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1. Introduction

A fundamental problem in the theory of differential equations (ordinary and partial)
is the determination of a solution that verifies certain initial conditions.

Regarding Cauchy problems, certain questions arise: Does a solution exist (even locally
only)? Is this unique? In this case, the solution continuously depends on the initial data,
that is, is the problem well posed? The concept of a well-posed problem is connected with
investigations by the famous French mathematician Hadamard [1]. The problems that are
not well-posed are called ill-posed problems. The theory of ill-posed problems has been the
subject of research by many mathematicians in the last years, with applicability in various
fields: theoretical physics, optimization of control, astronomy, management and planning,
automatic systems, etc., all of which have been influenced by the rapid development of
computing technology.

Tikhonov [2] answered certain questions that are posed in the class of ill-posed prob-
lems, such as: what does an approximate solution mean, and what algorithm can be used to
find such an approximate solution? This involves including additional assumptions. This
process is known as regularization. Tikhonov regularization is one of the most commonly
used for the regularization of linear ill-posed problems. Lavrent’ev [3,4] also established
a regularization method. Based on this method, Yarmukhamedov [5,6] constructed the
Carleman functions for the Laplace and Helmholtz, when the data is unknown on a conical
surface or a hyper surface. Carleman-type formulas allow a solution to an elliptic equation
to be found when the Cauchy data are known only on a part of the boundary of the domain.
Carleman [7] obtained a formula for a solution to Cauchy–Riemann equations, on domains
of certain forms. Based on [7], Goluzin and Krylov [8] gave a formula for establishing the
values of analytic functions on arbitrary domains. The multidimensional case was treated
in [9]. The Cauchy problem for elliptic equations was considered by Tarkhanov [10,11].
In [12], the Cauchy problem for the Helmholtz equation in an arbitrary bounded plane
domain was considered. Certain boundary value problems and the determination of nu-
merical solutions was investigated in [13–25]. In [21] is studied the Cauchy problem of
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a modified Helmholtz equation. An efficient D-N alternating algorithm for solving an
inverse problem for Helmholtz equation was investigated in [18]. The Cauchy problem for
elliptic equations, was studied in [2–11] and then it was investigated in [12,26–37].

In this article, based on previous works [30–32,37], we find an explicit formula for an
approximate solution of the Cauchy problem for matrix factorizations of the Helmholtz
equation in a three-dimensional unbounded domain of R3. The approximate solution
formula requires construction of a family of fundamental solutions of the Helmholtz
operator in space. This family is parametrized by some entire function K(z). Relying on
the works [30–37], we obtain better results, due to a special selection of the function K(z).
This helped us to obtain good results when finding an approximate solution based on the
Carleman matrix.

Let
ζ = (ζ1, ζ2, ζ3) ∈ R3, η = (η1, η2, η3) ∈ R3,

ζ ′ = (ζ1, ζ2) ∈ R2, η′ = (η1, η2) ∈ R2,

and Ω ⊂ R3 an unbounded, simply connected domain, having the boundary ∂Ω piecewise
smooth, such that ∂Ω = Σ

⋃
D, where D is the plane η3 = 0 and Σ is a smooth surface

lying in the half-space η3 > 0.
The following notations are used in the paper:

r = |η − ζ|, α =
∣∣η′ − ζ ′

∣∣, z = i
√

a2 + α2 + η3, a ≥ 0,

∂ζ =
(
∂ζ1 , ∂ζ2 , ∂ζ3

)T , ∂ζ → χT , χT =

 χ1
χ2
χ3

 transposed vector χ,

W(ζ) = (W1(ζ), . . . , Wn(ζ))
T , v0 = (1, . . . , 1) ∈ Rn, n = 2m, m = 3,

E(w) =

∥∥∥∥∥∥∥∥∥
w1 0 · · · 0
0 w2 · · · 0

· · · · · · . . . · · ·
0 0 0 wn

∥∥∥∥∥∥∥∥∥− diagonal matrix, w = (w1, . . . , wn) ∈ Rn.

P(χT) is an n× n matrix, having the elements linear functions with constant coeffi-
cients from C, such that

P∗(χT)P(χT) = E((|χ|2 + λ2)v0),

where P∗(χT) is the Hermitian conjugate matrix of P(χT) and λ ∈ R.
Next, we consider the system

P
(
∂ζ

)
W(ζ) = 0, η ∈ Ω, (1)

where P
(
∂ζ

)
is the matrix differential operator of order one.

Additionally, consider the set

S(Ω) =
{

W : Ω −→ Rn},

where W is continuous on Ω = Ω ∪ ∂Ω and W satisfies (1).

2. Statement of the Cauchy Problem

We formulate now the following Cauchy problem for the system (1):
Let f : Σ −→ Rn be a continuous given function on Σ.
Suppose W(η) ∈ S(Ω) and

W(η)|Σ = f (η), η ∈ Σ. (2)
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Our purpose is to determine the function W(η) in the domain Ω when its values are
known on Σ.

If W(η) ∈ S(Ω), then

W(ζ) =
∫

∂Ω

L(η, ζ; λ)W(η)dsη , ζ ∈ Ω, (3)

where
L(η, ζ; λ) =

(
E
(

Γ3(λr)v0
)

P∗
(
∂ζ

))
P(tT),

t = (t1, t2, t3) is the unit exterior normal at a point η on the surface ∂Ω and Γ3(λr) denotes
the fundamental solution of the Helmholtz equation in R3(see, [38]), that is

Γ3(λr) = − eiλr

4πr
. (4)

Let K(z) be an entire function taking real values for real z (z = a + ib, a, b ∈ R),
satisfying

K(a) 6= 0, sup
b≥1

∣∣∣bpK(p)(z)
∣∣∣ = B(a, p) < ∞,

−∞ < a < ∞, p = 0, 3.

(5)

Define

Ψ(η, ζ; λ) = − 1
2π2K(ζ3)

∞∫
0

Im
[

K(z)
z− ζ3

]
cos(λa)√

a2 + α2
da, for η 6= ζ. (6)

Consider Ψ(η, ζ; λ) in (3) instead Γ3(λr), where

Ψ(η, ζ; λ) = Γ3(λr) + G(η, ζ; λ), (7)

G(η, ζ; λ) being the regular solution of Helmholtz’s equation with respect to η, including
the case η = ζ.

We obtain
W(ζ) =

∫
∂Ω

L(η, ζ; λ)W(η)dsη , ζ ∈ Ω, (8)

where
L(η, ζ; λ) =

(
E
(

Ψ(η, ζ; λ)v0
)

P∗
(
∂ζ

))
P(tT).

We generalize (8) for the case when the domain Ω is unbounded.
Hence, in what follows, we consider the domain Ω ⊂ R3 be unbounded.
Suppose that Ω is situated inside the layer of smallest width defined by the inequality

0 < η3 < h, h =
π

ρ
, ρ > 0,

and ∂Ω extends to infinity.
Let

ΩR = {η : η ∈ Ω, |η| < R}, Ω∞
R = Ω\ΩR, R > 0.

Theorem 1. Let W(η) ∈ S(Ω). If for each fixed ζ ∈ Ω we have the equality

lim
R→∞

∫
Ω∞

R

L(η, ζ; λ)W(η)dsη = 0, (9)

then (8) is satisfied.
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Proof. Fix ζ ∈ Ω, |ζ| < R. Using (8) we obtain∫
∂Ω

L(η, ζ; λ)W(η)dsη =
∫

∂ΩR

L(η, ζ; λ)W(η)dsy

+
∫

∂Ω∞
R

L(η, ζ; λ)W(η)dsη = W(ζ) +
∫

∂Ω∞
R

L(η, ζ; λ)W(η)dsη , ζ ∈ ΩR.

Using (9), we obtain (8).
Also assume that the length ∂Ω satisfies the following growth condition∫

∂Ω

exp
[
−d0ρ0

∣∣η′∣∣]dsη < ∞, 0 < ρ0 < ρ, (10)

for some d0 > 0. Suppose W(η) ∈ S(Ω) satisfies

|W(η)| ≤ exp
[
exp ρ2

∣∣η′∣∣], ρ2 < ρ, η ∈ Ω. (11)

We consider in (6):

K(z) = exp
[
−d iρ1

(
z− h

2

)
− d1 iρ0

(
z− h

2

)]
,

K(ζ3) = exp
[

d cos ρ1

(
ζ3 −

h
2

)
+ d1 cos iρ0

(
ζ3 −

h
2

)]
,

0 < ρ1 < ρ, 0 < ζ3 < h,

(12)

where
d = 2c exp

(
ρ1
∣∣ζ ′∣∣), d1 >

d0

cos
(

ρ0
h
2

) , c ≥ 0, d > 0.

Then (8) is valid.

Let ζ ∈ Ω be fixed and η → ∞. We estimate Ψ(η, ζ; λ),
∂Ψ(η, ζ; λ)

∂ηj
, j = 1, 2 and

∂Ψ(η, ζ; λ)

∂η3
. To estimate

∂Ψ(η, ζ; λ)

∂ηj
, we use the equality

∂Ψ(η, ζ; λ)

∂ηj
=

∂Ψ(η, ζ; λ)

∂s
∂s
∂ηj

= 2(ηj − ζ j)
∂Ψ(η, ζ; λ)

∂s
, j = 1, 2. (13)

Really, ∣∣∣∣exp
[
−d iρ1

(
z− h

2

)
− d1iρ0

(
z− h

2

)]∣∣∣∣
= exp Re

[
−d iρ1

(
z− h

2

)
− d1iρ0

(
z− h

2

)]

= exp
[
−d ρ1

√
a2 + α2 cos ρ1

(
η3 −

h
2

)
− d1ρ0

√
a2 + α2 cos ρ0

(
η3 −

h
2

)]
.
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As
−π

2
≤ −ρ1

ρ
· π

2
≤ ρ1

ρ
· π

2
<

π

2
,

−π

2
≤ −ρ1

ρ
· π

2
≤ ρ0

(
y3 −

h
2

)
≤ ρ1

ρ
· π

2
<

π

2
.

Consequently,

cos ρ

(
η3 −

h
2

)
> 0, cos ρ0

(
η3 −

h
2

)
≥ cos

hρ0

2
> δ0 > 0.

It does not vanish in the region Ω and

|Ψ(η, ζ; λ)| = O[exp(−ερ1|η′|)], ε > 0, η → ∞, η ∈ Ω
⋃

∂Ω,∣∣∣∣∣∂Ψ(η, ζ; λ)

∂ηj

∣∣∣∣∣ = O[exp(−ερ1|η′|)], ε > 0, η → ∞, η ∈ Ω
⋃

∂Ω, j = 1, 2.

∣∣∣∣∂Ψ(η, ζ; λ)

∂η3

∣∣∣∣ = O[exp(−ερ1|η′|)], ε > 0, η → ∞, η ∈ Ω
⋃

∂Ω.

We now choose ρ1 with the condition ρ2 < ρ1 < ρ. Hence, (10) is satisfied and (8)
is true.

Condition (12) can be weakened.
Denote

Sρ(Ω) = {W(η) : W(η) ∈ S(Ω), |W(η)| ≤ exp[O(exp ρ|η1|)], η → ∞, η ∈ Ω}. (14)

Theorem 2. If W(η) ∈ Sρ(Ω) satisfies

|W(η)| ≤ C exp
[

c cos ρ1

(
η3 −

h
2

)
exp

(
ρ1
∣∣η′∣∣)],

C constant, c ≥ 0, 0 < ρ1 < ρ, η ∈ ∂Ω,

(15)

then (8) is true.

Proof. Divide Ω by a line η3 =
h
2

into the domains

Ω1 =

{
η : 0 < η3 <

h
2

}
and Ω2 =

{
η :

h
2
< η3 < h

}
.

Consider the domain Ω1. We put

K1(z) = K(z) exp
[
−δ iτ

(
z− h

2

)
− δ1iρ

(
z− h

2

)]
,

ρ < τ < 2ρ, δ > 0, δ1 > 0,

(16)

in (6), K(z) being defined in (12) and we obtain that (10) is valid.
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Really, ∣∣∣∣exp
[
−iτ

(
z− h

4

)
− δ1iρ

(
z− h

4

)]∣∣∣∣
= exp

[
−δτ

√
a2 + α2 cos τ

(
η3 −

h
4

)]

= exp
[
−δτ

√
a2 + α2

]
≤ exp

[
−δ exp τ

∣∣η′∣∣],
−π

2
≤ −τ

π

4
≤ τ

(
η3 −

h
4

)
≤ τ

π

2
<

h
2

and cos τ

(
η3 −

h
4

)
≥ cos τ

h
4
≥ δ0 > 0.

We denote the corresponding Ψ(η, ζ; λ) by Ψ+(η, ζ; λ).
Since

cos τ

(
η3 −

h
4

)
≥ δ0, η ∈ Ω1

⋃
∂Ω1,

then for fixed ζ ∈ Ω1, η ∈ Ω1
⋃

∂Ω1 we have

|Ψ+(η, ζ; λ)| = O[exp(−δ0 exp(τ|η′|)], η → ∞, ρ < τ < 2ρ,∣∣∣∣∣∂Ψ+(η, ζ; λ)

∂ηj

∣∣∣∣∣ = O[exp(−δ0 exp(τ|η′|)], η → ∞, ρ < τ < 2ρ, j = 1, 2.

∣∣∣∣∂Ψ+(η, ζ; λ)

∂η3

∣∣∣∣ = O[exp(−δ0 exp(τ|η′|)], η → ∞, ρ < τ < 2ρ.

Suppose W(η) ∈ Sρ(Ω1) satisfies

|W(η)| ≤ C exp
[
exp(2ρ− ε)

∣∣η′∣∣], ε > 0, η ∈ Ω1. (17)

Consider τ in (16) satisfying 2ρ− ε < τ < 2ρ.
We obtain that (16) is valid in Ω1, and we have

W(ζ) =
∫

∂Ω1

L(η, ζ; λ)W(η)dsη , ζ ∈ Ω1. (18)

where
L(η, ζ; λ) =

(
E
(

Ψ+(η, ζ; λ)v0
)

P∗
(
∂ζ

))
P(tT).

If W(η) ∈ Sρ(Ω2) satisfies (15) in Ω2, then for 2ρ− ε < τ < 2ρ analog we have

W(ζ) =
∫

∂Ω2

L(η, ζ; λ)W(η)dsη , ζ ∈ Ω2, (19)

where
L(η, ζ; λ) =

(
E
(

Ψ−(η, ζ; λ)v0
)

P∗
(
∂ζ

))
P(tT),

and Ψ−(η, ζ; λ) it is given by (6), in which K(z) it is replaced by the function K2(z):

K2(z) = K(z) exp
[
−δ iτ(z− h1)− δ1iρ

(
z− h

2

)]
, (20)

where
h1 =

h
2
+

h
4

,
h
2
< η3 < h,

h
2
< ζ3 < h1, δ > 0, δ1 > 0.
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The integrals converge uniformly for δ ≥ 0, and W(η) ∈ Sρ(Ω). We consider δ = 0
and we find

W(ζ) =
∫

∂Ω

L(η, ζ; λ)W(η)dsη , ζ ∈ Ω, ζ3 6=
h
2

, (21)

where
L(η, ζ; λ) =

(
E
(

Ψ̃(η, ζ; λ)v0
)

P∗
(
∂ζ

))
P(tT),

Ψ̃(η, ζ; λ) = (Ψ+(η, ζ; λ))δ=0 = (Ψ−(η, ζ; λ))δ=0.

Here, Ψ̃(η, ζ; λ) is given by (6), and K(z) by (16), for δ = 0. According to the continua-
tion principle, Formula (21) is valid for every ζ ∈ Ω. Using (18) and (21) holds for every
δ1 ≥ 0. Supposing δ1 = 0 , Theorem 2 is proved.

We choose

K(z) =
1

(z− ζ3 + 2h)2 exp(σz2),

K(ζ3) =
1

(2h)2 exp(σζ2
3), 0 < ζ3 < h, h =

π

ρ
,

(22)

in (6) and we obtain

Ψσ(η, ζ; λ) = − e−σζ2
3

π2(2h)−1

∞∫
0

Im
exp(σz2)

(z− ζ3 + 2h)2(z− ζ3)

cos(λa)√
a2 + α2

da. (23)

The Formula (8) becomes:

W(ζ) =
∫

∂Ω

Lσ(η, ζ; λ)W(η)dsη , ζ ∈ Ω, (24)

where
Lσ(η, ζ; λ) =

(
E
(

Ψσ(η, ζ; λ)v0
)

P∗
(
∂ζ

))
P(tT).

3. Regularized Solution of the Problem

Theorem 3. Let W(η) ∈ Sρ(Ω) satisfying

|W(η)| ≤ M, η ∈ D. (25)

If

Wσ(ζ) =
∫
Σ

Lσ(η, ζ; λ)W(η)dsη , η ∈ Ω, (26)

then
|W(ζ)−Wσ(ζ)| ≤ Kρ(λ, ζ)σ2Me−σζ2

3 , ζ ∈ Ω, (27)

∣∣∣∣∣∂W(ζ)

∂ζ j
− ∂Wσ(ζ)

∂ζ j

∣∣∣∣∣ ≤ Kρ(λ, ζ)σ2Me−σζ2
3 , σ > 1, ζ ∈ Ω, j = 1, 3, (28)

where Kρ(λ, ζ) are bounded on compact subsets of Ω.
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Proof. From (24) and (26), we obtain

W(ζ) =
∫
Σ

Lσ(η, ζ; λ)W(η)dsη +
∫
D

Lσ(η, ζ; λ)W(η)dsη

= Wσ(ζ) +
∫
D

Lσ(η, ζ; λ)W(η)dsη , ζ ∈ Ω.

Now using (25), we obtain

|W(ζ)−Wσ(ζ)| ≤

∣∣∣∣∣∣
∫
D

Lσ(η, ζ; λ)W(η)dsη

∣∣∣∣∣∣
≤
∫
D

|Lσ(η, ζ; λ)||W(η)|dsη ≤ M
∫
D

|Lσ(η, ζ; λ)|dsη , ζ ∈ Ω.

(29)

Next, we estimate the integrals
∫
D

|Ψσ(η, ζ; λ)|dsη ,
∫
D

∣∣∣∣∣∂Ψσ(η, ζ; λ)

∂ηj

∣∣∣∣∣dsη , j = 1, 2 and

∫
D

∣∣∣∣∂Ψσ(η, ζ; λ)

∂ζ3

∣∣∣∣dsη on the part D of the plane η3 = 0.

Separating the imaginary part of (23), we obtain

Ψσ(η, ζ; λ) =
eσ(η2

3−ζ2
3)

π2(2h2)−1

 ∞∫
0

(
e−σ(u2+α2)(−α2

1 + β2
1 + 2β1) cos γα1(

α2
1 + β2

1
)2(

α2
1 + β2

)
−

e−σ(u2+α2)
(
2α2

1β1 + α2
1β− β2

1β
)(

α2
1 + β2

1
)2(

α2
1 + β2

) sin γα1

α1

)
cos(λa)da

]
,

(30)

where
γ = 2ση3, α2

1 = a2 + α2, β = η3 − ζ3, β1 = η3 − ζ3 + 2h.

Given equality (30), we have∫
D

|Ψσ(η, ζ; λ)|dsη ≤ Kρ(λ, ζ)σ2e−σζ2
3 , σ > 1, ζ ∈ Ω. (31)

Now using the equality

∂Ψσ(η, ζ; λ)

∂ηj
=

∂Ψσ(η, ζ; λ)

∂s
∂s
∂ηj

= 2(ηj − ζ j)
∂Ψσ(η, ζ; λ)

∂s
,

s = α2, j = 1, 2,

(32)

the equality (30) and (32), we have

∫
D

∣∣∣∣∣∂Ψσ(η, ζ; λ)

∂ηj

∣∣∣∣∣dsη ≤ Kρ(λ, ζ)σ2e−σζ2
3 , σ > 1, ζ ∈ Ω, j = 1, 2. (33)

Now, we estimate the integral
∫
D

∣∣∣∣∂Ψσ(η, ζ; λ)

∂η3

∣∣∣∣dsη .
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Taking into account equality (30), we obtain∫
D

∣∣∣∣∂Ψσ(η, ζ; λ)

∂η3

∣∣∣∣dsη ≤ Kρ(λ, ζ)σ2e−σζ2
3 , σ > 1, ζ ∈ Ω, (34)

From inequalities (29), (31), (33), and (34), we obtain (27).
Now we prove the inequality (28). Taking the derivatives from equalities (24) and (26)

with respect to ζ j, j = 1, 3, we obtain:

∂W(ζ)

∂ζ j
=
∫
Σ

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη +

∫
D

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη ,

∂Wσ(ζ)

∂ζ j
=
∫
Σ

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη , ζ ∈ Ω, j = 1, 3

(35)

From (25) and (35), we have∣∣∣∣∣∂W(ζ)

∂ζ j
− ∂σW(ζ)

∂ζ j

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
D

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη

∣∣∣∣∣∣
≤
∫
D

∣∣∣∣∣∂Lσ(η, ζ; λ)

∂ζ j

∣∣∣∣∣|W(η)|dsη ≤ M
∫
D

∣∣∣∣∣∂Lσ(η, ζ; λ)

∂ζ j

∣∣∣∣∣dsη ,

ζ ∈ Ω, j = 1, 3.

(36)

To prove (36), we estimate
∫
D

∣∣∣∣∣∂Ψσ(η, ζ; λ)

∂ζ j

∣∣∣∣∣dsη , j = 1, 2, and
∫
D

∣∣∣∣∂Ψσ(η, ζ; λ)

∂ζ3

∣∣∣∣dsη , on

the part D of the plane η3 = 0.

For the first integrals, we use:

∂Ψσ(η, ζ; λ)

∂ζ j
=

∂Ψσ(η, ζ; λ)

∂s
∂s
∂ζ j

= −2(ηj − ζ j)
∂Ψσ(η, ζ; λ)

∂s
,

s = α2, j = 1, 2.

(37)

Applying equality (30) and equality (37), we obtain

∫
D

∣∣∣∣∣∂Ψσ(η, ζ; λ)

∂ζ j

∣∣∣∣∣dsη ≤ Kρ(λ, ζ)σ2e−σζ2
3 , σ > 1, ζ ∈ Ω, j = 1, 2. (38)

Now, we estimate the integral
∫
D

∣∣∣∣∂Ψσ(η, ζ; λ)

∂ζ3

∣∣∣∣dsη .

Taking into account equality (30), we obtain∫
D

∣∣∣∣∂Ψσ(η, ζ; λ)

∂ζ3

∣∣∣∣dsη ≤ Kρ(λ, ζ)σ2e−σζ2
3 , σ > 1, ζ ∈ Ω. (39)

Using (36), (38) and (39), we obtain (27).
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Corollary 1. For every ζ ∈ Ω,

lim
σ→∞

Wσ(ζ) = W(ζ), lim
σ→∞

∂Wσ(ζ)

∂ζ j
=

∂W(ζ)

∂ζ j
, j = 1, 3.

We define Ωε as

Ωε =

{
(ζ1, ζ2, ζ3) ∈ Ω, q > ζ3 ≥ ε, q = max

D
ψ(ζ ′), 0 < ε < q

}
.

Here, ψ(ζ ′)− is a surface. We remark that the set Ωε ⊂ Ω is compact.

Corollary 2. If ζ ∈ Ωε, then the families of functions {Wσ(ζ)} and

{
∂Wσ(ζ)

∂ζ j

}
converge

uniformly for σ→ ∞, that is:

Wσ(ζ) ⇒ W(ζ),
∂Wσ(ζ)

∂ζ j
⇒

∂W(ζ)

∂ζ j
, j = 1, 3.

Remark that Eε = Ω\Ωε is a boundary layer for this problem, as in the theory of
singular perturbations, where there is no uniform convergence.

Suppose that the surface Σ is given by the equation

ηm = ψ(η′), η′ ∈ R2,

where ψ(η′) satisfies the condition∣∣ψ′(η′)∣∣ ≤ C < ∞, C = const.

Consider
q = max

D
ψ(η′), l = max

D

√
1 + ψ′2(η′).

Theorem 4. If W(η) ∈ Sρ(Ω) satisfies (25), and the inequality

|W(η)| ≤ δ, 0 < δ < 1, η ∈ Σ, Σ a smooth surface, (40)

then

|W(ζ)| ≤ Kρ(λ, ζ)σ2M
1− ζ2

3
q2 δ

ζ2
3

q2 , σ > 1, ζ ∈ Ω. (41)∣∣∣∣∣∂W(ζ)

∂ζ j

∣∣∣∣∣ ≤ Kρ(λ, ζ)σ2M
1− ζ2

3
q2 δ

ζ2
3

q2 , σ > 1, ζ ∈ Ω,

j = 1, 3.

(42)

Proof. Using (24), we obtain

W(ζ) =
∫
Σ

Lσ(η, ζ; λ)W(η)dsη +
∫
D

Lσ(η, ζ; λ))W(η)dsη , ζ ∈ Ω. (43)

We estimate the following

|W(ζ)| ≤

∣∣∣∣∣∣
∫
Σ

Lσ(η, ζ; λ)W(η)dsη

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
D

Lσ(η, ζ; λ)W(η)dsη

∣∣∣∣∣∣, ζ ∈ Ω. (44)
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Given inequality (40), we estimate the first integral of inequality (44).∣∣∣∣∣∣
∫
Σ

Lσ(η, ζ; λ)W(η)dsη

∣∣∣∣∣∣ ≤
∫
Σ

|Lσ(η, ζ; λ)||W(η)|dsη

≤ δ
∫
Σ

|Lσ(η, ζ; λ)|dsη , ζ ∈ Ω.

(45)

We estimate now the integrals
∫
Σ

|Ψσ(η, ζ; λ)|dsη ,
∫
Σ

∣∣∣∣∣∂Ψσ(η, ζ; λ)

∂ηj

∣∣∣∣∣dsη , j = 1, 2 and

∫
Σ

∣∣∣∣∂Ψσ(η, ζ; λ)

∂η3

∣∣∣∣dsη on Σ.

Using (30), we have∫
Σ

|Ψσ(η, ζ; λ)|dsη ≤ Kρ(λ, ζ)σ2eσ(q2−ζ2
3), σ > 1, ζ ∈ Ω. (46)

From (30) and (32), we have

∫
Σ

∣∣∣∣∣∂Ψσ(η, ζ; λ)

∂yj

∣∣∣∣∣dsη ≤ Kρ(λ, ζ)σ2eσ(q2−ζ2
3), σ > 1, ζ ∈ Ω, j = 1, 2. (47)

Using (30), we obtain∫
Σ

∣∣∣∣∂Ψσ(η, ζ; λ)

∂η3

∣∣∣∣dsη ≤ Kρ(λ, ζ)σ2eσ(q2−ζ2
3), σ > 1, ζ ∈ Ω. (48)

From (46)–(48) and applying (45), we obtain∣∣∣∣∣∣
∫
Σ

Lσ(η, ζ; λ)W(η)dsη

∣∣∣∣∣∣ ≤ Kρ(λ, ζ)σ2δ eσ(q2−ζ2
3), σ > 1, ζ ∈ Ω. (49)

The following is known∣∣∣∣∣∣
∫
D

Lσ(η, ζ; λ)W(η)dsη

∣∣∣∣∣∣ ≤ Kρ(λ, ζ)σ2Me−σζ2
3 , σ > 1, ζ ∈ Ω. (50)

Now using (44), (49) and (50), we have

|W(ζ)| ≤
Kρ(λ, ζ)σ2

2
(δ eσq2

+ M)e−σζ2
3 , σ > 1, ζ ∈ Ω. (51)

Choosing

σ =
1
q2 ln

M
δ

, (52)

we obtain (41).
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We compute now the partial derivative from Formula (24) with respect to ζ j, j = 1, 3:

∂W(ζ)

∂ζ j
=
∫
Σ

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη +

∫
D

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη

=
∂Wσ(ζ)

∂ζ j
+
∫
D

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη , ζ ∈ Ω, j = 1, 3.

(53)

Here
∂Wσ(ζ)

∂ζ j
=
∫
Σ

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη . (54)

Now we have ∣∣∣∣∣∂W(ζ)

∂ζ j

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
Σ

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
D

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη

∣∣∣∣∣∣ ≤
∣∣∣∣∣∂Wσ(ζ)

∂ζ j

∣∣∣∣∣
+

∣∣∣∣∣∣
∫
D

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη

∣∣∣∣∣∣, ζ ∈ Ω, j = 1, 3.

(55)

Given inequality (40), we obtain:∣∣∣∣∣∣
∫
Σ

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη

∣∣∣∣∣∣ ≤
∫
Σ

∣∣∣∣∣∂Lσ(η, ζ; λ)

∂ζ j

∣∣∣∣∣|W(η)|dsη

≤ δ
∫
Σ

∣∣∣∣∣∂Lσ(η, ζ; λ)

∂ζ j

∣∣∣∣∣dsη , ζ ∈ Ω, j = 1, 3.

(56)

To prove (56), we estimate now
∫
Σ

∣∣∣∣∣∂Ψσ(η, ζ; λ)

∂ζ j

∣∣∣∣∣dsy, j = 1, 2 and
∫
Σ

∣∣∣∣∂Ψσ(η, ζ; λ)

∂ζ3

∣∣∣∣dsη on

a smooth surface Σ.
Given equality (30) and equality (35), we obtain

∫
Σ

∣∣∣∣∣∂Ψσ(η, ζ; λ)

∂ζ j

∣∣∣∣∣dsη ≤ Kρ(λ, ζ)σ2eσ(q2−ζ2
3), σ > 1, ζ ∈ Ω, j = 1, 2. (57)

Taking into account (30), we obtain∫
Σ

∣∣∣∣∂Ψσ(η, ζ; λ)

∂ζ3

∣∣∣∣dsy ≤ Kρ(λ, ζ)σ2eσ(q2−ζ2
3), σ > 1, ζ ∈ Ω, (58)

From (57) and (58), bearing in mind (56), we obtain∣∣∣∣∣∣
∫
Σ

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη

∣∣∣∣∣∣ ≤ Kρ(λ, ζ)σ2δeσ(q2−ζ2
3), σ > 1, ζ ∈ Ω,

j = 1, 3.

(59)
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We have∣∣∣∣∣∣
∫
D

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη

∣∣∣∣∣∣ ≤ Kρ(λ, ζ)σ2Me−σζ2
3 , σ > 1, ζ ∈ Ω,

j = 1, 3.

(60)

From (55), (59) and (60),we obtain∣∣∣∣∣∂W(ζ)

∂ζ j

∣∣∣∣∣ ≤ Kρ(λ, ζ)σ2

2
(δ eσq2

+ M)e−σζ2
3 , σ > 1, ζ ∈ Ω,

j = 1, 3.
(61)

Choosing σ as in (52) we get (42).

Suppose now that W(η) ∈ Sρ(Ω) is defined on Σ and fδ(η) is its approximation with
an error 0 < δ < 1. Then

max
Σ
|W(η)− fδ(η)| ≤ δ. (62)

We put

Wσ(δ)(ζ) =
∫
Σ

Lσ(η, ζ; λ) fδ(η)dsη , ζ ∈ Ω. (63)

Theorem 5. Let W(η) ∈ Sρ(Ω) satisfying the condition (25) on the part of the plane η3 = 0.
Then ∣∣∣W(ζ)−Wσ(δ)(ζ)

∣∣∣ ≤ Kρ(λ, ζ)σ2M
1− ζ2

3
q2 δ

ζ2
3

q2 , σ > 1, ζ ∈ Ω. (64)∣∣∣∣∣∂W(ζ)

∂ζ j
−

∂Wσ(δ)(ζ)

∂ζ j

∣∣∣∣∣ ≤ Kρ(λ, ζ)σ2M
1− ζ2

3
q2 δ

ζ2
3

q2 , σ > 1, ζ ∈ Ω,

j = 1, 3.

(65)

Proof. From (24) and (63), we obtain

W(ζ)−Wσ(δ)(ζ) =
∫

∂Ω

Lσ(η, ζ; λ)W(η)dsη

−
∫
Σ

Lσ(η, ζ; λ) fδ(η)dsη =
∫
Σ

Lσ(η, ζ; λ)W(η)dsη

+
∫
D

Lσ(η, ζ; λ)W(η)dsη −
∫
Σ

Lσ(η, ζ; λ) fδ(η)dsη

=
∫
Σ

Lσ(η, ζ; λ){W(η)− fδ(η)}dsη +
∫
D

Lσ(η, ζ; λ)W(η)dsη .
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and
∂W(ζ)

∂ζ j
−

∂Wσ(δ)(ζ)

∂ζ j
=
∫

∂Ω

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη

−
∫
Σ

∂Lσ(η, ζ; λ)

∂ζ j
fδ(y)dsy =

∫
S

∂Nσ(y, x; λ)

∂xj
U(y)dsy

+
∫
D

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη −

∫
Σ

∂Lσ(η, ζ; λ)

∂ζ j
fδ(η)dsη

=
∫
Σ

∂Lσ(η, ζ; λ)

∂ζ j
{W(η)− fδ(η)}dsη +

∫
D

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη ,

j = 1, 3.

Using (25) and (62), we obtain:

∣∣∣W(ζ)−Wσ(δ)(ζ)
∣∣∣ =

∣∣∣∣∣∣
∫
Σ

Lσ(η, ζ; λ){W(η)− fδ(η)}dsη

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
D

Lσ(η, ζ; λ)W(η)dsη

∣∣∣∣∣∣ ≤
∫
Σ

|Lσ(η, ζ; λ)||{W(η)− fδ(η)}|dsη

+
∫
D

|Lσ(η, ζ; λ)||W(η)|dsη ≤ δ
∫
Σ

|Lσ(η, ζ; λ)|dsη

+M
∫
D

|Lσ(η, ζ; λ)|dsη .

and ∣∣∣∣∣∂W(ζ)

∂ζ j
−

∂Wσ(δ)(ζ)

∂ζ j

∣∣∣∣∣ =
∣∣∣∣∣∣
∫
σ

∂Lσ(η, ζ; λ)

∂ζ j
{W(η)− fδ(η)}dsη

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
D

∂Lσ(η, ζ; λ)

∂ζ j
W(η)dsη

∣∣∣∣∣∣ ≤
∫
Σ

∣∣∣∣∣∂Lσ(η, ζ; λ)

∂ζ j

∣∣∣∣∣|{W(η)− fδ(η)}|dsη

+
∫
D

∣∣∣∣∣∂Lσ(η, ζ; λ)

∂ζ j

∣∣∣∣∣|W(η)|dsη ≤ δ
∫
Σ

∣∣∣∣∣∂Lσ(η, ζ; λ)

∂ζ j

∣∣∣∣∣dsη

+M
∫
D

∣∣∣∣∣∂Lσ(η, ζ; λ)

∂ζ j

∣∣∣∣∣dsη , j = 1, 3.

We obtain, similarly repeating the proof of Theorems 3 and 4, that

∣∣∣W(ζ)−Wσ(δ)(ζ)
∣∣∣ ≤ Kρ(λ, ζ)σ2

2
(δ eσq2

+ M)e−σζ2
3 .∣∣∣∣∣∂W(ζ)

∂ζ j
−

Wσ(δ)(ζ)

∂ζ j

∣∣∣∣∣ ≤ Kρ(λ, ζ)σ2

2
(δ eσq2

+ M)e−σζ2
3 , j = 1, 3.
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Considering σ from (52), we obtain (64) and (65).

Corollary 3. For every ζ ∈ Ω,

lim
δ→0

Wσ(δ)(ζ) = W(ζ), lim
δ→0

∂Wσ(δ)(ζ)

∂ζ j
=

∂W(ζ)

∂ζ j
, j = 1, 3.

Corollary 4. If ζ ∈ Ωε, then the families of functions
{

Wσ(δ)(ζ)
}

and

{
∂Wσ(δ)(ζ)

∂ζ j

}
are

convergent uniformly for δ→ 0, that is:

Wσ(δ)(ζ) ⇒ W(ζ),
∂Wσ(δ)(ζ)

∂ζ j
⇒

∂W(ζ)

∂ζ j
, j = 1, 3.

4. Conclusions

In this paper, as a continuation of some previous papers, we explicitly found a regular-
ized solution of the Cauchy problem for the matrix factorization of the Helmholtz equation
in an unbounded domain from R3. When applied problems are solved, the approximate

values of W(ζ) and
∂W(ζ)

∂ζ j
, ζ ∈ Ω, j = 1, 3 must be found.

We have built, in this paper, a family of vector-functions W(ζ, fδ) = Wσ(δ)(ζ) and
∂W(ζ, fδ)

∂ζ j
=

∂Wσ(δ)(ζ)

∂ζ j
, j = 1, 3, depending on σ. Moreover, we have proved that for σ =

σ(δ), at δ→ 0, specially chosen, Wσ(δ)(ζ) and
∂Wσ(δ)(ζ)

∂ζ j
are convergent to a solution W(ζ)

and its derivative
∂W(ζ)

∂ζ j
, ζ ∈ Ω. Such a family of vector functions Wσ(δ)(ζ) and

∂Wσ(δ)(ζ)

∂ζ j
are called a regularized solution of the problem. A regularized solution determines a stable
method to find the approximate solution of the problem.
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