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Abstract: This article explores the application of the reduced differential transform method (RDTM)
for the computational solutions of two fractional-order cancer tumor models in the Caputo sense: the
model based on cancer chemotherapeutic effects which explain the relation between chemotherapeutic
drugs, tumor cells, normal cells, and immune cells using a fractional partial differential equations,
and the model that describes the different cases of killing rate K of cancer cells (the killing percentage
of cancer cells K (I) is dependent on the number of cells, (II) is a function of time only, and (III) is a
function of space only). The solutions are presented using Mathematica software as a convergent
power series with elegantly computed terms using the suggested technique. The proposed method
gives new series form results for various values of gamma. To clarify the complexity of the models,
we plot the two- and three-dimensional and contour graphics of the obtained solutions at varied
values of fractional-order gamma and the selected system parameters. The solutions are analyzed
with fractional and reduced differential transform methods to obtain an idea of invariance regarding
the computed solution of the designed mathematical model. The obtained results demonstrate the
efficiency and preciseness of the proposed method to achieve a better understanding of chemotherapy
effects. It is observed that chemotherapy drugs boost immunity against the specific cancer by
decreasing the number of tumor cells, and the killing rate K of cancerous cells depend on the
cells concentration.

Keywords: cancer tumor models; Caputo-fractional time derivative; nonlinear PDEs; chemotherapy
drugs; tumor cells; immune cells; normal cells; reduced differential transform method (RDTM); series
form solutions

1. Introduction

Tumors form following uncontrolled cell division and can be started and proliferated
from one of the cells in our bodies. The tumor spreads in an unexpected way around
the region where it is found, depending on whether they are malignant or benign. To
destroy the diseased cells, the treatment used for this must spread quicker than the tumor
movement. There are a number of treatments used to cure a cancer tumor, including
surgery, chemotherapy, radiation therapy, immunotherapy, and radio frequency ablation.
The choice of the treatment depends on the type of cancer and the health of the patients.
The best used treatment for the cure of cancer tumor is chemotherapy. An operator splitting
technique is used to tackle the system of four coupled partial differential equations which
describe the interaction between malignant grown tumors and a patients’ immune system
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under the influence of chemotherapy treatment [1]. Chemotherapy drugs mostly infuse into
a cancer area or in the blood through the vein. They are sometimes taken in the form of pills
or capsules. The study of fractional calculus has drawn the attention of many scholars and
medical scientists over the past few decades. Fractional calculus is being used continuously
because of its applications in numerous fields, such as engineering, physical sciences,
biological models, signal processing, electric circuits, anomalous diffusion, etc. Several
researchers have examined the idea of fractional calculus. Bagley and Torvik [2] discussed
a generalized version of Caputo’s and Scott-Blair’s fractional derivative model for the
equation of motion of visco elasticity damped structures. Ishteva et al. [3] introduced new
classical Laguerre functions and some of their properties are addressed using the Caputo
operator of fractional calculus and Rodrigues’ fractional-order differential representation.

The mathematical models with fractional differential equations seem very helpful
in explaining the growth of tumor and the interaction between tumor cells and host
cells as compared to the integer order differential equations. In recent years, numerous
articles related to the mathematical modelling of cancer tumor have been written. Many
mathematical models have explained which components of immunity are important in the
treatment of cancer. Kuznetsv and Knott [4] showed that immunotherapy does not entirely
eliminate tumor cells; rather, it simply delays cancer cell renewal. Vladar and González [5]
modified the model by stating that immune activity alone is insufficient to cure cancer cells;
thus, therapy is also required. The tumor is not a single disease, but rather a collection
of diseases with numerous similarities and significant distinctions. d’Onofrio et al. [6]
presented a new mathematical model describing the interaction of tumors with the immune
system and immunotherapy. Furthermore, immunotherapy’s fundamental drawback is
that it is dependent on initial conditions that, in the context of medical practice, are either
unknown or known with many confidence intervals. However, immunotherapy is not the
only component of an anticancer therapy. The evolution of cancer immunotherapy over
the last 100 years is discussed by Parish et al. [7], and it is discovered that both adaptive
and innate immune systems can eliminate tumor.

Attia et al. [8] used the kernel Hilbert space method for the solution of a fractional can-
cer tumor model. Veeresha et al. [9] discussed the fractional model with a Caputo derivative
that explains the behavior of immune cells, tumor cells, normal cells, and chemotherapy
medicine. Dokuyucu et al. [10] presented the cancer tumor model, as well as the model
for the Caputo-fractional operator with the uniqueness and existence of solutions of a
generalized model. Arfan et al. [11] explored the mathematical tumor model with ABC frac-
tional derivatives which described the interaction among six coupled cells, namely; tumor
cells, natural killer cells, cytotoxic CD8+T cells, dendritic Cells, chemotherapy cells, and
immunotherapy drugs cells, with six coupled partial differential equations, using a numeri-
cal method. The fourth-order Cahn–Hilliard equation in the original model was replaced
with the conservative second-order Allen–Cahn equation with a space–time-dependent
Lagrange multiplier proposed by Lee et al. [12]. Additionally, he utilized an operator
splitting approach to solve the governing equations. Kolev and Zubik-Kowal [13] explored
a novel numerical solution of various models of tissue invasion using cancerous cells,
namely (I) cell-matrix interactions and cell migration, (II) the migration and proliferation of
cancer cells, and (III) the production of endogenous inhibitors. They described interactions
between tumor cells and the surrounding tissue, particularly the initiation of a new colony
of cells and metastasis. Garrido et al. [14] examined the sequential quadratic Hamiltonian
method to solve a cancerous model that was created by combining two well-known models.
This model represented the differential constraint of a non-smooth optimal control problem
that aims to minimize the radio and chemical dosage while reducing the volume of the
tumor. Yasir et al. [15] provided an improved numerical solution of the chaotic cancer
model by using the successive-over-relaxation method, and compared it against RK4 and
the finite difference method. Maddalena and Ragni [16] investigated model for the evolu-
tion of a heterogeneous population of cancer stem cells and tumor cells, a nonlinear system
of integro differential equations is examined and solved using the exponential Rung-Kutta
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method. Sabir et al. [17] considered the normal, tumor, immune, and estrogen (NTIE)
compartment fractional mathematical order model and computed the numerical approach
with the Levenberg–Marquardt backpropagation scheme (LMBS) combined with neural
networks (NNs). LMBS-NNs, which have never been used before as the solution of the
fractional breast cancer mathematical model. Ahmed et al. [18] described two generalized
fractional mathematical models in the Caputo sense while considering the concentration of
tumor cells for the constant killing rate.

Nonlinear fractional differential equations are used for the modelling of cancer tumor.
A number of analytical and numerical methods are given in the literature for the solution
of aforesaid equations. Bagheri and Khani [19] employed analytical methods, namely the
direct truncation method, to obtain the solution of KDV equations. Solutions of some
nonlinear fractional partial differential equations using the G′

G expansion method com-
bined with fractional complex transformation have been discussed by Fan and Zhou [20].
Zhang et al. [21] coupled the homotropy perturbation method with the Laplace transform
method which can reduce the computational work. This technique is also useful for var-
ious nonlinear problems such as time-fractional Fornberg–Whitham and time-fractional
Fokker–Planck equations. Verma and Kumar [22] solved linear/nonlinear partial differ-
ential equations in the presence of newly proposed uniqueness and existence conditions.
Rehman et al. [23] obtained the solution of the nonlinear fractional partial differential
Liouville equation using the extended complex method. Khan et al. [24] discovered that the
Adomian decomposition method, together with Laplace transform, is very useful for the
system solution of nonlinear fractional differential equations. Singh et al. [25] implemented
the fractional reduced transform method to obtain the solution of linear and nonlinear
fractional differential equations.

Khlaouta and Kadem [26] combined the Shehu transform method and the reduced
differential transform method to create a new analytical technique, called the modified
reduced differential transform method. This modified method can be successfully imple-
mented to solve nonlinear time-fractional wave-like equations with variable coefficients.
Jaffri et al. [27] explored the reduced differential transform method to solve the linear and
nonlinear PDEs on Cantor sets. Kumar and Beleanu [28] introduced a new numerical
method for the Sharma–Tasso–Oliver problem and the Klein–Gordon equation of temporal
fractional order with Caputo–Fabrizio (C-F) fractional derivatives. Albadarneh et al. [29]
discussed a new method for approximating fractional differential equations, called the
fractional finite difference method. Ali et al. [30] investigated a general form of nonlin-
ear fractional differential equations with the linear fractional argument. The enhanced
form of the Adomian decomposition method is used to solve fractional-order nonlinear
differential equations proposed by Jaffri and Gejji [31]. Oyjinda and Pochai [32] described
the numerical solution of an air pollution model using the finite difference technique.
Bakkyaraj et al. [33] introduced Lie symmetry analysis using the Caputo-fractional deriva-
tive of the system of nonlinear fractional partial differential equations. Ibrahim et al. [34]
derived a symmetry-conformable fractional derivative of complex variables. Iskenderoglu
and Kaya [35] performed symmetry analysis of the initial and boundary value problem
in the Caputo sense for the fractional differential equations. Yang et al. [36] discussed the
numerical and analytical for the time and space symmetric fractional diffusion equation.
Iyiola and Zaman [37] introduced a fractional diffusion equation model to investigate the
cancer tumor. Durgess et al. [38] examined the interaction between the growth rate and
diffusion coefficients with the help of a mathematical model to study gliomas. Moyo and
Leach [39] investigated the application of symmetry methods to explore the mathematical
model of the brain tumor. Wise et al. [40] demonstrated three-dimensional multi-species
growth tumor and presented a numerical solution and analysis.

In our work, we explored two types of nonlinear fractional cancer tumor models [1]
and [37] employing the reduced differential transform method (RDTM). As RDTM gives a
convergent power series with elegantly computed terms which do not include linearization,
discretization, perturbation, and restrictive suppositions. As a result, the number of terms
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of series form solutions increases as the efficiency of the solution increases. In the first
model, we modified the work of Ansarizadeh et al. [1] by applying fractional order in
the Caputo sense. The fractional ordinary differential equation modelling of biological
systems yields more favorable results than classical integer-order modelling, which ignores
memory or aftereffects manifesting in the biological system. Because of the power law form
of Caputo’s kernel, namely hC(t, β) = t−β

Γ(1−β)
, 0 < β < 1, the memory effects are stronger

at small values of time (t). The model contains four coupled partial differential equations
that explain the relation among chemotherapeutic drugs, tumor cells, normal cells, and
immune cells. In the second model [37], we looked at the cancer tumor model that explains
distinct cases of killing rate K(x, t) of cancer cells: the killing percentage of cancer cells K (I)
is dependent on the number of cells and (II) is a function of time.

2. Formulation of the Problem
2.1. Models Description

Mathematical models can clarify the growth of a tumor and the interaction between
tumor cells and host cells. In this work, we considered two models.

2.2. Modelling Cancer Chemotherapy Effects Using the Caputo-Fractional Derivative

This model [1] based on a system of four coupled partial differential equations explains
the relations among chemotherapeutic drugs (U), tumor cells (T), normal cells (N), and
immune cells (I).

∂N
∂t

= −c4TN − a3

(
1− e−U

)
N + DN

∂2N
∂x2 + r2N(1− b2N), (1)

∂T
∂t

= −c2 IT − c3TN − a2
(

1− e−U
)

T + DT
∂2T
∂x2 + r1T(1− b1T), (2)

∂I
∂t

= σ + (ρITβ + T)− c1 IT − d1 I − a1

(
1− e−U

)
I + DI

∂2 I
∂x2 , (3)

∂U
∂t

= υ(t)− d2U + DU

(
∂2U∂x2

)
. (4)

where the last terms of Equations (1) and (2) represent the logistic growth rate of cells,
while the capita growth and carrying capacity are represented by r and b, respectively. ci
indicates the fight of diseased cells with normal and immune cells over restricted accessible
resources to survive, and these values are taken as positive. σ represents the outside source
rate for immune cells, which can be considered as constant. The immune system response
in the presence of tumor cells is represented by ρIT

β+T . The amount of drug over tumor area
at time t is denoted by U(x, t). DN , DT , DI , and DU represent the diffusion coefficients
for normal cells, tumor cells, immune cells, and chemotherapeutic drugs, respectively. The
parameters used in Equations (1)–(4) with acceptable range are 0.5 ≥ ai ≥ 0, a2 ≥ a1 ≥ a3
and b1 ≥ b2. The values for the immune source rate σ lie between 0 and 0.5. Terms
including

(
1− e−U) illustrate the saturation term used for the fractional kill rate and the

amount of drugs over time is represented by υ(t) and defined as

υ(t) =
{

1 (m− 1)Π < t < (m− 1)Π + τ
0 otherwise

, (5)

where the interval and duration are represented by Π and τ, respectively, and m = 1, 2, 3.
In our work, we considered the Caputo-fractional derivative of the above model. The
parameters for the first model are given in the Table 1 below.
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Table 1. Selected parameter for first model [1].

Parameter Description Values

a1, a2, a3 Fractional cell kill 0.2, 0.3, 0.1
b1, b2 Carrying capacity 1, 0.81

c1, c2, c3, c4 Competition term 1, 0.55, 0.9, 1
d1, d2 Death rate 0.2, 1
r1, r2 Per capita growth rate 1.1, 1

σ Immune source rate 0.33
β Immune threshold rate 0.3
ρ Immune response rate 0.2

DN , DT , DI , DU Diffusion coefficients 0.001, 0.001, 0.001, 0.001

2.3. Modelling Cancer Tumor Based on the Cell’s Concentration

In the second model, a diffusion equation model is proposed by [38], in which a
spherical-shaped tumor is considered with the growth rate q and the therapy-dependent
killing percentage k.

∂v(x, t)
∂t

= D
1
r2

∂

∂r

(
1
r2

∂v(x, t)
∂r

)
+ qv(x, t)− kv(x, t). (6)

where the amount of tumor cells at point x and at time t is represented by v(x, t) and the
diffusivity constant is given by D. The one-dimensional model for the above equation was
investigated by Moyo and Leach [39] with the variable killing percentage K(x, t).

∂2v(x, t)
∂x2 − K(x, t)v(x, t)− ∂v(x, t)

∂t
= 0. (7)

K(x, t) can be selected as a constant function of time only, or as a function of both time
and position. In our work, we considered three cases of K(x, t): the killing percentage of
cancer cells K (I) is dependent on the number of cells, (II) is a function of time only, and (III)
is a function of space only.

2.4. Method Description

To explain the basic definitions of the suggested method RDTM, we consider whether
the function ω(x, t) is continuously differentiable and analytic with respect to t, then let

ω′k(x) =
1

Γ(kγ + 1)

[
∂kγ

∂tkγ
ω(x, t)

]
t=o

, (8)

where γ describes the fractional derivative. Here, ω(x, t) and ω′k(x) represent the original
function and the transform function, respectively. The inverse transform of ω′k(x) is
defined as follows:

ω(x, t) =
∞

∑
k=0

ω′k(x) tkγ. (9)

Upon combining Equations (8) and (9), we obtain

ω(x, t) =
∞

∑
k=0

1
Γ(kγ + 1)

[
∂kγ

∂tkγ
ω(x, t)

]
t=o

tkγ. (10)

The above definitions tell us that the results of RDTM are derived from the power
series expansion. To illustrate a general idea of the reduced differential transform method,
we consider the general differential equation of fractional order of the form

Lω(x, t) + Rω(x, t) +Nω(x, t)− h(x, t) = 0, (11)
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with initial condition
ω(x, 0) = g(x), (12)

where N is a non-linear operator, R is a linear operator, L = ∂kγ

∂tkγ is a Caputo-fractional
derivative, h is a known function, and v is an unknown function. According to the proposed
method, the iterative formula will be

Γ(kγ + γ + 1)
Γ(kγ + 1)

ω′k+1(x) = h′k(x)− Rω′k+1(x)−Nω′k+1(x), (13)

with transformed initial condition as

ω′0(x) = g(x). (14)

Here, ω′k(x), h′k(x), Rω′k+1(x), and Nω′k+1(x) are the transform functions of
Lω(x, t), h(x, t), Rω(x, t), and Nω(x, t), respectively.

By using Equation (14) into (13) alongside some iterative calculations, we obtain the follow-
ing ω′k(x) values. Applying Equation (9) on the set of values {ω′k(x), k = 0, 1, 2, . . . , ∞}
now gives the approximate solution, as follows:

ω(x, t) = lim
n→∞

∞

∑
k=0

ω′k(x) tkγ. (15)

The basic operations [25] of the reduced differential transform method can now be
determined using Equations (8) and (9).

Theorem 1. If the original function is ω(x, t) = u(x, t)± v(x, t), the transform function will be
ω′k(x) = u′k(x)± v′k(x).

Theorem 2. If the original function is ω(x, t) = u(x, t)v(x, t), the transform function will be
ω′k(x) = ∑ k

m=0u′mv′k−m(x) = ∑ k
m=0v′mu′k−m(x).

Theorem 3. If the original function is ω(x, t) = ∂Mβ

∂xMβ v(x, t), the transform function will be

ω′k(x) = Γ(kβ+Mβ+1)
Γ(kβ+1) v′k+M(x).

Theorem 4. If the original function is ω(x, t) = xntmv(x, t), the transform function will be
ω′k(x) = xnv′k−m(x).

Theorem 5. If the original function is ω(x, t) = xntm, the transform function will be ω′k(x) =

xnδ(k−m), δ(k−m) =

{
1 k = m
0 k 6= m

}
.

Now, we will discuss the convergence of the method.
Since the RDTM is derived from a power series expansion with an initial time of zero,

it is given as:

ω(x, t) =
∞

∑
k=0

bk(x) tkγ, t ∈ j. (16)

where j = (0, m), m > 0.
Now, we will look at the condition of convergence for the suggested method.

Theorem 6. If ψk(x, t) = bk(x) tkγ, then ω(x, t) =
∞
∑

k=0
ψk(x, t), ∀ k ≥ 0

i. If 0 < ξ < 1 and ‖ψk+1‖ ≤ ξ‖ψk‖, then it is convergent;
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ii. If ξ > 1 and ‖ψk+1‖ ≥ ξ‖ψk‖, then it is divergent.

Proof. The theorem stated above is a particular case of Banach’s fixed-point theorem. We
will use this theorem for evidential purposes. Let (C[j], ‖.‖) be the Banach space on all
continuous functions on j with the norm ‖ψk(x, t)‖ = ‖bk(x) tkγ‖ and ‖b0(x)‖< M0 >0.
Now, defining the sequence of partial sum {Hi}∞

i=0 as:

Hi = ψ0 +ψ1 +ψ2 . . . . . . +ψi. (17)

We aim to prove that {Hi}∞
i=0 is a Cauchy sequence in the Banach space. To achieve

this goal, we take the following equation:

‖Hi+1 −Hi‖ = ‖ψi+1‖ ≤ ξ ‖ψi‖ ≤ · · · ≤ ξ i+1‖ψ0‖ ≤ ξ i+1M0. (18)

Using the above equation and triangular inequality, for any i, p ∈ N with i ≥ p, we
have:

‖Hi −Hp‖ = ‖(Hi −Hi−1) + (Hi−1 −Hi−2) + · · ·+
(
Hp+1 −Hp

)
‖

≤ ‖Hi −Hi−1‖+ ‖Hi−1 −Hi−2‖+ · · ·+ ‖Hp+1 −Hp‖
≤ 1−ξ i−p

1−ξ ξ p+1‖ψ0‖.
(19)

Since 0 < ξ < 1, so we have:

lim
i, p→ ∞

‖Hi −Hp‖ = 0. (20)

This proves that {Hi}∞
i=0 is a Cauchy sequence in the Banach space (C[j], ‖.‖). This

also supports (i) that a given series is convergent if 0 < ξ < 1. For (ii), we use the ratio test,
which gives:

‖ψk+1
ψk
‖ ≥ ξ > 1. (21)

This completes the prove that series is divergent if ξ > 1. �

3. Numerical Simulation
3.1. Modelling Cancer Chemotherapy Effect Using the Caputo-Fractional Derivative

Consider the system of Equations (1)–(4) with time-fractional order γ by setting
λ1 = r2 − a3, λ2 = r1 − a2, λ3 = d1 − a1, ω1 = r2b2 and ω2 = r1b1.

∂γ N
∂tγ = λ1N −ω1N2 − c4TN + a3e−U N + DN

∂2 N
∂x2 ,

∂γT
∂tγ = λ2T −ω2T2 − c2 IT + c3TN + a2e−UT + DT

∂2T
∂x2 ,

∂γ I
∂tγ = σ + ρIT

β+T − c1 IT − λ3 I − a1e−U I + DI
∂2 I
∂x2 ,

∂γU
∂tγ = υ(t)− d2U + DU

∂2U
∂x2 , 0 < γ ≤ 1,−2 ≤ x ≤ 2,

(22)

subject to the initial conditions

N(x, 0) = 0.2e−2x2

T(x, 0) = 1− 0.75sech(x),
I(x, 0) = 0.375− 0.235sech2(x), −2 ≤ x ≤ 2
U(x, 0) = sech(x).

(23)
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According to RDTM, the iteration formulas for Equation (22) can be written as follows:

N′k+1(x) = Γ(kγ+1)
Γ(kγ+γ+1)

λ1N′k −ω1
k
∑

m=0
N′mN′k−m − c4

k
∑

m=0
T′mN′k−m

+a3
k
∑

m=0
N′k−me−U′m + DN

∂2 N′k
∂x2

,

T′k+1(x) = Γ(kγ+1)
Γ(kγ+γ+1)

 λ2T′k −ω2
k
∑

m=0
T′mT′k−m − c2

k
∑

m=0
I′mT′k−m

−c3
k
∑

m=0
T′mN′k−m + a2

k
∑

m=0
T′k−me−U′m + DT

∂2T′k
∂x2

,

I′k+1(x) = Γ(kγ+1)
Γ(kγ+γ+1)

σ + ρ
k
∑

m=0
I′mT′k−m(β + T′m)

−1 − c1
k
∑

m=0
I′mT′k−m

−λ3 I′m − a1
k
∑

m=0
I′k−me−U′m + DI

∂2 Ik
∂x2

,

U′k+1(x) = Γ(kγ+1)
Γ(kγ+γ+1)

[
υ(t)− d2U′k + DU

∂2U′k
∂x2

]
.

(24)

By using above iterative formulas, we obtain

N′0(x) = 0.2e−2x2
, T′0(x) = 1− 0.75sech(x),

I′0(x) = 0.375− 0.235 sech2 (x), U′0(x) = sech (x),
N′1(x) = 1

Γ(1+γ)

[
1
5 e−2x2−sech (x)a3 − 1

5 e−2x2
(1− 0.75 sech (x))c4 +

1
5

(
−4e−2x2

+16e−2x2
x2
)

DN + 1
5 e−2x2

λ1 − 1
25 e−4x2

ω1

]
,

T′1(x) = 1
Γ[1+γ]

[e−sech(x)(1− 0.75sech(x))a2 − (1

−0.75 sech (x))
(
0.375− 0.235 sech2(x)

)
c2 − 1

5 e−2x2
(1

−0.75 sech (x))c3 + (1− 0.75 sech (x))λ2

−(1− 0.75 sech (x))2ω2 − 0.75DT(−sech3(x)
+sech (x)tanh2(x))],

I′1(x) = 1
Γ[1+γ]

[σ +
ρ(1−0.75sech (x))(0.375−0.235 sech2(x))

1+µ−0.75 sech (x)
+e−sech (x)(0.375− 0.235 sech2(x)

)
a1 − (1

−0.75 sech (x))
(
0.375− 0.235 sech2(x)

)
c1 − (0.375

−0.235 sech2(x))λ3 − 0.235DI(−2 sech4(x)
+4 sech2(x)tanh2(x))],

U′1(x) = 1
Γ[1+γ]

[
υ(t)− sech (x)d2 + DU(−sech3(x) + sech(x)tanh2(x)

]
,

N′2(x) = Γ[1+γ]a3
5Γ[1+2γ]

e−2x2− ν(t)−sech (x)d2+DU (−sech3(x)+sech[x]tanh2(x))
ΓΓ[1+γ]

+ 1
Γ[1+2γ]

(0.2e−2x2−2sech(x)a2
3 − 0.2e−2x2−sech (x)a2c4 + 9.6e−2x2

D2
N

−0.4e−2x2−sech (x)a3c4 + 0.3e−2x2−sech (x)sech(x)a3c4 + 0.07e−2x2
c2c4

−0.047e−2x2
sech2(x)c2c4 + 0.035e−2x2

sech3(x)c2c4 + 0.04e−4x2
c3c4

−0.05e−2x2
sech(x)c2c4 − 0.0300e−4x2

sech(x)c3c4 + 0.2e−2x2
c2

4
−0.300e−2x2

sech(x)c2
4 + 0.112e−2x2

sech2(x)c2
4 − 8e−2x2−sech(x)a3DN

+6.4e−2x2−sech (x)x2a3DN + 0.2e−2x2−sech (x)sech3(x)a3DN

−6.4e−2x2
x2c4DN − 1.2e−2x2

sech (x)c4DN + 4.8e−2x2
x2sech(x)c4DN

−0.15e−2x2
sech3(x)c4DN − 76.8e−2x2

x2D2
N + 1.6e−2x2

c4DN

+51.2e−2x2
x4D2

N − 0.15e−2x2
sech3(x)c4DT + 0.4e−2x2−sech(x)a3λ1

−0.4e−2x2
c4λ1 + 0.300e−2x2

sech(x)c4λ1 − 1.6e−2x2
DNλ1 + 0.2e−2x2

λ2
1

(25)
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+6.4e−2x2
x2DNλ1 − 0.2e−2x2

c4λ2 + 0.1500 e−2x2
sech(x)c4λ2

−0.12e−4x2−sech(x)a3ω1 + 0.12e−4x2
c4ω1 − 0.0900e−4x2

sech(x)c4ω1

+0.64e−4x2
DNω1 − 3.8e−4x2

x2DNω1 − 0.12e−4x2
λ1ω1 + 0.01e−6x2

ω2
1

+0.2e−2x2
c4ω2 − 0.30e−2x2

sech (x)c4ω2 + 0.1125e−2x2
sech2(x)c4ω2

+0.15e−2x2
sech (x)c4DNtanh2(x) + 0.15e−2x2

sech(x)c4DTtanh2(x)
+0.15e−2x2−sech(x)sech(x)a2c4 + 0.2e−2x2

xsech(x)c4DNtanh(x)
−0.2e−2x2−sech(x)sech(x)a3DNtanh(x)2(1− sech(x))
−1.6e−2x2−sech(x)xsech(x)a3DNtan(x)),

T′2(x) = −0.7 Γ[1+γ]
Γ[1+2γ]

sech(x)a2e−
ν(t)−sech(x)d2+DU (−sech3(x)+sech(x)tanh2(x))

ΓΓ[1+γ]

+ Γ[1+γ]
Γ[1+2γ]

a2e−
ν(t)−sech(x)d2+DU (−sech3(x)+sech(x)tanh2(x))

ΓΓ[1+γ]

+ 1
Γ[1+2γ]

(e−2sech(x)a2
2 − 0.75e−2sech(x)sech(x)a2

2 − σc2

+0.75σsech(x)c2 − 0.375ρc2
1+µ−0.75sech(x) − 0.375e−sech(x)a1c2

+ 0.56ρsech(x)c2
1+β−0.75sech(x) +

0.02ρsech2(x)c2
1+β−0.75sech(x) −

0.35ρsech3(x)c2
1+β−0.75sech(x)

+ 0.13ρsech4(x)c2
1+β−0.75sech(x) + (0.28 + 0.23sech(x))e−sech(x)sech(x)a1c2

−0.17e−sech(x)sech3(x)a1c2 + 0.56e−sech(x)sech(x)a2c2
−0.75e−sech(x)a2c2 + 0.47e−sech(x)sech2(x)a2c2 + 0.375c1c2
−0.56sech(x)c1c2 − 0.024sech2(x)c1c2 − 0.3525e−sech(x)sech3(x)a2c2
+0.3525sech3(x)c1c2 − 0.132187sech4(x)c1c2 + 0.140625c2

2
−0.10546sech(x)c2

2 − 0.176sech2(x)c2
2 + 0.13218sech3(x)c2

2
+0.05522sech4(x)c2

2 − 0.04141875sech5(x)c2
2 −

2
5 e−2x2−sech(x)a2c3

+0.30e−2x2−sech(x)sech(x)a2c3 − 1
5 e−2x2−sech(x)a3c3 + 0.15e−2x2

c2c3

−0.1125e−2x2
sech(x)c2c3 − 0.094e−2x2

sech2(x)c2c3 +
1
25 e−4x2

c2
3

+0.15e−2x2−sech(x)sech(x)a3c3 + 0.0705e−2x2
sech3(x)c2c3

−0.03e−4x2
sech(x)c2

3 +
1
5 e−2x2

c3c4 − 0.3e−2x2
sech(x)c3c4

+0.1125e−2x2
sech2(x)c3c4 − 0.47sech4(x)c2DI + 0.3525sech5(x)c2DI

+ 4
5 e−2x2

c3DN − 16
5 e−2x2

x2c3DN − 0.6000e−2x2
sech(x)c3DN

+2.4e−2x2
x2sech(x)c3DN + (2.5− 0.75sech(x))e−sech(x)sech3(x)a2DT

−0.47sech4(x)c2DT − 0.5625sech3(x)c2DT + 0.705sech5(x)c2DT

+ 4
5 e−2x2

c3DT − 16
5 e−2x2

x2c3DT − 0.600000e−2x2
sech(x)c3DT

+2.4e−2x2
x2sech(x)c3DT − 0.3e−2x2

sech3(x)c3DT − 3.75sech5(x)D2
T

− 1
5 e−2x2

c3λ1 + 0.1500000000e−2x2
sech(x)c3λ1 + 2e−sech(x)a2λ2

−1.5e−sech(x)sech(x)a2λ2 − 0.75c2λ2 + 0.5625sech(x)c2λ2

+0.47sech2(x)c2λ2 − 0.3525sech3(x)c2λ2 − 2
5 e−2x2

c3λ2

+0.30000e−2x2
sech(x)c3λ2 + 1.5sech3(x)DTλ2 + λ2

2 − 0.75sech(x)λ2
2

+0.375c2λ3 − 0.28125sech(x)c2λ3 − 0.235sech2(x)c2λ3

+0.17625sech3(x)c2λ3 +
1

25 e−4x2
c3ω1 − 0.03e−4x2

sech(x)c3ω1
−3e−sech(x)a2ω2 + (4.5− 1.68 sec(x))e−sech(x)sech(x)a2ω2
+1.125c2ω2 − 1.6875sech(x)c2ω2 − 0.0721874sech2(x)c2ω2

+1.05749999sech3(x)c2ω2 − 0.3965624sech4(x)c2ω2 +
3
5 e−2x2

c3ω2

−0.9e−2x2
sech(x)c3ω2 + 0.3e−2x2

sech2(x)c3ω2 − 0.3sech3(x)DTω2
+2.25sech4(x)DTω2 − 3λ2ω2 + 4.5sech(x)λ2ω2
−1.6875sech2(x)λ2ω2 + 2ω2

2 − 4.5sech(x)ω2
2 + 3.375sech2(x)ω2

2
−0.8sech3(x)ω2

2 + (1.2x + 0.3 tanh(x))e−2x2
sech(x)c3DTtanh(x)

−0.705sech3(x)c2DI tanh2(x)− 2.5e−sech(x)sech(x)a2DTtanh2(x)
+(3.2− 0.7 sech(x))e−sech(x)sech2(x)a2DTtanh2(x)
+0.5625sech(x)c2DTtanh2(x) + 0.94sech2(x)c2DTtanh2(x)
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+0.9sech2(x)c2DI tanh2(x) + 13.5 sech3(x)D2
Ttanh2(x)

−1.5sech(x)DTλ2tanh2(x) + 3 sech(x)DTω2tanh2(x)
−1.72sech3(x)c2DTtanh2(x) + 0.3e−2x2

sech(x)c3DTtanh2(x)
−3.375sech2(x)DTω2tanh2(x)− 0.75 sech(x)D2

Ttanh4(x)),
I′2(x) = 1

Γ[1+2γ]
(Γ[1 + γ](σ +

(
0.375− 0.235sech2(x)

)
a1

×
(

e−
ν(t)−sech(x)d2+DU (−sech3(x)+sech(x)tanh(x)2)

Γ[1+γ]

)
+ 1

Γ[1+γ](1+β−0.75sech(x))ρ
(
0.375− 0.235sech2(x)

)
×(e−sech(x)(1− 0.75sech(x))a2 − (1− 0.75sech(x))(0.375
−0.235 sech(x)2)c2 − (1− 0.75 sech(x))

(
1
5 e−2x2

c3 + λ2

)
−(1− 0.75 sech(x))2ω2 − 0.75DT

(
−sech3(x) + sech(x)tanh2(x)

)
)

− 1
Γ[1+γ]

(
0.375− 0.235sech2(x)

)
c1(e−sech(x)(1− 0.75 sech(x))a2

−(1− 0.75sech(x))
(

c2
(
0.375− 0.235sech(x)2)− 1

5 e−2x2
c3

)
+(1− 0.75sech(x))λ2 − (1− 0.75sec(x))2ω2
−0.75DT

(
−sech(x)3 + sech(x)tanh2(x)

)
) + 1

Γ[1+γ]
e−sech(x)a1

× (σ +
ρ(1−0.75sech(x))(0.375−0.235sech2(x))

1+β−0.75sech(x)
+e−sech(x)(0.375− 0.235sech2(x)

)
a1 − (1− 0.75sech(x))

×
(
0.375− 0.235sech2(x)

)
c1 −

(
0.375− 0.235sech2(x)

)
λ3

−0.235DI
(
−2sech4(x) + 4sech2(x)tanh2(x)

)
)− 1

Γ[1+γ]

× (1− 0.75sech(x))c1(σ +
ρ(1−0.7sech(x))(0.375−0.235sech2(x))

1+β−0.75 sech(x)

−
(
0.375− 0.235sech2(x)

)(
(1− 0.75 sech(x))c1 + a1e−sech(x)

)
−
(
0.375− 0.235sech2(x)

)
λ3 − 0.235DI(−2sech4(x)

+4sech2(x)tanh2(x))) + e−sech(x)(0.375− 0.235sech2(x)
)
a1

− 1
Γ[1+γ]

λ3(σ +
ρ(1−0.75sech(x))(0.375−0.235sech(x)2)

1+β−0.75sech(x)
−(1− 0.75sech(x))

(
0.375− 0.235sech2(x)

)
c1 + 4sech2(x)tanh2(x)

−
(
0.375− 0.235sech2(x)

)
λ3 − 0.235DI

(
−2sech4(x)

)
)

1
Γ[1+γ]

DI(−0.705sech3(x)c1tanh(x)2 + 1.5ρsech(x)tanh(x)

× ( 0.47sech2(x)tanh(x)
1+β−0.75sech(x) −

(
0.375− 0.235sech2(x)

)
× 0.75sech(x)tanh(x)

(1+β−0.75sech(x))2 )− (
(
−sech3(x) + sech(x)tanh2(x)

)
× 0.75ρ(0.375−0.235sech2(x))

1+β−0.75sech(x) ) + 0.235λ3(−2sech4(x)
+4 sech2(x)tanh2(x)) + 0.75

(
0.375− 0.235sech2(x)

)
× c1

(
−sech3(x) + sech(x)tanh2(x)

)
+ 0.235(1− 0.75sech(x))

× c1
(
−2sech4(x) + 4sech2(x)tanh2(x)

)
+ a1(0.94e−sech(x)sech3(x)

× tanh2(x)− 0.235e−sech(x)(−2sech4(x) + 4sech2(x)tanh(x)2)
+
(
0.375− 0.235sech(x)2)(e−sech(x)sech3(x)− e−sech(x)sech(x)

× tanh2(x) + e−sech(x)sech2(x)tanh2(x))) + ρ(1− 0.75sech(x))

× (− 0.7sech3(x)tanh2(x)
(1+β−0.75sech(x))2 −

0.2(−2sech4(x)+4sech2(x)tanh2(x))
1+β−0.75sech(x)

+
(
0.375− 0.235sech2(x)

)
(− 0.75sech3(x)

(1+β−0.75sech(x))2

+ 0.75sech(x)tanh2(x)
(1+β−0.75sech(x))2 +

1.125sech2(x)tanh2(x)
(1+β−0.75sech(x))3 ))

−0.235DI(−32sech4(x)tanh2(x) + 4sech2(x)(2sech4(x)
−4sech2(x)tanh2(x)) + 4tanh2(x)(−2sech4(x)
+4sech2(x)tanh2(x))− 2

(
−4sech6(x) + 16sech4(x)tanh2(x)

)
)))

+((ρ(1− 0.75sech(x))σ− ρ(1− 0.75sech(x))
(
0.375− 0.235sech2(x)

)
λ3

+ρ(1− 0.75sech(x))
ρ(1−0.75sech(x))(0.375−0.235sech2(x))

1+β−0.75sech(x)
−ρ(1− 0.75sech(x))(1− 0.75sech(x))

(
0.375− 0.235sech2(x)

)
c1
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−ρ(1− 0.75sech(x))0.235DI
(
−2sech4(x) + 4sech2(x)tanh2(x)

)
+ρ(1− 0.75sech(x))e−sech(x)(0.375− 0.235sech2(x)

)
a1))

×((βΓ[1 + γ] + e−sech(x)(1− 0.75sech(x))a2 + (1− 0.75sech(x))λ2

−(1− 0.75sech(x))
(
0.375− 0.235sech(x)2)c2 − 1

5 e−2x2
(1− 0.75sech(x))c3

−(1− 0.75sech(x))2ω2 − 0.75DT
(
−sech3(x) + sech(x)tanh2(x)

)
)−1,

U′2(x) = 1
Γ[1+2γ]

(v(t)Γ[1 + γ]− ν(t)d2 + sech(x)d2
2 + 2sech3(x)d2DU

+5sech5(x)D2
U − 2sech(x)d2DUtanh2(x)− 18sech3(x)D2

Utanh2(x)
+sech(x)D2

Utanh4(x)),

The values for k ≥ 2 can also be obtained in a similar manner. Now, the inverse
transform values of N′k(x), T′k(x), I′k(x), and U′k(x), respectively, are:

N(x, t) =
∞
∑

k=0
N′k tkγ = N′0 + N′1tγ + N′2 t2γ + N′3t3γ + · · · .

T(x, t) =
∞
∑

k=0
T′k tkγ = T′0 + T′1tγ + T′2 t2γ + T′3t3γ + · · · .

I(x, t) =
∞
∑

k=0
I′k tkγ = I′0 + I′1tγ + I′2 t2γ + I′3t3γ + · · · .

U(x, t) =
∞
∑

k=0
U′k tkγ = U′0 + U′1tγ + U′2 t2γ + U′3t3γ + · · · .

(26)

By using the values of the first few iterations, we obtain the series form solution.
The text continues here.

3.2. Modelling Cancer Tumor Based on Cells Concentration

Consider the fractional diffusion equation model of cancer tumor [35].

Case (I): The killing percentage of cancer cells K is dependent on the number of cells.

∂γv(x, t)
∂tγ

=
∂2v(x, t)

∂x2 − 2
x

∂v(x, t)
∂x

− v2(x, t), x > 0, 2 ≥ γ ≥ 0, (27)

subject to the initial condition:
v(x, 0) = xq. (28)

According to RDTM, the iteration formulas for Equation (27) can be written as follows:

v′k+1(x) =
Γ(kγ + 1)

Γ(kγ + γ + 1)

[
∂2v′k
∂x2 −

2
x

∂v′k
∂x
−

k

∑
m=0

v′mv′k−m

]
, (29)

In view of the above iterative formula, we obtain the following solutions:

v′0(x) = xq,

v′1(x) = (−3+q)qx−2+q−x2q

Γ[1+γ]
,

v′2(x) =
x−4+q(−10q3+q4+2x4+2q+q2(31−6x2+q)+6q(−5+2x2+q))

Γ[1+2γ]
,
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v′3(x) = 1
Γ[1+3γ]

(
−840qx−6+q + 1198q2x−6+q − 651q3x−6+q + 169q4x−6+q

−21q5x−6+q + q6x−6+q − 4x4q + 180qx−4+2q − 290q2x−4+2q

+152q3x−4+2q − 26q4x−4+2q − 42qx−2+3q + 30q2x−2+3q

− x4qΓ[1+2γ]

Γ[1+γ]2
− 9q2x−4+2qΓ[1+2γ]

Γ[1+γ]2
+ 6q3x−4+2qΓ[1+2γ]

Γ[1+γ]2

− q4x−4+2qΓ[1+2γ]

Γ[1+γ]2
− 6qx−2+3qΓ[1+2γ]

Γ[1+γ]2

+ 2q2x−2+3qΓΓ[1+2γ]

Γ[1+γ]2

)
v′4(x) = x−8+q

Γ[1+γ]2Γ[1+2γ]Γ[1+4γ]
((−36q7 + q8 + 8x8+4q + q6(538

−106x2+q) + 2q5(−2160 + 611x2+q)+ q4(20089
−5570x2+q + 322x4+2q)− 2q3(26982− 6329x2+q

+656x4+2q) + 12q
(
−3780 + 560x2+q − 65x4+2q + 11x6+3q)

−2q2(−38646 + 7238x2+q − 881x4+2q

+62x6+3q))Γ[1 + γ]2Γ[1 + 2γ] + 2x2+q(23q5 − 2q6 + x6+3q

+q3(183− 54x2+q)+ 6qx2+q(−5 + 2x2+q)+ 2q4(−49
+5x2+q)− 2q2(63− 41x2+q + 5x4+2q))Γ[1 + 2γ]2

+2x2+q(13q5 − q6 + 2x6+3q + q3(123− 40x2+q)
+6qx2+q(−5 + 3x2+q)+ q4(−61 + 7x2+q)+ q2(−90
+67x2+q − 8x4+2q))Γ[1 + γ]Γ[1 + 3γ]),

(30)

The values for k > 3 can also be obtained by similar manner. Now, the inverse
transform of v′k(x) is

v(x, t) =
∞

∑
k=0

v′k tkγ = v′0 + v′1tγ + v′2 t2γ + v′3t3γ + v′4(x)t4γ + · · · . (31)

By using the values of a few iterations, we obtain the series form solution.

Case (II): The killing percentage of cancer cells K is function of time only.

∂γv(x, t)
∂tγ

=
∂2v(x, t)

∂x2 − t2v(x, t), x > 0, 1 ≥ γ ≥ 0, (32)

subject to the initial condition:
v(x, 0) = eµx. (33)

According to RDTM, the iteration formulas for Equation (32) can be written as follows:

v′k+1(x) =
Γ(kγ + 1)

Γ(kγ + γ + 1)

[
∂2v′k(x)

∂x2 − v′k−2(x)
]

, (34)

In view of above iterative formula, we obtain the following solutions:

v′0(x) = eµx,
v′1(x) = µ2 1

Γ(γ+1) eµx,
v′2(x) = µ4 1

Γ(2γ+1) eµx,

v′3(x) = (µ6−Γ[1+2γ])
Γ[1+3γ]

eµx,

v′4(x) =
µ2(Γ[1+γ](µ6−Γ[1+2γ])−Γ[1+3γ])

Γ[1+γ]Γ[1+4γ]
eµx,

(35)

The values for k > 3 can also be obtained in a similar manner. Now, the inverse
transform of v′k(x) is given as:

v(x, t) =
∞

∑
k=0

v′k tkγ = v′0 + v′1tγ + v′2 t2γ + v′3t3γ + v′4(x)t4γ + · · · . (36)
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By using the values of a few iterations, we obtain the series form solution.

Case (III): The killing percentage of cancer cells K is function of space only.

∂γv(x, t)
∂tγ

=
∂2v(x, t)

∂x2 − 2
x2 v(x, t), x > 0, 1 ≥ γ ≥ 0, (37)

subject to the initial condition:

v(x, 0) = v(x, 0) =
a
x
+ bx2. (38)

According to RDTM, the iteration formulas for Equation (37) can be written as follows:

v′k+1(x) =
Γ(kγ + 1)

Γ(kγ + γ + 1)

[
∂2v′k(x)

∂x2 − 2
x2 v′k(x)

]
, (39)

In view of the above iterative formula, we obtain the following solutions:

v′0(x) = a
x + bx2,

v′ i(x) = 0, i = 1, 2, 3, . . . . . .
(40)

Now, the inverse transform of v′k(x) is:

v(x, t) =
∞

∑
k=0

v′k tkγ = v′0 + v′1tγ + v′2 t2γ + v′3t3γ + v′4(x)t4γ + · · · . (41)

On putting the values of a few iterations, we obtain the series form solution.

4. Results and Discussion

In order to illustrate the preciseness and effectiveness of the proposed methodology,
numerical simulations of two cancer tumor models were carried out. Furthermore, different
graphs were drawn to examine the behavior of the obtained solutions.

Two- and three-dimensional comparisons of the initial distribution of normal, tumor,
immune, and drug cells are presented in Figure 1. Figure 2a,b represent the behavior of
RDTM solution N(x, t) at t = 0.5 and x = 1, respectively, for varied values of γ, while
Figure 2c,d present the three-dimensional contour plots of the RDTM solution N(x, t),
respectively, at −2 ≤ x ≤ 2 and 0 ≤ t ≤ 1. Through these plots, we can see that the
normal cells are highest at x = 0 and decrease continuously towards the invasive fronts,
i.e., at x = −2 and x = 2. Similarly, Figure 3 shows the behavior of the RDTM solution
T(x, t) tumor cells at t = 0.5 and x = 1 for different values of γ, and we can see that the
tumor cells are lowest at x = 0 but increase continuously towards the invasive fronts,
i.e., x = −2 and x = 2. In Figure 4, the variation of I(x, t) immune cells with respect
to x and t at γ = 0.4, 0.6, 0.8 and 1 is presented. Figure 5a,b describe the behavior of
chemotherapeutic drugs U(x, t) at t = 0.5 and x = 1, respectively, for varied values of
non-integer order, while Figure 5c,d explore the concentration of drug cells with respect to t
and x. These graphics show that the concentration of drug cells is higher at x = 0 and lower
towards the invasive fronts. In Figure 6, two and three-dimensional comparison graphics of
RDTM solutions N(x, t), T(x, t), I(x, t) and U(x, t) are presented. Figure 7a depicts a two-
dimensional graphic of tumor cells in the absence of chemotherapeutic drugs at various
times, whereas Figure 7b depicts a two-dimensional plot of tumor cells in the presence of
drugs at various times, and it is clear from the figures that the concentration of tumor cells
is lower in the presence of chemotherapeutic drugs than in the absence of chemotherapeutic
drugs. This behavior of tumor cells is explained by the fact that chemotherapeutic drugs
enable the body’s defense system to transport more immune cells to the infected area. This
represents a step forward in the treatment of cancer tumor by establishing the correlation
of chemotherapy drugs while boosting immunity against the specific cancer. The per capita
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growth rates are represented by ri, where r1 indicates the tumor cell’s parameter while r2
indicates the normal cell’s parameter. In Figure 8, the variation of T(x, t) tumor cells and
N(x, t) normal cells with respect to per capita growth rates r1 and r2 at γ = 1 is shown. In
the above graphs, the values of fractional cell kill a1, a2, a3 are considered as 0.2, 0.3, and
0.1, respectively, while the carrying capacity b1, b2 are considered as 1 and 0.81, respectively.
The parameters c1, c2, c3, c4 are taken as 1, 0.55, 0.9, and 1, respectively. d1 = 0.2 and
d2 = 1 are the deathrate values taken in this work. The values for the immune source rate
σ, the immune threshold rate β, and the immune response rate ρ are considered as 0.33,
0.3, and 0.2, correspondingly. The values for diffusion coefficients DN , DT , DI and DU are
0.001, 0.001, 0.001 and 0.001, respectively.. Finally, it is concluded that the stability of the
model is greatly influenced by the aforementioned parameters utilized in the governing
equations. The theory of fractional calculus can be effectively used to explain the dynamics
of the cancer treatment impact model, which depends on both the time instant and the time
history. We discover that a more capable and realistic model can be realized by considering
the Caputo-fractional derivatives.

Figure 9a,b shows that the concentration of cancerous cells reduces at 0 ≤ t ≤ 1 and
0 ≤ t ≤ 2 for varied values of fractional order γ. In Figure 9c, the concentration of diseased
cells starts to increase for some values of γ, and Figure 9d shows that the concentration of
cells still increases for some values of fractional-order gamma at 0 ≤ t ≤ 10, but this is not
the case for γ = 1.75. At γ = 1.75, the amount of cancer cells decreases for every value of t.
So, the best possible fractional-order case for model 4.2 (I) is γ = 1.75. As the time increases,
the cancer cells decrease at γ = 1.75, and can be removed from the body after a specific time.
Figure 10a,b show the two-dimensional and three-dimensional plots of the RDTM solution
v(x, t) for case (II). In these figures, we check the behavior of disease cells with respect to
time by fixing the value of t at varied values of fractional-order gamma. It is seen that the
concentration of cells decreases for every value of fractional-order gamma, although γ = 1
yielded the best results. Figure 11a,b explore a reduction in the concentration of cancerous
cells, and the influence of fractional order is not noticeable here, but that does not negate
its significance. Finally, it is concluded that the killing rate of cancerous cells is dependent
on the cell’s concentration.
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5. Conclusions

In our work, we successfully implemented the reduced differential transform method
(RDTM) for the solution of two fractional cancer tumor models in the Caputo sense. First,
the system of four coupled partial differential equation model described the effect of
chemotherapeutic drugs in cancer treatment and, second, the cancer model that described
the different cases of killing rate K of cancer cells (the killing percentage of cancer cells K (I)
is dependent on the number of cells, (II) is a function of time alone, and (III) is a function
of space only). It is noted that the method gave series form solutions which converge
sharply, and that an increase in the number of terms will increase the solution efficiency.
Graphical results show that the obtained solution results agreed with those given in [1,37],
and that RDTM is a very straightforward technique does not require any linearization,
discretization, perturbation, or restrictive suppositions. In the first model, in the presence
of chemotherapeutic drugs, the percentage of tumors cells started to decrease and that of
immune cells and normal cells increased. This presents a breakthrough in the treatment
of cancer tumor by establishing the correlation of chemotherapy drugs while boosting
immunity against the specific cancer. The graphical results of the second model (Case I)
show that the concentration of cancerous cells decreases with time at γ = 1.75, and can be
removed from the body after a specific phase. It is prospectively important for oncologists
to determine at which phase the cancer would be lowered or severe, which is very helpful in
the treatment. This means that γ = 1.75 is a suitable fractional order for the selected model.
Finally, it is concluded that the selected system parameters influence the stability of the
model. The fractional derivative is a useful tool for analyzing the behavior of cancer tumor
models, depending on the memory or time history. We discover that a more capable and
realistic model can be stabilized by considering the Caputo-fractional derivatives. Because
of the power law form of the Caputo’s kernel, namely hC(t, β) = t−β

Γ(1−β)
, 0 < β < 1,

the memory effects are stronger at small values of time, t. Moreover, it is observed that
RDTM is a powerful technique that can be utilized to solve other nonlinear fractional-order
differential equations emerging in the field of biological sciences.
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