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Abstract: In this paper, we present the existence and uniqueness of strong probabilistic solutions for
nonlinear parabolic Stochastic Partial Differential Equations (SPDEs) with nonlinear Robin boundary
conditions in a domain with holes. On the boundary of the holes, a nonlinear Robin condition is
imposed, while a homogeneous Dirichlet condition is prescribed on the exterior boundary. The coeffi-
cient matrix is assumed to be symmetric, while the nonlinear random forces are assumed to satisfy
some types of regularities. We use Galerkin’s approximation method, probabilistic compactness
results and some results from stochastic calculus.
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1. Introduction

The groundbreaking contributions of Bensoussan and Temam [1,2] throughout the
1970s can be credited with launching the mathematically rigorous investigation of Stochas-
tic Partial Differential Equations (SPDEs). The theses of Viot [3] and Pardoux [4] came
after the Bensoussan and Temam results. Viot uses the compactness approach to address
significant types of nonlinear SPDEs within the context of weak probabilistic solutions
in infinite dimensions. Using the monotonicity principle, Pardoux established a rather
general theory of strong solutions for nonlinear equations. The foundational research of
Krylov and Rozovskii [5], which focuses on general investigations on theories of strong
probabilistic solutions employing compactness and traditional monotonicity approaches,
further extends this theory, see also [6-8], for more interesting results in the theoretical
framework. Recently, there are several results answering interesting questions for the
existence and uniqueness of stochastic models in applications [9-15]. The investigation
of the asymptotic behavior for composite materials and flow of fluid in fixed and porous
media has been very well established (from mathematical analysis point of view) by the
so called homogenization theory, see, for instance, [16-18] and the references therein, for
homogenization of deterministic partial differential equations. We also mention that there
are few results in the stochastic setting, see [19-22]. However, one of the most important
principles on which the theory of homogenization depends is the well posedness of the
governing equation. Despite the fact that the problem considered in this paper models well
motivated physical problems such as the random effect on climatization or some chemical
reactions, see [18,23]. Up to the author’s knowledge, homogenization results for these types
of models have not been investigated, let alone existence and uniqueness results. From this
point of view, the findings of this paper are new, and open the door for many problems
in the homogenization and asymptotic analysis for SPDEs. The aim of this paper is to
give some existence and uniqueness results for strong probabilistic solutions of nonlinear
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stochastic equations in the perforated domain D C R". More precisely, we consider the
following problem:

dv — divAVudt = Fy(v)dt + F(t,x,v)dB in (D\S) x (0,T)
AVv-ii+h(v) =g on 95Sx(0,T)

v=0 on (0D\9S) x (0,T),

v(x,0) = vo(x), in D;

(D)

where D is an open bounded domain in R", S is a connected subset included in D with
Lipschitz boundary, 7 is the unit outward normal to the set S, T € (0,o), B = (B(t))
(t € [0,T]) is an m-dimensional standard Wiener process, ie., t x Q +— B(t,w)
(t € (0,T)) = (Bi(t,w), -+ ,Bm(t,w)) such that By(t,w),k = 1,---,m are one dimen-
sional standard Wiener processes that are identically distributed and pairwise independent,
and B is defined on a given filtered complete probability space (QQ, F, P, (F;)o<t<T). The
model considered in this paper is related to homogenization theory on material science and
engineering. Further, the model is physically motivated by the fact that several composites
of the thermal conductivity depend, in a nonlinear way, on the temperature itself. Moreover,
the nonlinear Robin boundary conditions appear in several physical models such as clima-
tization or some chemical reactions, see [18,23]. Let us consider the following assumptions:

(A1) The matrix A(x) = (a;j(x)1<ij<n is an n x n, symmetric, bounded and:
(An, ) > Blyl®>, B>0 andny € R" (coercivity).

(42) i € L>(0,T; Lo(D)) suchthat | Fi(t0) < C(1+ || o ll1ym)).
(A3) Fx(t, x,v) is an m-dimensional vector function whose components:
Fj(t, x,v) satisfy the following conditions:

e Fj(t,x,v) ismeasurable with respect to x for almostall t € (0, T) and forallu € Ly(D);
e  Fj(t,x,0) is continuous with respect to u for almost all (,x) € (0,T) x D, and there
exists a positive constant C independent of ¢ and x such that

| B (t%,0) llym)< €14 10 lly(m) )

) sz (t,x,0) satlsfles Lipschitz condition with respect to the L, metric.
The differential F,dB is understood in the sense of Ité.

(Ag) h: R x (0,T) — R, such that:

(I;) h is continuously differentiable function in the first argument t € [0, T|;

)
(I;) his monotonously non-decreasing in the first argument;
(I) h(t,0) =0, € [0, T);
(I4) There exists a positive constant C and g with0 < g < c0ifn =2and0 < g < . i 5

if n > 2 such that | h(t,u) |[< C(1+ | v |).

Remark 1. With the assumption made on the nonlinear boundary function h, one could easily
see that:

e h(v(x,t)).v(x,t) > 0 forall functionsv : D x (0,t) — R;
e Forany functions v, € Ly(0, T; H'(D\S) we have:

//|h v(x, t))P(x, t)|dtdo < oo.

With the preceding context, we state the main result of this paper:

Theorem 1. Assume that the hypotheses (A1)—(As) hold and the function h having the properties
I;-1y. Then there exists a unique strong probabilistic solution (v, B) of the problem (I).
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The proof of this result will be carried out in the sections that follow.

2. Tightness Property

This section establishes the tightness of probability measures. We refer to [19,24,25].
for more information on relatively compactness, tightness of probability measures, and
Prokhorov and Skorokhod compactness results. Let J be a separable Banach space and
consider its Borel o-field to be B(J).

We also consider {y, } and {vy,}, pm > 0 and vy, > 0 for all m € N such that y,, — 0

andv,, - 0asm — ocoand ), —Vvym < 00, and define the set N, as follows:

m

T
N, = {v: sup || v 2, p)< Cu, /0 01y ) dt < Co,

0<t<T

1 T—6
sup — sup /0 Il v(t+0) —v(t) HIZLI*l(D) dt < CB}.

0<E<T Vit |g]<py,

The norm of N, is given by:

1

T 2
_ 2
Iorllv= sup 9 o) +(/0 1o l30) df)

1 T—0 ) %
4 sup — sup (/0 | ot +6) —o(t) 21 ) dt) :

0<t<T Vim |g|<pu,,

For more details on the following lemma, see [19,26]:
Lemma 1. The set N is a compact subset of L (0, T; Ly(D)).

Define J = C(0, T;R™) x L,(0, T; Lo(D)) and B(J) the o-algebra of its Borel sets. Let
Y, be the map:
Y,:D—=J, w— (B(w,.),v"(w,.)).

For each n we introduce a measure I, on (J, B(J)) by:
IL,(A) =P(¥, (A), VYAeB(J).
With this setting, we have the following result:

Theorem 2. The family of measures {I1,} is tight.

Proof. For arbitrary oc> 0, we look for compact subsets H,, C C(0, T;R™) and K, C
L(0,T; Lp(D)), such that:

P{w: B(w,.) ¢ Ho} < )

P{w:v"(w,.) ¢ Ko} < (2)

NERSTE

Define H, consisting of all B(.) € C(0, T; R™) such that

L _
sup{|B(t2) — B(t1)| < 7“ ittt €10,T], | ta—t |<m 6}.
It is clear that H, is compactly included in C(0, T; R™) this is due to the well known result

of Arzela and Ascoli. Using Markov’s inequality as in [26], see also [19]. We get:
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P{w: B(w,.) ¢ Hy} §IP’{ {w: sup |B(tz) — B(t)| > Lﬂj}}
n t,6,€[0,T

[T, |t —t1 | <m—0

—6

o m m

303 (L> sup

m=1 i=0 iTm=6<t<(i+1)Tm=0
= [ m ~6y2 C & 1
m=1 o< =

o 1
Zm 1Tﬂz>

IN

B(t) — B(iTm™®)

:

[uy

IN
N R

1
We choose L, = o

/N

Now,

T
P{v(w,.) ¢ Ky} < ]P’{ sup |\z;||2 ) > Mo } —HP{/O ||U||%{3(D)dt > NO(}

0<t<T

1 T—po
+P<J sup — sup | o(t+0) —o(t) |3, )t > Qo
0<t<T Ym |g|<p,, /0

1
< 21 sup ol o+ 5 E [ oy

o 0<t<T

1 T—po
+ E sup/ lo(t+8) — 0|2 1, dt
;Vonc {9|§}1m 0 H=1(D)

€L C, CoVn_a
MO( NO( Qo( m Vm 2
" 6C T, L
Choose My = Ny = = and Q, = Tm From (1)and (2), we get:

P{w: B(w,.) € Hy;v(w,.) € Ko} >1— .

This proves that:

As a result, the family 11, is tight, and the proof is complete. [

3. Galerkin Approximation

In this section, we will build a weak solution using Galerkin approximation. For this,
we let H, = span(wq,wy, - -+ ,wy) C Hé(D). We seek a finite-dimensional approximation
of a solution to our problem in the form of a vector v" € H,;, which can be written as the

Fourier series:
n
k
= Z gn(t)wk(x)
k=1
We require that v" satisfies:

(dv", wi) 1, (py + (AVO", Vwg) , pydt + (h(0"), W), (as)
= (& W), (as) + (FL(0"), wi) 1, (pydt + (F2(0"), wi)dB, ®)
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A Priori Bounds

In this subsection, we derive energy and finite difference bounds that will be used to
prove the existence result of problem (I).

Lemma 2. Suppose that the assumptions A1—Ay are satisfied, then:
(i) K esssupyr | o™ |2

(i) E | o" ||2

(D)< €

o1 (D)) =

Proof. Let us introduce the following stopping time:

inf{0 < £+ 0" 12 ) + 0" 1,05 > M)
™ = : an ; (4)
T if A"y oy + 110" |Ly0s) > M} = O,
for any integer M > 0.
We multiply Equation (3) by (v", wy) and sum over k = 1, - - , 1, to obtain:
n n
(do", Z(Un/wk)wk)Lz(D) + (AVY", Z(vnlwk)vwk)Lz(D)dt
k=1 k=1
n n
+ (h(¥"), Y (0", wp)wi) 1, a5yt = (8, ) (V" wi)wi) 1, (9s) 4t
k=1 k=1
n n
+ (F(v"), Z(U”,wk)wk)Lz(D)dt + (B(t,x,0"), Z(v”,wk)wk)Lz(D)dB,
k=1 k=1
by definition ¢ (t) = (0", wy), then we get:
(dv", Un)L2(D) + (AVZ)" an)Lz(D)dt + (h(v"), Un)L (as)dt
= (g,Un)LZ(aS)dt—i- (Fl(Un),U ) Ly(D )dt+ (Fz(i’ X, 0 ) ) Ly(D )dB 5)

applying Itd formula:

d| o" HL »(D) +2(AVU”,VU”)L2(D)dt—I—Z(h(vn),v”)Lz(aS) = 2(8,9")1,(39)
+2(F1(0v"),0") 1y (pydt + (F2(t, x,0"),0") 1, (pydB+ || F2(t, x,0") HL ) dt,

integrating over 0 <s <t A1y, and t < T, we have:
10" () 12, +2/S(AVZ)"(T),VU"( D)d7+2/ / (7)drdo(7)
I8 12,0y +2 [ [ (8(2), 0" (e)drdo +2 [ (" (1), 0" (0,007
+ [ a2, 0" (0),0" () dB ) + [ Bt 0"(0) P dr,

using the assumption on the matrix A, taking the supremum over 0 < s < t A 7, and the
expectation, we have:
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E sup [n . / | 99" (2) 12,y 4
0<s<tATy
o }

<allof I3 —l—ZocIE/ 0" (s))dtdo|

+oug [ |<F1<v“<s>>,v"<s>>L2(D>ds|

(t)dtdo(T)

EATy
+aE sup | (E2(t, x,0"(5)),v"(5)) |1,(p) 4B(5)
0<s<tATy /0
EAT
+¢xE/ | Ea(t, x, 0" (s)) ||2 ds. ©)
0
From Remark 1, we have:
E sup [|| +/ | 9o () I, dr]
0<s<tATy

t Tm
<o) 96 Ry +26E [ [ 1(8(6),v"()dvdc]

+28 [ (B (), 5y

taE sup [ | (Bt %0 (5)),0"(S)) |uyo) dB(S)

0<s<tATpy 0

+acE/ | B2t x,0"(s)) |12 ds. @)

Let us find bound for the right hand side of Equation (7). Using Cauchy-Schwarz’s,
Burkholder-Davis—Gundy’s and Young's inequalities and the hypotheses on F,, we obtain:

E sup

[ B0 (), 0" (0) 1, 0)8B(0)

2

< CE < /0 "(By(t,x, v”(r)),v”(r))2> dv

< ([ 190) Il Bl 3,0 (0) 3 )
2 T n 2
< pBsup || o"(7) I, p) +C(0) [ 1| B2, 0" (D) [0 A7
T
< pEsup || 0"(0) | o) +COIT+C(0) [ 10" [ympdr,

forp > 0.
Now, from ([21], Proposition 3) we get:

T
E’/O (g,v”)Lz(as)dt‘
T
<C“ML s (8>\E/ 10" |y 4t

+E/ R dt] )
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Using Poincar’e inequality, we obtain:
I (Fu@™),0") 1< @® || Vo" Il VR (") [,
where ¢ is Poincare constant. We also mention that:
@48 12,0 <) 9 1P< B ¢ I, )

forall p € Lp(D). Then, from the assumption on F; and this, we get:

21| (R(6"),0") oy 265 (14 10°65) 12,0 (10)

Using Equations (8)—(10) into (6), together with Gronwall’s inequality, gives the desired
estimates. Thus, the proof is complete. [J

Lemma 3. For4 < p < oo we have:
E  esssupp | " ||’ZZ(D)§ C, (11)
E || v?’l ||p OT Hl(D)} )7 C/ (12)

for some positive constant C.

4
Proof. For 4 < p < oo, we apply Itd’s lemma to || v" ||52(D), we have:
190 1E o) +5 [ 1076 1) [(AVo"(6), 92" () 1y

+wmwwnw%wnmﬁps

p_
L 1548 [ 106 1E 2 (8" 6)nags)

+ (R (2"(5)),0"(5))Ly(p) | ds
+ 2 [ H§‘2 Rt 7,07(5)), " (5))4dB
FBE 1) [0 @) 1 Bt () | s,
From Remark 1, we have:
19 ) 1y +5 [ 106 1) [(AV0"(5), 90 (5)) 1y

1 15 +2 [ 106 15 ) (80" 6 ias)
+ (R (2"(5)),0"(5))Ly(p) | s
H B L1006 IE ) +(Falt 3,0 (5)),07(5)aB
HRE 1) [0 @) 1 b R0 (9) 1P s,

Taking the Square on both sides, using the assumption on the matrix A, and some
elementary inequalities, we obtain:
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19" 12,0 +c(/ I 0(s) 112 [HVU( )2, ]ds)z

ro(f 106 1 Bltx ) 12ds)

We conclude from Poincar’e inequality, the hypothesis on i and Equations (8)-(10)
that:

12" () 117, +/||Vv ) I,y 45 < C Lo I,

re( [ 1@ g (1776 e +||Vv”|l[Lz<D>1")>2
e (/ 1 0"s) 1,5 (1+||v()||i2(D)))2ds

2
+c(||v (s) H{‘z 2" (s >|%2<D>) ’

we know that:
o™ [|P4< (14 || 0" (8) lly))"*

taking the expectation and the supremum on both sides to the above equation and us-
ing Gronwall’s inequality, we arrive at the estimates (11) and (12). Thus, the proof is
complete. O

Remark 2. Lemmas 2 and 3 imply the following:
(i) K esssuppq | v" ||’Z
p
(11) E || vn || OT Hl(D)] )—

forany1l <p S 0.

(D)= €
C,

Lemma 4. For every § € (0,1) there exists C > 0 such that for all natural number n, we get:

T—5
E sup 0" (s +0) — 0" (s) |3, ds<C52
6]<s 0

Proof. Assume that v = 0in R\[0, T]. We write:
s+0 5+0
(s +6) — " (s) = / div(AVo*( ))dt+/
S

+/ (¢, x, 0" (t))dB;
Then,

s+6
o7+ 6) =5 ()i < | [ civiavon o]
S H’l(D)

s+6
+ / Fy(t,x, 0" (t))dBy
S

(13)

/ss+9 Fl(v”(t))dtH 4

H1(D)

H1(D)
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We will argue as in ([19], Lemma 2). By definition of the norm in H ~1(D), and assumption
A1, we have:

s+0
/ div(AVO" (1))dt
S H’l(D)
s+6
< sup </ div(AVv”(t))dt,‘P>
¥eHY(D):[[¥|=1] \’3 H-1(D),Hj(D)

s+6
= sup / / AV dxdt
YeHL(D):¥||=1"P 73

s+6
<C  sup / 1913 ) 153t < CB. (14)
YeH}(D):||¥||=1"°

From assumption A, we deduce:

[ Ee |

H-1(D)
s+6
< sup </ Fl(vn(t))dt,‘l’>
¥eHY(D):[[¥|=1] \’3 H-1(D),H{(D)

= sup / / ) ¥dxdt

YeH}(D):|¥||=1

S+
< sup [T o) ¥yt < CO. (15)
YeH}(D):||¥||=1"°

Finally, we shall bound the stochastic term, for that we use Fubini’s theorem, Burkholder—
Davis—Gundy’s inequality, Cauchy-Schwarz’s inequality, and hypothesis A3, we get:

s+6
/ Fy(t,0")dB;
H-1(D)

s+6 . 2
< E sup (/ (/ B(t, v”)‘I’dx) dBt>
CETASE D
s+0 2
<C sup E / </ Fz(t,v”)‘f’dx> dt
s D

YeH}(D):|¥||=1

540
<C sup| H E(/s |Ex(t,0") ||%2(D)|| ¥ ||%2(D) dt)
¥|=1

YeH} (D):|

2
E sup <

|0]<o

s+0
< CE{&—#/ o 12,0 ds] < cs. (16)
S

Substituting (14)—(16) into (13), integrating over (0, T — J, taking the expectation and the
Sup|g5 We have:

"T—0
E sup [0 (5 +0) = 0" ()21 )5 < Co2
16]<5 0
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4. Implementation of the Tightness Property

From the estimates obtained in Lemmas 2 and 4, one can easily see that 0" € N,.
Then from the tightness Theorem 2 and Prokhorov’s Lemma, there exists a subsequence
I1,; of I1,; and IT such that I1,; weakly convergent to I1. With this in hand, we apply

Skorokhod’s Lemma, to have the existence of a probability space (Q), F, P) and B-valued
random variables (By;, v"/) and (B, v) with the property that the probability law of (B, v"/)
is I1,; and the probability law of (B,v) is IT. Then, we have:

(Bn].,v”f)—>(1§,v) in B, P-as. (17)

We now define:

Fi= U{E(s), v(s)}

sefot]

and prove B(t) is an F;-Wiener process. To do this, we will follow the same steps as in [27].

Define the sub intervals (0, t1), (t1,t2), - - , (t—1, tm = T), it is enough to prove that:

e (B(tj) — B(tj_1)) are independent for alli = 1,2, - - - m;

e (B(tj) — B(tj_1)) are normally distributed with 4 = 0 and ¢ = t; —t; 1 for all
i=1,2,.--m.

To prove the above assertions, we show,

j=1

IAEexp{ i iAi[B(t;) — B(tjl)]} = exp{; iA?(tj - fj1)}, (18)
j=

where A; € R™ and [E denotes the mathematical expectation on (Q, F, I/Ei)
Note that (18) is similar to:

Eexp{iA[B(t +k) — B(t)]/ F} = exp{—)\;k}, (19)

for any k > 0 and A in R™. Now, let us consider an arbitrary bounded continuous functional
(B, v) depending only on the values of B and v on (0, T), from classical probability theory,
we get:

E{expiA[B(t +k) — B(t)]h(B,v)} = Eexp{iA[B(t + k) — B(t)]}En(B, v)

P PSPN
= exp{—z}]Eh(B,v). (20)
Since [By,(t + k) — By, ()] are independent of 71(By;, v"/) and By, is a Wiener process, it
follows that: R
E{exp iA[By; (t + k) — Bu;(t)]1(By,, v”f)}

_ Eexp{i/\[an(t k) — an(t)]}fEh(an,v”J‘)

2 ~
= exp{—);]c}Eh(an,Z)”j), (21)

Using (17) and the continuity of /i we can pass to the limit in this equality and get (20),
which, in view of (18), implies (19) and therefore B(t) is an F;-Wiener process.

Theorem 3. The pair (By;, v"1) satisfies P-a.s.
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ot
(0"1(s), wi) 1, (py — (v0, Wk) + /o (AVv”f(s),Vwk)Lz(D)ds
t ) . t
[ @ )00 05ds = [ (80010545
t t
+ [ EEE) s+ [ (BEE)0dB,6) @)
forany k > 0.

Proof. Let us set:

N”:/T

t
+/ )1, (98)45 — /(g/wk)Lz(aS)ds

(@(5) w0y — (o0 0) + [ (AVE(5), Vo) s

¢ 2
- / (FL(0"(5)), i)y d5 — / (F2(v"(s)), wy)dBy, dt 23)
0 0 H-1(D)
Clearly,
N*" =0 P-as,
and,
LN
B =0

If we define:

T
Y”f—/

t
(©"1(s), wi) L, (py — (vo, wi) +/0 (AVV"i(s), V), p)ds

+/ (0" ( (as)ds_/ot(grwk)Lz(aS)ds
- ./0 (F1(2"1(5)), W) 1y ds — /0t<Fz<v”f (), we)dBy, k2 @4)
we will show that, -
R @

The main difficulty in the achievement of this is the that X" is a stochastic functional of v"
and Bj,. To overcome this, we define a regularization of F, by:

B0 =1 [ 7=k, @)

£ €

such that - is the standard mollifier, from which we have:

E/ IES(o(t), £) 2t < E/ B> (0(t), £)dt 27)

and,

~

F5(v(.),.) = R (v(.),.) in La(Q,P,Ly(0,T; Lo(D))),
from this, we have for all k > 1,
(F5(0(.), ), wk) = (Fa(0(.), ), wy) in La(Q, B, Lo (0, T)). (28)

By replacing F, by its regularization in the stochastic term, we introduce the corresponding
functionals 8" and Y"/*. We now define the application:
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P C(0, T; R™) x Ly (0, T; Lo ((D))) — (O, B, F)
n,e
nE(B,, v'") =
B0 = e
This is a continuous bounded functional on B. Now, introduce,
. . Wit
YY) = e
we have:
P Yt
Elpn],E(Bﬂj/ v”) = El +Yﬂj,8' (29)
Since y"/*(By;,v"/) is bounded in B and the law of "/ (By,;, v") is I1,,, then:
- Y}'l]',S
Further, the law of (B, v"7) is Hn]., therefore,
~ ~ Nt
n; n;
/B 1l](w, 'U)dnnj = ]El/) /(Bt,v ]) = EW (31)
From (24)and (31), we have:
Yt N n;e
j __® N .
1+ Y"* 1+ N%*
Although,
Yi’l]' N}’l] B ]E YTZ] Y}'l]',E . Yﬂj,S
T+Y% 148 C\1+YY 1+ Y'E 1+ Y"*
n;,e n;e n;
—EN]_—l—E NIV_N].’
1+ N"* 1+ N 14N
furthermore,

Yﬂj _ Yi’l]',S
A+ YL+ Y7
< IAE‘Ynf _ lej,8|

—~ Y"i Y€ B
1+Y%  1+Y%|

1
T 2
<c(® [ .0 - B0 uke)
0
we also have,

1

g = NN <ok [ (B E(o" 23t
(153~ e ) = C(B [ 1BE0,0 = B0, 0w

The above estimates and (29), gives:

~ Y%
1T+Y%|

R
1+ N

< c(E [ IF 0,0 - RE"0,0, )

Taking the limit as & goes to zero, we get the relation (25). This proves the result. [
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5. Passage to the Limits

The following Theorem is given in [28]. We use this result in the prove of the existences
of the strong probabilistic solutions.

Theorem 4. Let O be an open set in R", h : R — R a continuous function and N : v — N(v)
its associated Nemytskii operator (i.e., class of nonlinear operators on Lp spaces with continuity and
boundedness properties). The following three equivalent:

. 1 1
(ii)  h is bounded and continuous from Ly,(O) to Ly(O).

(iii) There exist a > 0 and b > 0 such that:
h(s)| < a+Dbls|T VseR

Now we are in the situation to pass to the limit in (3). From the Prokhorov and
Skorokhod results, we have:

" v in L(0,T;HYD)) P—ae. (32)

Since 0" verifies the Equation (22), then it satisfies the same estimates as v".
Thanks to the uniform integrability and the estimate in Lemma 3, we can use Vitali’s
theorem to conclude that:

" — v in L(Q,P,L,(0,T; H)(D))), (33)

which gives:
v"i = v in L(Q,P,Ly(0,T; Ly(D))) (34)

Thanks to (33), there exists a subsequence of v"/, which, for simplicity, has the same notation
as v/ such that for almost all (w, t):

v — v in Ly(Q,P, Ly(0,T; La(D))) (35)
with respect to the measure dt x dP. It is easily seen that:
(0", wg) = (v,wx) in La(Q P, La(0,T; La(D))). (36)
Using Lemma 3 and assumption on A, we get:
(AV",Vwy) — (AVo, Vwy) in Ly(Q,P,Ly(0,T; H }(D))). (37)
Lemma 3, convergence (35), hypothesis on F; and Vitali’s theorem imply:
F(v"(.),.) = Fi(v(.),.) in Lo(Q,P, Ly (0, T; H{(D))), (38)
from which, we have:
(FL(@"(.), ), wp) = (Fi(o(),.),wp) in La(Q,P, Ly(0, T; La(D))), (39)
for all k. Let us know show that:
(h(@"(.),.),wi) = (h(v(.),.),we) i La(Q, P, La(0, T; L2(9S)))- (40)

To do so, we define the nonlinear operator N : u € Hg — N(v) € H/S with:

N(): ¢ — /a h(@)pdo (),
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where Hs = {¢ € HY(D)|¢ =0 on 9D\9S} and proves that it is continuous. From
Theorem 4 we have thatv € Hg — v € Lp(dS) and hh : v € Ly(dS) — h(v) € Lp(9S) are
continuous. Hence, the mapping,

M:v € Hg — h(v) € L(3S)
is also continuous. If we consider (36), we have:
[{N(@"(.), ) we) = N(@(), ) we)o @) gy |
/as((h(v”f(-)w),wk) = (h(v(.), ), wi)pdo
<| ¢ Nl I M(D"(), ), wi) — M(v(.),.), wk) ll1ys)
Since M is continuous, we obtain:

IN@"(), ), we) — N(o(), ), wg) |
(N(@(),.), w6) = N(o(), ), 06), By
= sup
o T T,
< M@ (),.), ) = M(2(.),.), @ 1y (05— O

Then Equation (40) is proved. Finally, we will show that:

/Ot(Fz(v”f,s),wk)dBn/A/Ot(Fz(v,s),wk)dﬁ in L(QP;Leo(0,T)),  (41)

forany t € (0,T) and k as j — oo. Arguing as in [29], we will show that:

/(;T(Pz(vnf,s),wk)dgnﬁ /OT(Fz(v,s),wk)dE in Ly(Q,P), 42)

from (35) the Lemma 3, the assumption on F;, and Vitali’s theorem, we have:
(R(0"(.),.),wx) = (Fa(v(.),.),wx) in Ly(Q,P,Ly(0,T)), (43)
as j — oo. Considering the regularization F5(v(.),.) in (26). We can easily show that:
(F5(v(.), ), wi) = (Fa(v(.),.),wx) in Lp(Q,P,Ly(0,T)), (44)
and:
T 2
E [C1(F5(e",1) = FS(o, 1), wy) Pt
0
T
< ]E/ (B2 (0", 1) — B (0, ), w) Pdt.  (45)
0

The difficulty is to show that:

T T ~
/0 (F5 (0", 5), wi)dBy, — /0 (F5(v,5),By)dB in  Lo(Q,P). (46)

Since:
2

T 2 T
B [ (56070, s, | =E| [ (300,000 <o @)
0 0
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then, the left-hand-side weakly converges to some « in L,(Q2, P). An integration by parts
gives:

T
/0 (F5 (0", 1), w;)dB,

, T d ,
= (BE(T),T),w) — [ By G B (0,0, w0, (48)
where: p LT t
GBEW,0,00) = - [ Zr(=2)R(00), 94 (49)

From (17), we have:

T
/0 (F5 (0", 1), wg)dB,
d

= (B3((T), T)w0) — [ BO) S ES(o(0),0), )t )

for almost all w € ). The term in the left-hand-side of (50) is equal to:

~

[ (FCot0), ), w048 1)

Now, let us choose an element ¢ € Lo (Q), P), we have:

T T N
|| (B0, qw0aBy, — [ (F5(o(t), 1), gw)db. 62

Therefore,
T ~
§ = / (E5(o(t), 1), wy,)dB (53)
0

Thanks to the estimate (27), Lemma 2 the sequence of random variables |, OT (F5 (0", t), Gwy)dBy,
is uniformly integrable. Using convergence (50), and Vitali’s Theorem, we get (52). We also
have (46) since Lo (Q), IF, P) is dense in Ly (Q), IP).

Let § € Leo(Q), P), we have:

T T R
’E/O (FZ(vnjrt)r ka)dan - E/O (F2(U(t)ft)f ‘:wk)dB‘ < Il + 12 + 13- (54)
where:
T T

L= ‘E /0 (F5 (0", ), Ewg)dBy, — E /0 (Ea(0(£), 1), Ewg)dBy, (55)

T T
B[ [ (5070, G0, -2 [ (E5(0(0) 0, G 56)

T T
= [E [ (0500, G0)ds B [ (a(o(e), ), G 7)

By the Cauchy—Schwarz’s inequality, using estimate (45) and convergence (43) and (44), it
easily seen that I; tends to 0 when e — 0 and j — oo. Using (52) we get that I does converge
to zero as j — co. Again, from the Cauchy —Schwarz’s inequality, and convergence (44), I3
tends to zero as j — co. From these convergences, one can pass to the limit in (54) ase — 0
and j — oo; thus, we obtain (46). Collecting all those results and passing to the limit in (22),
we show that v satisfies Problem I in the weak sense.
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6. Proof of Uniqueness

Theorem 5. Suppose that the assumption of Theorem 1 can be fulfilled; furthermore, Fy(v,t) is
Lipschitz continuous. Then, v is a unigue solution of problem (I).

Proof. Let v!' and v? be solutions of Problem (I), we have:
<d(v1 - 02),0)H,1(D),H3(D) + /D AV (0! — v*)Vodx
+/ h (o', t) —h(vz,t))vd(r(x) :/ (Fl(vl,t) — Fi(v?, t))vdx
D
+ [ (B0 - BEHo)B. (58)

1 2

Letv =v" —v7,
<d(01 —v?), 0! — 02>H*1(D),H3(D) + /D AV (0! — v?)V (0! — v?)dx
+/D(h(vl,t)—h(02,t))(v _ ?)do(x)
:/ Fi (04, 1) —Fl(UZ,t))(Z)l —v?)dx
+ (B - B 0) (@ — )5,
so, we have,
——|lo' - ZHLZ(D +/DAV(01—UZ)V(01 — v?)dx
+/D (!, 1)~ h(2%,1)) (0" ~ 0P)do(x)
- /D (R0~ B 1) (@ - o?)dx
+ /D (Fa(e', 1) — Ba(0?, 1)) (0! — 22)dB.
Now, integrating over (0, t), using the assumption on A and taking the expectation we have:
E|l (0! = o*)(t) = (v =) (0)I7,
+0¢]E/0 (10" = o)) 2 +Il}dslqu/0t I + Is|ds. (59)
where:
I :/as(h(vl,t)—h(vz,t))(v — )do(x)
12:/D(Fl(vl,t)—Fl(vz,t))(v — ?)dx
13:/D(F2(01,t) B (%, 1)(0! —?) )dB.

First, since h is a monotonously non-decreasing function, then the product
(h(o',t) — h(v%, 1)) (0! —v?) > 0, so (59) becomes:

E|l (0! = o*) () = (o' = o) (0)IF, p)

+0¢E/ It =) )12, ds<IE/ L + Iy ds. (60)
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Now, we estimate I3. Thanks to Burkholder-Davis—Gundy’s inequality, followed by the
Cauchy-Schwarz’s inequality, we can estimate:

]E‘ /Ot (B0l 1) — By (2, 1) (0! — 0?))dB(s)

gcx&(/ot(Fz(vl/t) E> (0%, ) (0! —02)>2>%ds

1

gcnz( [ 1@ =2)6) 1) (B0 = BEZ0)6) o, ds) ,

using Young’s inequality and the assumption on F,, we get:

</ I (0" = )(s) 13,y ll (R0, ) = Fa(0%,£))(5) |2y d5>1
<PE || (' =2*)(s) I, p)

C(p) /Ot I (E2(0', £) = E2(0%,1))(s) |17,y s

< pEsup || (v' —v?)(s) ||L2(D)

T
+COT+Clo) [ 1@ =) lypyds, 6D

forp > 0.
Finally, let us estimate I, by Cauchy-Schwarz’s and the assumption on F;, we get:

[ (=R o

< CRoup | (2~ 0)(5) [3,0) +CT+C [ | @ =) Iy &5 (@)

considering (62) and (61) we have:
1 2 1 2 2
B0~ 22)(1) ~ (2" ~ ) 0) o) +aE [ (0%~ 22)(5) gy < C.

where C independent of s.

E[(o" = o) () = (o' =) (0)If,p) + 2 /Ot (" = 0*) ()13 py s < 0.

This implies that ! —v> =0. O

Thanks to these pathwise uniqueness results, one can easily apply the celebrated result
of Yamada—Watanabe, see [30], to obtain the existence of a strong probabilistic solution.

7. Conclusions

In this paper, we have investigated existence and uniqueness of strong probabilistic
solutions for nonlinear parabolic stochastic partial differential equations with nonlinear
Robin boundary condition in a domain with holes. The tools used are: Galerkin’s ap-
proximation method, probabilistic compactness results, and some results from stochastic
calculus. The problem considered in this paper describe interesting physical models such
as the effect of external random forces on climatization or some chemical reaction, which is
more realistic than the obtained deterministic models. As we mentioned in the Introduction,
the results obtained in this paper are mainly keyed towards the study of homogenization
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and asymptotic analysis. With this results in hand, one can derive homogenization results
for linear and nonlinear stochastic PDES with nonlinear boundary conditions.
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