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Abstract: In this manuscript, the novel auxiliary equation methodology (NAEM) is employed to
scrutinize various forms of solitary wave solutions for the modified equal-width wave (MEW)
equation. M-truncated along with Atangana–Baleanu (AB)-fractional derivatives are employed
to study the soliton solutions of the problem. The fractional MEW equations are important for
describing hydro-magnetic waves in cold plasma. A comparative analysis is utilized to study the
influence of the fractional parameter on the generated solutions. Secured solutions include bright,
dark, singular, periodic and many other types of soliton solutions. In compared to other methods,
the solutions demonstrate that the proposed technique is particularly effective, straightforward, and
trustworthy that contains families of solutions. In addition, the symbolic soft computation is used to
verify the obtained solutions. Finally, the system is subjected to a sensitive analysis. Integer-order
results calculated by the symmetry method present in the literature can be addressed as limiting
cases of the present study.

Keywords: soliton; M-truncated derivative; Atangan–Baleanu fractional operator; modified equal-
width equation; new auxiliary equation method; sensitivity analysis

1. Introduction

Fractional calculus is a rapidly developing topic of mathematics that has a variety
of applications in physics, engineering and chemistry, such as signal processing, fluid
dynamics, magnetism and electricity [1–5]. The study of fractional derivatives is fascinating,
and numerous researchers have recently presented significant contributions on the subject.
A fractional-order differential equation is a generalized form of an integer-order differential
equation. In fact, these equations are regarded as a viable alternative to integer differential
equations. Due to a remarkable memory fact, this mathematical technique is unique.
The memory function’s role is to demonstrate the correspondence between the fractional
derivative kernel, which cannot be determined physically. The fractional order model is
useful in many areas, e.g., in pure and applied sciences for the representation of a physical
model of a variety of phenomena. For researchers and analysts, the resulting equations
provide unimaginable possibilities [6–13].

The study of nonlinear wave propagation on the ocean’s surface has caught the interest
of scientists for decades. In many scientific disciplines, nonlinear wave phenomena have
been observed such as ocean engineering, coastal engineering, fluid dynamics, plasma
physics, communication industry, tsunami waves and theory of control, etc., [14–17]. In na-
ture, linear or nonlinear evolution equations or evolution systems can be used to explain a
wide range of real-world problems. The heat equation, wave equation, and Schrödinger
equation are some well-known model examples of evolution equations that can be found
in engineering and scientific applications [18–20]. Apart from these three well-known
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paradigms, there are several other especially good evolution equations or systems, such as
Boltzmann’s equation and Navier–Stokes equations, to name a few [21–24].

Analytical and computational soliton solutions can clearly describe the occurrences,
and mathematicians as well as scientists worked together to develop a number of techniques
for studying nonlinear evolution equations (NLEEs) directly using these solutions [25–27].
Soliton or solitary wave solutions have acquired a lot of significance in light of its utilization
in the field of applied physical science. Waves are created when a few unsettling influence
happens in the peculiarity [28–30]. Soliton cooperation occurs when at least two solitons
draw near enough to associate. Since solitons introduce themselves as minuscule, restricted
energy groups, it is thus said that they show qualities akin to particles in a given framework.
Solitons are administered by nonlinear Schrödinger equations, which address the physical
phenomena as models utilizing NLEEs. The use of solitons in optical fibres to carry digital
information is one of the most important technical applications [31–33].

There are numerous analytical strategies that have been developed to tackle such
NLEEs. As for example, the new extended rational expansion scheme, the semi-inverse
variational principle, the homogeneous extended balance technique, the Darboux transfor-
mation method, the Hirota bilinear method, and many others [34–39]. The main objective of
this work is to explore an essential model known as the MEW equation using M-truncated
and AB-fractional operators. In plasma physics and fluid dynamics, the mentioned equa-
tion plays a significant role.

Different analytical and numerical methods have been used to solve this equation,

including: improved (G
′

G )-expansion and the ansatz techniques, the tanh-function method,
the Kudryashov’s method and many more [40–48]. However, the NAEM has not been used
to analyze the above-stated equation with a fractional M-truncated and AB-operators [49].
This strategy has likewise been utilized to research different models in different articles. In
addition, by applying the NAEM, exact solutions to the WBBM equation have been found
in [50]. Physical model equations involving the M-truncated and AB-derivatives have also
been researched using various methodologies in a variety of applications. The goal of the
current study is to expand previous literary efforts to address the MEW equation and its
nonlinear variations along with the sensitive behavior of the system. It is identified here,
waveform solutions for the MEW wave equation with time-fractional derivatives using the
analytical approach [51–53].

The article is structured as follows: The basic concept of fractional calculus is found in
Section 2. The proposed methodology is described in Section 3. The governing equation is
mentioned in Section 4. Soliton’s solutions have been extracted to the MEW equation in
Section 5. The graphical representation of the solutions are depicted in Section 6. Section 7
represents the sensitive behavior of the given system. Finally, a conclusion is provided in
Section 8.

2. Basic Preliminaries about Fractional Calculus

In this study, the M-Truncated and AB-fractional derivatives are employed, and some
basic definitions are provided.

2.1. M-Truncated Fractional Operator

Definition 1. The Mittag–Leffler truncated function having a single parameter is stated as [54]:

iE$(z) =
i

∑
j=0

zj

Γ($j + 1)
,

where z ∈ C and $ > 0. It is defined as follows in terms of a non-fuzzy idea.

Definition 2. Suppose that
g : [0, ∞)→ R,
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and δ ∈ (0, 1) the M-truncated fractional operator of g of order δ is given as:

Dδ,$
M g(t) = lim

ε→0

g(t + iE$(εt−δ))− g(t)
ε

,

for t > 0 and iE$(.), $ > 0.

Theorem 1. Suppose that g is a differentiable function of δ order at t0 > 0 with δ ∈ (0, 1] and
$ > 0 then, g is continuous at t0.

Theorem 2. If δ ∈ (0, 1], $ > 0, m, n ∈ R and g, h are δ-differentiable at t > 0, then:

1. iD
δ,$
M (mg(t) + nh(t)) = mDδ,$

M (g(t)) + nDδ,$
M (h(t)).

2. iD
δ,$
M (g(t).h(t)) = g(t)Dδ,$

M (h(t)) + h(t)Dδ,$
M (g(t)).

3. iD
δ,$
M ( g(t)

h(t) ) =
g(t)Dδ,$

M (h(t))−h(t)Dδ,$
M (g(t))

[h(t)]2 .

4. iD
δ,$
M (c) = 0, where g(t) = c is a constant.

5. (Chain rule) If g(t) is differentiable, then iD
δ,$
M (g)(t) = t1−δ

Γ($+1)
dg(t)

dt .

2.2. AB-Fractional Operator

Definition 3. Let g ∈ G
′
(a, b), δ ∈ [0, 1], a < b, then AB-fractional derivative is defined in

Caputo sense as:

ABC
a Dδ

t =
AB(δ)
1− δ

∫ t

a
g
′
(τ)Eδ

(
− δ

(t− τ)δ

1− δ

)
dτ.

Here, AB(δ) is a function of normalization with and AB(0) = AB(1) = 1.

Definition 4. Let f ∈ G
′
(a, b), δ ∈ [0, 1], a < b, then in Riemann–Liouville, AB-operator is

defined as:

ABR
a Dδ

t =
AB(δ)
1− δ

d
dt

∫ t

a
g(τ)Eδ

(
− δ

(t− τ)δ

1− δ

)
dτ.

3. General Methodology

We employ the proposed method to obtain all the solitary wave solutions of the MEW
problem using M-Truncated and AB-derivatives in this section. By setting appropriate
values to the fractional parameter δ, we display graphs of acquired results.

Overview of Analytical Technique

Consider the following statement that demonstrates how NLPDE is built in general:

S(U, Ux, UUx, Utt, UtUxx, . . .) = 0, (1)

S is a polynomial function with respect to a given variable. Use the propagational trans-
formation U(x, t) = Q(η) to convert Equation (1) into a basic form of NLODE where
η = x− ν t, then

T(Q(η),Q(η)′ ,Q(η)Q(η)′ ,Q(η)′′ ,Q(η)′Q(η)′′ , . . .) = 0. (2)
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The Q superscripts denote the derivative of Q with regard to η, and T is a function of
a polynomial that includes both linear as well as nonlinear terms. The initial solution of
Equation (2) can now be assumed employing the concept of NAEM as:

Q(η) =
M

∑
i=0

di f iϕ(η), (3)

which satisfies the auxiliary equation

ϕ
′
(η) =

1
ln( f )

(
β f−ϕ(η) + χ + γ f ϕ(η)

)
, (4)

where d0, d1, d2, . . . , dM are the coefficients to be known in such a way that αM 6= 0.
According to the balancing principle, one may compute the value of M by equating the
largest nonlinear factor with the higher-order derivative in Equation (2). The different cases
of possible solutions to Equation (4) are mentioned here.
Case 1: When γ 6= 0 and χ2 − 4βγ < 0,

f ϕ(η) =
−χ

2γ
+

√
4βγ− χ2

2γ
tan

(√
4βγ− χ2

2
η

)
, (5)

f ϕ(η) =
−χ

2γ
−
√

4βγ− χ2

2γ
cot
(√

4βγ− χ2

2
η

)
. (6)

Case 2: When χ2 − 4βγ > 0 and γ 6= 0,

f ϕ(η) =
−χ

2γ
−
√

χ2 − 4βγ

2γ
tanh

(√
χ2 − 4βγ

2
η

)
, (7)

f ϕ(η) =
−χ

2γ
−
√

χ2 − 4βγ

2γ
coth

(√
χ2 − 4βγ

2
η

)
. (8)

Case 3: When χ2 + 4β2 < 0, γ 6= 0 and γ = −β,

f ϕ(η) =
χ

2β
−
√
−4β2 − χ2

2β
tan

(√
−4β2 − χ2

2
η

)
, (9)

f ϕ(η) =
χ

2β
+

√
−4β2 − χ2

2β
cot
(√
−4β2 − χ2

2
η

)
. (10)

Case 4: When χ2 + 4β2 > 0, γ 6= 0 and γ = −β,

f ϕ(η) =
χ

2β
+

√
4β2 + χ2

2β
tanh

(√
4β2 + χ2

2
η

)
, (11)

f ϕ(η) =
χ

2β
+

√
4β2 + χ2

2β
coth

(√
4β2 + χ2

2
η

)
. (12)

Case 5: When χ2 − 4β2 < 0 and γ = β,

f ϕ(η) =
−χ

2β
+

√
4β2 − χ2

2β
tan

(√
4β2 − χ2

2
η

)
, (13)

f ϕ(η) =
−χ

2β
−
√

4β2 − χ2

2β
cot
(√

4β2 − χ2

2
η

)
. (14)
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Case 6: When χ2 − 4β2 > 0 and γ = β,

f ϕ(η) =
−χ

2β
−
√
−4β2 + χ2

2β
tanh

√
−4β2 + χ2

2
η

)
, (15)

f ϕ(η) =
−χ

2β
−
√
−4β2 + χ2

2β
coth

(√
−4β2 + χ2

2
η

)
. (16)

Case 7: When χ2 = 4βγ,

f ϕ(η) = −2 + χ η

2γη
. (17)

Case 8: For βγ < 0, χ = 0 and γ 6= 0,

f ϕ(η) = −

√
−β

γ
tanh(

√
−βγ η), (18)

f ϕ(η) = −

√
− β

γ
coth(

√
−βγ η). (19)

Case 9: When β = −γ with χ = 0,

f ϕ(η) = −
(

1 + e−2γ η

1− e−2γ η

)
. (20)

Case 10: For β = γ = 0,
f ϕ(η) = sinh(χ η) + cosh(χ η). (21)

Case 11: For β = χ = K, γ = 0,
f ϕ(η) = eKη − 1. (22)

Case 12: When γ = χ = K and β = 0,

f ϕ(η) =
eKη

1− eKη
. (23)

Case 13: When χ = β + γ,

f ϕ(η) = − 1− βe(β−γ)η

1− γe(β−γ)η
. (24)

Case 14: When χ = −β− γ,

f ϕ(η) =
e(β−γ)η − β

e(β−γ)η − γ
. (25)

Case 15: When β = 0,

f ϕ(η) =
χeχη

1− γeχη . (26)

Case 16: When β = χ = γ 6= 0,

f ϕ(η) =
1
2

[√
3 tan(

√
3

2
β η)− 1

]
. (27)

Case 17: When χ = γ = 0,
f ϕ(η) = β η. (28)

Case 18: When χ = β = 0,

f ϕ(η) = − 1
γ η

. (29)
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Case 19: For β = γ and χ = 0,
f ϕ(η) = tan(β η). (30)

Case 20: For γ = 0,
f ϕ(η) = eχη − n

l
. (31)

4. Governing Equation

Consider the MEW Equation [45] with time fractional derivative is given as:

∂δq
∂tδ

+ θ
∂q3

∂x
− ρ

∂2

∂x2 (
∂δq
∂tδ

) = 0. (32)

The wave profile is represented by q = q(x, t), and the parameters are expressed by
θ and ρ. The fractional-order derivative is described by a parameter in this expression.
Fractional-order equations become classical equations when δ = 1. Assume the following
traveling wave transformation:

q(x, t) = Q(η). (33)

q(x, t) is the wave form of the solitons in this case, and η is categorized as:
i. For the M-Truncated operator, we have:

η =

(
ω x− Γ($ + 1)

δ
ν tδ

)
. (34)

ii. By means of the AB fractional operator, we take:

η = ω x− ν (1− δ)t−δn

AB(δ)Σ∞
n=0
( −δ

1−δ

)
Γ
(
1− δn

) . (35)

The fractional nonlinear MEW equation in terms of M-Truncated as well as AB-
fractional operator is denoted as:

A
0 Dδ,$

M,tq + θ
∂q3

∂x
− ρ

∂2

∂x2

(A
0 Dδ,$

M,tq
)
= 0,

ABC
0 Dδ

t q + θ
∂q3

∂x
− ρ

∂2

∂x2

(ABC
0 Dδ

t q
)
= 0, 0 < δ ≤ 1,

where A
0 Dδ,$

M,t and ABC
0 Dγ

x are M-truncated and AB-fractional operators. We get the follow-
ing NLODE when we apply the wave transformations in Equations (34) and (35):

− ν Q′ + θ ω (Q3)
′
+ ρ ν ω2 Q′′′ = 0. (36)

When we integrate Equation (36), it becomes:

− ν Q+ θ ω Q3 + ρ ν ω2 Q′′ = 0. (37)

5. Application to Fractional MEW Equation

This section aims to obtain the traveling wave solutions for the considered equation.
To find M, we just apply the homogeneous balance principle to Equation (37), which gives
M = 1. Equation (3) now has the following form:

Q(η) = d0 + d1 f ϕ(η). (38)
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By placing Equation (38) with Equation (4) into Equation (37), by matching all coefficients
of various powers of f ϕ(η) to zero, a system of equations is created.

( f ϕ(η))0 : χ β λ ω2 ρ d1 + ω θ d3
0 − λ d0,

( f ϕ(η))1 : χ2 λ ω2 ρ d1 + 2 β γ λ ω2 ρ d1 + 3ω θ d2
0 − λ d1,

( f ϕ(η))2 : 3 χ γ λ ω2 ρ d1 + 3 ω θ d0 d2
1,

( f ϕ(η))3 : 2 γ2 λ ω2 ρ d1 + ω θ d3
1.

The following feasible solution is obtained by solving the given system with Maple software:

d0 = χ

√
−ω λ ρ

2θ
, d1 = 2 γ

√
−ω λ ρ

2θ
, (39)

where,

ω =

√
− 2

ρ(χ2 − 4βγ)
. (40)

The following is the result of inserting Equations (39) and (40) into Equation (38):

Q(η) =
√
−ω λ ρ

2θ

(
χ + 2 γ f ϕ(η)

)
. (41)

Equation (41) yields a variety of surface waves solutions when the solutions identified
by Equation (4) are substituted:
Case 1: When χ2 − 4βγ < 0 and γ 6= 0,

Q1,1(x, t) =

√
−ω λ ρ

2θ

[√
4β γ− χ2 tan

(√
4β γ− χ2

2
η

)]
, (42)

Q1,2(x, t) = −
√
−ω λ ρ

2θ

[√
4β γ− χ2 cot

(√
4β γ− χ2

2
η

)]
. (43)

Case 2: When χ2 − 4βγ > 0 and γ 6= 0,

Q2,1(x, t) = −
√
−ω λ ρ

2θ

[√
χ2 − 4βγ tanh

(√
χ2 − 4β γ

2
η

)]
, (44)

Q2,2(x, t) = −
√
−ω λ ρ

2θ

[√
χ2 − 4βγ coth

(√
χ2 − 4βγ

2
η

)]
. (45)

Case 3: When χ2 + 4βγ < 0, γ 6= 0 and γ = −β,

Q3,1(x, t) = −
√
−ω λ ρ

2θ

[√
−4β2 − χ2 tan

(√
−4β2 − χ2

2
η

)]
, (46)

Q3,2(x, t) =

√
−ω λ ρ

2θ

[√
−4β2 − χ2 cot

(√
−4β2 − χ2

2
η

)]
. (47)

Case 4: When χ2 + 4βγ > 0, γ 6= 0 and γ = −β,

Q4,1(x, t) = −
√
−ω λ ρ

2θ

[√
4β2 + χ2 tanh

(√
4β2 + χ2

2
η

)]
, (48)

Q4,2(x, t) = −
√
−ω λ ρ

2θ

[√
4β2 + χ2 coth

(√
4β2 + χ2

2
η

)]
. (49)
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Case 5: When χ2 − 4β2 < 0 and γ = β,

Q5,1(x, t) =

√
−ω λ ρ

2θ

[√
4β2 − χ2 tan

(√
4β2 − χ2

2
η

)]
, (50)

Q5,2(x, t) = −
√
−ω λ ρ

2θ

[√
4β2 − χ2 cot

(√
4β2 − χ2

2
η

)]
. (51)

Case 6: When χ2 − 4β2 > 0 and γ = β,

Q6,1(x, t) = −
√
−ω λ ρ

2θ

[√
−4β2 + χ2 tanh

(√
−4β2 + χ2

2
η

)]
, (52)

Q6,2(x, t) = −
√
−ω λ ρ

2θ

[√
−4β2 + χ2 coth

(√
−4β2 + χ2

2
η

)]
. (53)

Case 7: When χ2 = 4βγ,

Q7(x, t) =

√
−ω λ ρ

2θ

(
−2 + 2 χ η

η

)
. (54)

Case 8: βγ < 0, χ = 0 and γ 6= 0,

Q8,1(x, t) = −2γ

√
−ω λ ρ

2θ

[√
− β

γ
tanh(

√
−βγ η)

]
, (55)

Q8,2(x, t) = −2γ

√
−ω λ ρ

2θ

[√
− β

γ
coth(

√
−βγ η)

]
. (56)

Case 9: When χ = 0 and β = −γ,

Q9,1(x, t) = −2γ

√
−ω λ ρ

2θ

(
e−2 γ η + 1
e−2 γ η − 1

)
. (57)

Case 10: When γ = χ = K and β = 0,

Q12(x, t) =

√
−ω λ ρ

2θ

[
K + 2K

(
eKη

1− eKη

)]
. (58)

Case 11: When β + γ = χ,

Q13(x, t) =

√
−ω λ ρ

2θ

[
(β + γ) + 2γ

(
β e(β−γ)η − 1
1− γ e(β−γ)η

)]
. (59)

Case 12: When −(β + γ) = χ,

Q14(x, t) =

√
−ω λ ρ

2θ

[
− (β + γ) + 2γ

(
β− e(β−γ)η

e(β−γ)η − γ

)]
. (60)

Case 13: When β = 0,

Q15(x, t) =

√
−ω λ ρ

2θ

[
χ + 2γ

(
χ eχη

1− γ eχη

)]
. (61)

Case 14: When χ = β = γ 6= 0,

Q16(x, t) =

√
−ω λ ρ

2θ

[
χ + γ

(√
3 tan(

√
3

2
β η)− 1

)]
. (62)
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Case 15: When χ = β = 0,

Q18(x, t) =

√
−ω λ ρ

2θ
(
−2
η

). (63)

Case 16: When β = γ and χ = 0,

Q19(x, t) = 2γ

√
−ω λ ρ

2θ
tan(γ η). (64)

6. Solutions in Graphical Layout via Fractional Operators

In this part, some of the analytical results of this research are represented graphically.
The section mostly focuses on the background understanding of the specific findings inves-
tigated in this study. Using a current piece of professional tools of programming, graphs
are constructed for clearer illustration. Additionally, each 2D and 3D graph is shown over
a unique time frame. We utilize different colors to ensure that the wave’s behavior will
change, that distinct waves will overlap, or that different curves will appear at different
points inside the same wave. Depending on the physical regions of the parameters, relevant
quantities can be employed. As a key element of our inquiry, we can use changeable charac-
teristic values to examine the distinctive dynamic features, shapes, and patterns of soliton
solutions. However, it is important to keep in mind that the solutions also comprise dark
functions, bright modules, and trigonometric functions. Here, the fractional MEW equation
for M-truncated and AB fractional operators is investigated by NAEM. To analyze the
efficacy of operators, we examine the solutions utilizing fractional data points. Figures 1–10
depict the graphical representation of two solutions Q14(x, t) and Q16(x, t) and explain the
effects of fractional parameter δ on different values.
Figures 1–5:
One such graph represents a physical meaning of Q14(x, t). Plots show the results of apply-
ing fractional operators to the given solution while using various non-integer parametric
values. Here is a graphical depiction of the acquired result using the parametric values,
χ = −1, β = 0.7, γ = 0.3, ρ = −2, ν = 1, θ = λ = 1 and $ = 0.4. (a,b) depict 3D profiles
using M-Truncated and AB-fractional operators employing δ = 0.3, δ = 0.5, δ = 0.7 and
δ = 0.9 at t = 1.
Figures 6–10:
Every such graph betrays a physical meaning of Q16(x, t). Plots display the outcomes of
applying multiple non-integer parametric values to the provided solution while utilizing
fractional operators. Here is a graphical exhibition of the obtained result using the paramet-
ric values, χ = 2, β = 0.5, γ = 1, ρ = −1, ν = 2, θ = 1.5, λ = 2 and $ = 0.3. Figures (a,b)
depict 3D plots using M-Truncated and AB-fractional operators assigning δ = 0.3, δ = 0.5,
δ = 0.7 and δ = 0.9 at t = 1.
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(a) δ = 0.3 (M-Truncated) (b) δ = 0.3 (AB-derivative)

(c) 2D combined effect at δ = 0.3

Figure 1. A graphical representation of Q14(x, t).

(a) δ = 0.5 (M-Truncated) (b) δ = 0.5 (AB-derivative)

Figure 2. Cont.
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(c) 2D combined effect at δ = 0.5

Figure 2. A graphical representation of Q14(x, t).

(a) δ = 0.7 (M-Truncated) (b) δ = 0.7 (AB-derivative)

(c) 2D combined effect at δ = 0.7

Figure 3. A graphical representation of Q14(x, t).
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(a) δ = 0.9 (M-Truncated) (b) δ = 0.9 (AB-derivative)

(c) 2D combined effect at δ = 0.9

Figure 4. A graphical representation of Q14(x, t).

(a) Combined effect for different values of δ (b) Combined effect for different values of δ

Figure 5. Cont.
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(c) Combined effect of δ=1 for both operators

Figure 5. The 2D graphics of Q14(x, t).

(a) δ = 0.3 (M-Truncated) (b) δ = 0.3 (AB-derivative)

(c) 2D combined effect at δ = 0.3

Figure 6. A graphical representation of Q16(x, t).



Symmetry 2022, 14, 1731 14 of 19

(a) δ = 0.5 (M-Truncated) (b) δ = 0.5 (AB-derivative)

(c) 2D combined effect at δ = 0.5

Figure 7. A graphical representation of Q16(x, t).

(a) δ = 0.7 (M-Truncated) (b) δ = 0.7 (AB-derivative)

Figure 8. Cont.
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(c) 2D combined effect at δ = 0.7

Figure 8. A graphical depiction of Q16(x, t).

(a) δ = 0.9 (M-Truncated) (b) δ = 0.9 (AB-derivative)

(c) 2D combined effect at δ = 0.9

Figure 9. A graphical representation of Q16(x, t).
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(a) Combined effect for different values of δ (b) Combined effect for different values of δ

(c) Combined effect of δ = 1 for both operators

Figure 10. The 2D graphics of Q16(x, t).

7. Sensitivity Behavior of Fractional MEW Equation

This section discusses the recommended model’s sensitive behavior after it has been
converted into a system. Sensitivity is the determination of our system’s sensitivity. A sys-
tem is lowly sensitive if a slight change in the initial conditions leads to a minor change in
the system. As a result, the system is highly sensitive if it changes significantly as a result of
a small change in the initial conditions. Accurately assessing the output disruption brought
on by input changes is the primary goal of the current investigation. The analysis findings
may be shown, which are displayed using a range of parametric values to demonstrate
how little changes in input can result in big variances in the outcome. The following is a
thorough analysis of the specified system (see Figure 11).
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(a)

(b)

Figure 11. (a) represents the sensitivity analysis of the system by allowing the initial conditions
(U, V) = (0.5, 0.1) and (U, V) = (0.5, 0.01) with ν = ω = ρ = 1, and θ = 0.5. It is essential to note that
overlapping between curves can be seen. (b) here now taking initial conditions (U, V) = (0.5, 0.35)
and (U, V) = (0.5, 0.1) with ν = ω = ρ = θ = 1 and it can be observed that by changing the small
input in the initial conditions a large change in the output result is displayed.

8. Conclusions

In this research, soliton solutions of the fractional MEW equation have been explored
using M-truncated and AB-derivatives. Several general soliton solutions to the MEW
equation have been discovered using the NAEM in this work. Plotting 3D plots and
2D line graphs for various solutions have revealed the influence of fractional derivatives
on the derived solutions graphically. It is also seen in the examined solutions that the
wave solution obtains a stable shape substantially faster for the fractional derivatives. The
pattern of the obtained wave becomes stable when the value of the fractional order of
the derivative approaches unity for the fractional derivative according to a comparison of
graphs employing fractional parameters. Furthermore, the achieved results demonstrate
that the proposed scheme for extracting optical solitons of MEW equations using fractional
operators is extremely simple, convenient, and effective. Dark, bright, periodic solitons,
and other soliton solutions have been achieved. Further research in the disciplines of
fractional calculus and NLEEs is expected to benefit from the results presented here.
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