theta+(lambda*y)^(y))-(lambda*y)^(y)))
return(d)
}
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pfn <- function(q,theta,lambda){
cumsum(dfn(q,theta,lambda))
}
#
pfn(x,3,0.4)
#
pre <- prefit(x, "fn", "mle", list(theta=0.1, lambda=0.1),
lower=c(0, 0), upper = c(Inf, 1))

fit.fn <- fitdist(x, "fn",
start = list(theta = pre$theta, lambda = pre$lambda),
optim.method = "L-BFGS-B", lower=c(0, 0), upper = c(Inf, 1),
discrete = TRUE)

summary(fit.fn)
gofstat(fit.fn)
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