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Abstract: Supersymmetric quantum mechanics has wide applications in physics. However, there
are few potentials that can be solved exactly by supersymmetric quantum mechanics methods, so it
is undoubtedly of great significance to find more potentials that can be solved exactly. This paper
studies the supersymmetric quantum mechanics problems of the Schrödinger equation with a new
kind of generalized trigonometric tangent superpotential: A tan npx + B tan mpx. We will elaborate
on this new potential in the following aspects. Firstly, the shape invariant relation of partner potential
is generated by the generalized trigonometric tangent superpotential. We find three shape invariance
forms that satisfy the additive condition. Secondly, the eigenvalues and the eigenwave functions
of the potential are studied separately in these three cases. Thirdly, the potential algebra of such a
superpotential is discussed, and the discussions are explored from two aspects: one parameter’s and
two parameters’ potential algebra. Through the potential algebra, the eigenvalue spectrums are given
separately which are consistent with those mentioned earlier. Finally, we summarize the paper and
give an outlook on the two-parameter shape-invariant potential.

Keywords: supersymmetric quantum mechanics; generalized trigonometric tangent superpotential;
shape invariance; potential algebra

1. Introduction

The concept of Supersymmetry (SUSY) has permeated almost all fields of Physics:
atomic and molecular physics, nuclear physics, statistical physics, and condensed matter
physics [1–4]. It is even considered a necessary way to establish any unified theory [5,6].
Although SUSY has achieved great success in theoretical physics, there has been no conclu-
sive evidence of supersymmetric partners in experiments. It was introduced by Nicolai
and Witten in non-relativistic quantum mechanics [7,8]. These researchers soon found that
supersymmetric quantum mechanics (SUSYQM)was of great significance and soon became
a method to solve the Schrödinger equation [3,4,9,10].

The exact or quasi-exact solution of the Schrödinger equation under various potential
constraints has always been a particular concern in quantum mechanics [10–14]. There
are only a dozen potentials which are solvable in Schrödinger equation through SUSYQM
methods. These potentials mainly include harmonic oscillator potential, Coulomb potential,
Morse potential, Rosen–Morse potential, Scarf potential, Eckart potential, Pösch–Teller po-
tential, and so on [3,14–23]. Recently, the list of these potentials has been expanded [24–26].
These precisely solvable potentials also satisfy the shape invariance condition [3,27,28],
and it is found that there is a deep connection between shape invariance and SUSY. These
connections need to be dealt with from the perspective of group theory. The Lie algebra is
an important part of the group theory, and the potential algebra theory allows for a deep
analysis of SUSYQM [29–32]. The shape invariant potentials mentioned above naturally
have corresponding potential algebraic forms. Therefore, it is undoubtedly of great signif-
icance to obtain the potential algebraic form of shape invariance. The above discussion
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leads to the following problems: (1) How to find more solvable potentials. (2) The Riccati
equation satisfied from the superpotential is only a first-order differential equation, but the
solution of the equation is not easy to obtain [33]. The known solvable potential and its
superpotential are consistent. Therefore, how to find more solutions to the Ricati equations
is also an important problem. (3) If we can construct more solvable potentials, what exciting
new results will come from these new solvable potentials?

Our group has begun tryingto promote this research from the existing superpotential.
The study in [26] is our first generalization, extending the hyperbolic tangent superpo-
tential to a linear combination of two different hyperbolic tangent, bringing positive and
meaningful results. The present paper is another attempted generalization, taking the
linear combination of two tangent superpotentials as our generalization potential, and the
results are even more exciting.

In this paper, a superpotential with the generalized trigonometric tangent functions
is proposed:

W(x, A, B) = A tan npx + B tan mpx
(
−π

2
< max{npx, mpx} < π

2

)
(1)

where A, B are constant coefficients, p is an arbitrary positive constant, and m and n are
positive integers. The problems related to the Schrödinger equation with such superpo-
tential are researched. Compared to the superpotential A tanh px + B tanh 6px in [25], the
superpotential in Equation (1) is undoubtedly more general. Compared with Reference [26],
this article has the following differences: Firstly, the scope of the independent variable
discussion is different. The potentials covered in [26] are non-periodic. The potentials
studied in this paper are periodic, and we have chosen to discuss them within a period
of the variable x. Secondly, the corresponding parameter binding relationship under the
shape invariance constraint is completely different. Finally, the eigen-energies of these two
potentials and the corresponding wave functions are not the same.

This article focuses on the following clues to illustrate our new findings. We start with
a brief review of the core content of SUSYQM in the Section 2. On this basis, we proceed to
study the four shape invariant algebraic relations hidden behind this new superpotential
in the next section. How are the eigenvalues and potential algebras of this new potential
different from other potentials? Section 4 will tell us the answer.

2. SUSYQM

For simplicity, we set h̄ = 2m = 1 in the steady-state Schrödinger equation− h̄2

2m
d2ψ(x)

dx2 +
V(x, a)ψ(x) = Hψ(x). The Hamiltonian of that equation is:

H = − d2

dx2 + V(x, a) (2)

According to the related References [10–14], the superpotential W(x, a) was introduced
to define the ladder operators A+ and A−:

A±(x, a) = ∓ d
dx

+ W(x, a) (3)

The potential of the system is transformed into two partner potentials V±(x, a) to be
described as:

V±(x, a) = W(x, a)2 ± dW(x, a)
dx

(4)

In addition, the partner potentials V±(x, a) meet

V+(x, a0) + g(a0) = V−(x, a1) + g(a1) (5)
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where g(a0) and a1 are functions of the additive constant a0, and a1 = f (a0). Equation (5)
is called the shape invariance of the partner potentials. It can be rewritten as:

V+(x, a0) = V−(x, a1) + R(a0) (6)

So, it is not hard to see that

R(a0) = g(a1)− g(a0) (7)

The partner Hamiltonians are:

H± = − d2

dx2 + V±(x, a) (8)

That is to say:
H+(x, a0) + g(a0) = H−(x, a1) + g(a1) (9)

The relationship between the intrinsic energies can be written as:

E+(a0) + g(a0) = E−(a1) + g(a1) (10)

According to [3], the eigenenergy spectrum can be obtained as:

E−0 = 0, E+
n = E−n+1 (11)

With this iterative relation, we can find all the energy levels E−n (a0) in turn:

E−n (a0) = E+
n−1(a0) = g(an)− g(a0)(n = 1, 2, 3 . . .) (12)

Not only the expression of eigenvalue E−n (a0), but also the expression of eigenvalue
E−n (ai)(i = 0, 1, 2, . . .) can be obtained:

E−n (ai) = E+
n−1(ai) = g(an+i)− g(ai)(n = 1, 2, 3 . . . , i = 0, 1, 2 . . .) (13)

According to the superpotential and the lifting operators A± = ∓ d
dx + W(x, a), we

can calculate the zero-energy ground state wave function ψ−0 (x):

ψ−0 (x) = N exp
(
−
∫ (x)

W(x, a)dx
)

(14)

where N is the normalized coefficient. According to [3], the eigenfunctions can be obtained:

ψ+
n (x) =

(
E−n+1

)−1/2 A−ψ−n+1(x), ψ−n+1(x) =
(
E+

n
)−1/2 A+ψ+

n (x) (15)

where E−n+1 > 0 is required.
In SUSYQM, as long as a superpotential W(x) that can be solved accurately is deter-

mined, the corresponding ascending and descending operators A±(x, a), partner potentials
V±(x, a), and partner Hamiltonians H± can be constructed according to this superpotential
W(x), so as to solve the corresponding eigen energy E−n (ai)(i = 0, 1, 2, . . .) and eigen wave-
function ψ−n (x). The relationship between the superpotential and these physical quantities
can be described by Figure 1.
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Figure 1. The relationships between superpotential W(x) and other physical quantities.

Figure 1 shows the importance of superpotential in SUSYQM. But the number of
potentials that can be solved exactly at present is very limited. Tables A1 and A2 in
Appendix A gives all the superpotentials that can be solved exactly at present and the
corresponding physical quantities [3,14–26]. So, whether new superpotentials that can be
solved precisely can be constructed has become the focus of research in SUSYQM. Based
on this situation, this paper constructs a new superpotential, A tan npx + B tan mpx, that
can be solved exactly.

3. The New Shape Invariance Derivation Idea Based on the New Solvable Potential
A tan npx + B tan mpx

The generalized trigonometric tangent superpotential which we construct is given in
Equation (1). The relationship between the superpotential and these parameters are shown
in Figure 2.
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(a) n=1, m=2, a=-2.55, b=5
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(b) n=1, m=2, p=0.05

Figure 2. The relationship between superpotential W(x, A, B) = A tan npx + B tan mpx and the
parameters A, B, n, p, m: (a) reveals the relationship between the superpotential and p; (b) reveals the
relationship between the superpotential and A, B.

We can deduce:

V+(x, A, B) = W2(x, A, B) +
dW(x, A, B)

dx
=A(np + A) sec2 npx + B(mp + B) sec2 mpx + 2AB tan npx tan mpx− A2 − B2

(16)
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V−(x, A, B) = W(x, A, B)2 − dW(x, A, B)
dx

=A(A− np) sec2 px + B(B−mp) sec2 mpx + 2AB tan npx tan mpx− A2 − B2
(17)

The figures of the partner potentials are shown in Figures 3 and 4. Figure 4 reveals the
partner potentials near the origin.

-15 -10 -5 0 5 10 15

x

0

550
V

-(x
)

(a) n=1, m=2, a=-2.55, b=5

-15 -10 -5 0 5 10 15
x

0

550

V
+
(x

)

(b) n=1, m=2, p=0.05

Figure 3. The Figures of the partner potentials (n = 1, m = 2, p = 0.05).

Figure 4. The partner potentials near the origin. (n = 1, m = 2, p = 2). Note: the doted line is
V−(x, A, B), the solid line is V+(x, A, B).

From Figure 3, it can be seen that, whatever values A and B take, the shapes of the
partner potentials V−(x, A, B) and V+(x, A, B) are similar, so they conform to the shape
invariance relationship described in Section 1.

Now, let us discuss the constraint relationship between A0,A1,B0, and B1. Under
the condition of the shape invariance relation of V±(x, A, B), the independent variable x
coefficient in V±(x, A, B) must be the same, i.e., there are:

A0(np + A0) = A1(A1 − np) (18)

B0(mp + B0) = (B1 −mp)B1 (19)

2A0B0 = 2A1B1 (20)

Combining Equations (18)–(20), we can obtain:

A1 = A0 + np or A1 = −A0 (21)

B1 = B0 + mp or B1 = −B0 (22)

It is not difficult to see that A0, A1, B0 and B1 can be combined into the following
four cases which are shown in Table 1.
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Table 1. The four cases of A1, B1.

Case 1 Case 2 Case 3 Case 4

A1 = A0 + np A1 = A0 + np A1 = −A0 A1 = −A0
B1 = B0 + mp B1 = −B0 B1 = B0 + mp B1 = −B0

As for case 4, since it does not satisfy the additivity, we do not discuss the case here.
Let us analyze the wave function and energy under the other three cases in the following.

3.1. Case 1 A1 = A0 + np, B1 = B0 + mp

By substituting A1 = A0 + np and B1 = B0 + mp into Equations (16) and (17), we
can obtain:

V+(x, A0, B0) =
(

npA0 − A2
0

)
sec2 npx +

(
mpB0 − B0

2
)

sec2 mpx+

2A0B0 tan npx tan mpx− A2
0 − B2

0

(23)

V−(x, A1, B1) =
(

npA0 − A2
0

)
sec2 npx +

(
mpB0 − B2

0

)
sec2 mpx + 2(A0 + np)

(B0 + mp) tan npx tan mpx− (A0 + np)2 − (B0 + mp)2
(24)

Since the shape invariance relationship is satisfied between V+(x, A0, B0) and
V−(x, A1, B1), the coefficients before independent variable x should be equal.That is to say,
there is:

2A0B0 = 2(A0 + np)(B0 + mp) (25)

From this formula, the binding relationship between the parameters can be further
obtained as:

A0

n
= −p− B0

m
(26)

Under this parameter constraint, the shape invariance relation can be written as:

V+(x, A0, B0) = V−(x, A1, B1) + (A0 + np)2 + (B0 + mp)2 −
(

A2
0 + B2

0

)
(27)

It is not difficult to see the expression of g(A1, B1), g(A0, B0) from the above formula
that is:

g(A1, B1) = (A0 + np)2 + (B0 + mp)2 (28)

g(A0, B0) = A2
0 + B2

0 (29)

The coefficients Ak and Bk follow an additive relation and are easy to be obtained:

Ak = A0 + knp and Bk = B0 + kmp (30)

where k = 0, 1, 2, · · · . The energy eigenvalue can be obtained as:

E−k (ai) = g(ak+i)− g(ai)

= (A0 + (k + i)np)2 + (B0 + (k + i)mp)2 −
(
(A0 + inp)2 + (B0 + imp)2

) (31)

note that i = 0, 1, 2, · · · . When i = 0, there are:

E(−)
k (a0) = g(ak)− g(a0) = (A0 + nkp)2 + (B0 + mkp)2 − A2

0 − B2
0 (32)

However, it is worth noting the condition that the shape invariance holds is that the
ground state energy is zero, i.e., E−0 = 0. According to Equation (31), there is:

E+
0 = E1 = (A0 + np)2 + (B0 + mp)2 − A2

0 − B2
0 (33)
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For all k ≥ 1, we have E−k ≥ 0 in Equation (31). Through A0
η + B0

m = −p, we can obtain:

k ≥ −2(An + Bm)

p(n2 + m2)
(34)

This means that the energy levels have lower limits. For example, if A = 0.195,
B = −0.49, n = 1, m = 2, p = 0.05, then k ≥ 10.

We can also find out the eigenfunctions of the Schrödinger equation:

ψ−k (x, A0, B0) = Nk A+(x, A0, B0)A+(x, A1, B1) . . . A+(x, Ak−1, Bk−1)e
−
∫ (x) W(x,Ak ,Bk)dx (35)

For example, the ground state wavefunction is:

ψ
(−)
0 (x, A0, B0) = N0e−

∫ (x) W(x,A0,B0)dx = N0(cos mpx)
B0
np (cos npx)

A0
np (36)

and the first excited state wavefunction is:

ψ−1 (x, A0, B0) = N1 Â+(x, A0, B0)e−
∫

W(x,A1,B1)

= −N1(cos npx)
A1
np −1

(cos mpx)
B1
mp−1

(np sin npx cos mpx + mp cos npx sin mpx)
(37)

where Nk, N0, and N1 are the normalization coefficients. Some of the eigenfunctions and
their relationships are shown in Figure 5 .
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Figure 5. Some of the eigenfunctions (n = 1, m = 2, p = 0.05, A0 = −1.05, B0 = 2).

Of course, we can also obtain the eigenwave functions of the other excited states to
obtain the exact solutions of the Schrödinger equation.
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3.2. Case 2 A1 = A0 + np, B1 = −B0

Putting A1 = A0 + np and B1 = −B0 into Equations (16) and (17), we have:

V+(x, A0, B0) = A0(np + A0) sec2 npx + B0(mp + B0) sec2 mpx

+2A0B0 tan npx tan mpx− A2
0 − B2

0
(38)

V−(x, A1, B1) = (A0 + np)A0 sec2 npx + B0(B0 + mp) sec2 mpx

−2(A0 + np)B0 tan npx tan mpx− (A0 + np)2 − B2
0

(39)

Analogously, the coefficients before independent variable x should be equal, that is
to say:

2A0B0 = −2(A0 + np)B0 (40)

We can obtain the binding relation between the parameters corresponding to this case,
which is:

A0 = −np
2

(41)

Furthermore, the shape invariance between V+(x, A0, B0) and V−(x, A1, B1) is given by:

V+(x, A0, B0) = V−(x, A1, B1) + (A0 + np)2 + B2
0 − A2

0 − B2
0 (42)

In the same way, combining with Equation (5), we can obtain:

g(A1, B1) = (A0 + np)2 − B0
2

g(A0, B0) = A2
0 − B0

2
(43)

Since A0 = − np
2 , substituting it into the above formula, we have:

E−1 (A0, B0) = g(A1, B1)− g(A0, B0) = 0 (44)

By the recurrence of energy according to the shape invariance,

Ak = A0 + knp and Bk = (−1)kB0 (45)

It still needs to satisfy

AkBk = Ak+1Bk+1 ⇒ AkBk = (Ak + np)Bk+1 (46)

Considering the Equations (41) and (45), we can obtain:

Ak = −np/2 = A0 (47)

Obviously, it can be seen that the above formula can only exist when k = 0; otherwise,
the energy will be less than 0, which is not allowed. That is to say, only A0 = −np/2 and
A1 = np/2 meet the requirements.

According to Equation (35), we can see that there is only a zero-energy ground state
ψ−0 (x):

ψ
(−)
0 (x) = N(cos mpx)

B0
mp (cos npx)−

1
2 (48)

where N is the normalization constant. The figure of the ground state ψ−0 (x) is shown
in Figure 6.
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Figure 6. The figure of the ground state ψ
(−)
0 (x) in the case 2( A0 = −2, B0 = 8) and case

3( A0 = −2 B0 = 8) for n = 1, m = 1, p = 2.

3.3. Case 3 B1 = B0 + mp, A1 = −A0

This case is similar to the previous one. So, we have B0 = −mp/2, (A0 6= 0), and only
B0 = −mp/2 and B1 = mp/2 meet the requirements. Since the ground state energy is zero,
we can obtain:

E−1 = g(A1, B1)− g(A0, B0) = 0 (49)

According to Equation (35), there is only a zero energy ground state ψ−0 (x):

ψ−0 (x) = N′(cos mpx)−
1
2 (cos npx)

A0
np (50)

where N′ is the normalization constant. The figure of the ground state ψ−0 (x) is shown
in Figure 6.

From the research in the Section 3, it can be seen that the new potential A tan npx +
B tan mpx constructed in this paper can not only be precisely solved by SUSYQM but
also has some special features compared with the previous potential (Appendix A); for
example, it has a variety of shape invariance relationships and more rigid parameter
binding relationships, which are shown in Table 2.

Table 2. The physical quantities of the new Superpotential W(x, A, B) = A tan npx + B tan mpx.

Variation of Parms Binding
of Parms

Value
of k Eigen Energy E(−)

k Ground State ψ−
0 (x)

Case 1 Ak = A0 + knp
Bk = B0 + kmp

(51)
A0
n = −p− B0

m 0, 1, 2 . . . (A0 + nkp)2 + (B0

+ mkp)2 − A2
0 − B2

0

(52) N0(cos mpx)
B0
mp (cos mpx)

A0
np

Case 2
Ak = A0 + knp

Bk = (−1)kB0
(53) A0 = − np

2 0 0 N(cos mpx)
B0
mp (cos npx)−

1
2

Case 3 Ak = (−1)n A0

Bk = B0 + kmp
(54) B0 = −mp

2 0 0 N′(cos mpx)−
1
2 (cos npx)

A0
np
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4. Potential Algebra of the New Superpotential A tan npx + B tan mpx

The solution and the shape invariances of Equation (5) can also be obtained by potential
algebra [29–32]. Let us introduce the operators J3, J+ and J− [34–37] (J3 is a Casimir
operator):

J+ = eisφA+, J− = A−e−isφ, J3 = k− i
s

∂φ, F(J3) = f (χ(sk− sJ3)) (55)

where s is a constant which reflects the additive step length, and k is an arbitrary constant,
the function χ must satisfy the compatibility equation: χ(i∂θ + s) = η(χ(i∂θ)) in which
η(χ(i∂θ)) is a function of function χ(i∂θ), φ is an auxiliary variable, the operator A− is
obtained from A−(x, a0) by introducing an auxiliary variable φ independent of z and
replacing the parameter a0 with an operator χ(i∂θ) [34,35]:

x → z, a0 → χ
(
i∂φ

)
, a1 → χ

(
i∂φ + s

)
, A−(x, a0)→ A−

(
z, χ
(
i∂φ

))
(56)

and J± have the characteristics of raising and lowering operators:

[J+, J−] = J+ J− − J− J+

= eisφA+
(
z, χ
(
i∂φ

))
A−
(
z, χ
(
i∂φ

))
e−isφ −A−

(
z, χ
(
i∂φ

))
A+
(
z, χ
(
i∂φ

))
= A+

(
z, χ
(
i∂φ + s

))
A−
(
z, χ
(
i∂φ + s

))
−A−

(
z, χ
(
i∂φ

))
A+
(
z, χ
(
i∂φ

)) (57)

In addition, J3 satisfies the following properties:

e±isϕ J3e∓isϕ = J3 ± s, e±isϕ J3
2e∓isϕ = (J3 ± s)2 (58)

For further discussion, see Reference [35]. The commutations of J+, J− and J3 are
satisfied with:

[J3, J±] = ±J± [J+, J−] = F(J3) (59)

For the general algebra described in Equation (58), these operators are explicitly
checked:

J− J+ + G(J3) = J+ J− + G(J3 − 1), F(J3) = G(J3)− G(J3 − 1) (60)

where G(J3) is a function of J3. Suppose | h > is an arbitrary eigenstate of J3, and J± plays
the role of raising and lowering operators. Then, there are:

J3|h >= h|h >, J−|h >= a(h)|h− 1 >, J+|h >= a(h + 1)|h + 1 > (61)

where a(h) is a function of eigenvalue h. According to [J+, J−]|h >= F(J3)|h >, we obtain:

J+ J− − J− J+ = |a(h)|2 − |a(h + 1)|2 = G(h)− G(h− 1) (62)

If h = hmin, then J−|hmin〉 = 0 and a(hmin) = 0, we have:

a2(hmin + 1) = G(hmin − 1)− G(hmin) (63)

By substituting Equation (63) into Equation (62), we have:

|a(hmin + 2)|2 = G(hmin − 1)− G(hmin + 1) (64)

Repeating the above steps, we can obtain:

a2(hmin + k) = G(hmin − 1)− G(hmin + k− 1) (65)

where k is a positive integer. If hmin + k = h, then:

a2(h) = G(h− k− 1)− G(h− 1) (66)
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From Equations (62) to (66), the expression of G(J3) is critical which can be deter-
mined by H = J+ J−.If H, is allowed to act on the state ψn(x), the following relation can
be obtained:

H−ψn(x) = J+ J−ψn(x) = E−n ψn(x) = (G(h− k− 1)− G(h− 1))ψn(x) (67)

Next, we need to find the potential algebra presentationH± and h̃ of H and h for
this new potential A tan(npx) + B tan(mpx). Since this new solvable potential has two
parameters, it is not difficult to imagine that the potential algebra constructed should also
have two parameters. According to Equation (9), we can obtain:

H+
(

x, χA
(
i∂φA

)
, χB

(
i∂φB

))
= H−

(
x, χ
(
i∂φA + sA

)
, χ
(
i∂φB + sB

))
+

h̃
(
χ
(
i∂φA + sA

)
, χ
(
i∂φB + sB

))
− h̃
(
χ
(
i∂φA

)
, χ
(
i∂φB

)) (68)

with Equations (21) and (22), we have

sA = np, sB = mp (69)

Let χ(z) = z, then

i∂φA = np
(

kA − JA
3

)
, i∂φB = mp

(
kB − JB

3

)
(70)

Since parameters in need to satisfy the additivity, there are constraints similar to
Equations (18)–(20), and there exist three cases:

Case (i): χ
(
i∂φA + sA

)
= np

(
kA − JA

3 + 1
)
, B1 = −B0 (the parameter A satisfies the

additivity);
Case (ii): A1 = −A0; χ

(
i∂φB + sB

)
= mp

(
kB − JB

3 + 1
)

(the parameter B satisfies the
additivity);

Case (iii): χ
(
i∂φA + sA

)
= np

(
kA − JA

3 + 1
)
, χ
(
i∂φB + sB

)
= mp

(
kB − JB

3 + 1
)

(both A
and B satisfy the additivity).

4.1. Potential Algebra Method with One Parameter

In the above three cases, Case (i) and Case (ii) belong to the single-parameter additive
shape invariance, and the discussion of Case (ii) and Case (i) is very similar. So, in this part,
we only make careful calculation for Case (i) and directly give the results for Case (ii).

For Case (i), according to Equations (55), (56), and (70), we have:

JA
3 = kA −

i
sA

∂φA, i∂φA = sA

(
kA − JA

3

)
= np

(
kA − JA

3

)
, B1 = −B0 (71)

and

J+ J− = eisAφA

[
− d

dx
+ np

(
kA − JA

3

)
tan npx− B0 tan mpx

]
[

d
dx

+ np
(

kA − JA
3

)
tan npx− B0 tan mpx

]
e−isAφA

= − d2

dx2 +
(

B0mp + B2
0

)
sec2 mpx + n2 p2

(
kA − JA

3 − np
)

(
kA − JA

3 − np− 1
)

sec2 npx− 2B0np
(

kA − JA
3 + np

)
tan npx tan mpx

−B2
0 − n2 p2

(
kA − JA

3 − np
)2

(72)
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J− J+ =

[
d

dx
+ np

(
kA − JA

3

)
tan npx + B0 tan mpx

][
− d

dx
+ np

(
kA − JA

3

)
tan npx + B0 tan mpx

]
=− d2

dx2 +
(

B0mp + B2
0

)
sec2 mpx + n2 p2

(
kA − JA

3

)(
kA − JA

3 + 1
)

sec2 npx+

| 2B0np
(

kA − JA
3

)
tan npx tan mpx− B2

0 − n2 p2
(

kA − JA
3

)2

(73)

Furthermore, we have:

J+ J− − J− J+ = −n2 p2
[
−2
(

kA − JA
3

)
np + n2 p2

]
+ 2B0n2 p2 tan npx tan mpx (74)

Due to the additional conditional limitations, the coefficient of the term containing the
variable x can be made zero by limiting the value of k. That is, it is required that:

2B0(np)2 = 0 (75)

J+ J− − J− J+ = 0 = F
(

JA
3

)
(76)

In view of Equation (76), apparently, G
(

JA
3
)
= G

(
JA
3 − np

)
and F(J3) = 0. It indicates

that only a single state exists in the system, and its eigenvalue is zero. This result is the
same as the shape invariance counterpart in Sections 3.2 and 3.3.

4.2. Potential Algebra Method with Two Parameters

According to Equations (55), (59), and (70), we have

J+ J− =ei(sAφA+sBφB)A+
(
z, χ
(
i∂φA , ∂φB

))
A−
(
z, χ
(
i∂φA , ∂φB

))
e−i(sAφA+sBφB)

=A+
(
z, χ
(
i∂φA + sA, i∂φB + sB

)))
A−
(
z, χ
(
i∂φA + sA, i∂φB + sB

))
=

[
− d

dx
+ np

(
kA − JA

3 + 1
)

tan npx + mp
(

kB − JB
3 + 1

)
tan mpx

]
[

d
dx

+ np
(

kA − JA
3 + 1

)
tan npx + mp

(
kB − JB

3 + 1
)

tan mpx
]

=− d2

dx2 + (np)2
(

kA − JA
3 + 1

)(
kA − JA

3

)
sec2 npx + (mp)2

(
kB − JB

3 + 1
)

(
kB − JB

3

)
sec2 mpx + 2mnp2 tan npx tan mpx− (np)2

(
kA − JA

3 + 1
)2

− (mp)2
(

kB − JB
3 + 1

)2

(77)

J− J+ =A−
(
z, χ
(
i∂φA , i∂φB

))
e−i(sAφA+sBφB)ei(sAφA+sBφB)A+

(
z, χ
(
i∂φA , i∂φB

))
=A−

(
z, χ
(
i∂φA , i∂φB

))
A+
(
z, χ
(
i∂φA , i∂φB

))
=

[
d

dx
+ np

(
kA − JA

3

)
tan npx + mp

(
kB − JB

3

)
tan mpx

][
− d

dx
+ np

(
kA − JA

3

)
tan npx + mp

(
kB − JB

3

)
tan mpx

]
=− d2

dx2 + m2 p2
(

kB − JB
3 + 1

)(
kB − JB

3

)
sec2 mpx + n2 p2

(
kA − JA

3 + 1
)

(
kA − JA

3

)
sec2 npx + 2mnp2

(
kB − JB

3

)(
kA − JA

3

)
tan npx tan mpx

−m2 p2
(

kB − JB
3

)2
− n2 p2

(
kA − JA

3

)2

(78)
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Furthermore, we have:

J+ J− − J− J+ = (mp)2
(

kB − JB
3

)2
+ (np)2

(
kA − JA

3

)2
−[

(mp)2
(

kB −
(

JB
3 − 1

))2
+ (np)2

(
kA −

(
JA
3 − 1

))2
] (79)

Under the requirement of the shape invariance, Equation (79) must be represented
only by J3. So, we need to further rewrite the above formula as:

J+ J− − J− J+ = (np)2
(

2JA
3 − 2kA − 1

)
+ (mp)2

(
2JB

3 − 2kB − 1
)

(80)

It is not difficult to see that if we set kA = − 1
2 , kB = − 1

2 , we obtain:

[J+, J−] = 2p2
(

n2 JA
3 + m2 JB

3

)
(81)

Considering the function F(J3) in Equation (59)

J+ J− − J− J+ = F(J3) = F
(

JA
3 , JB

3

)
= G

(
JA
3 , JB

3

)
− G

(
JA
3 − 1, JB

3 − 1
)

(82)

we can deduce:

G
(

JA
3 , JB

3

)
= (mp)2

(
−1

2
− JB

3

)2
+ (np)2

(
−1

2
− JA

3

)2
(83)

and have
E−k = G(hA − k− 1, hB − k− 1)− G(hA − 1, hB − 1) (84)

Set − 1
2 − hA + 1 = A

np ,− 1
2 − hB + 1 = B

mp and we have the energy eigenvalues

E(−)
k (a0) = (A0 + nkp)2 + (B0 + mkp)2 − A2

0 − B2
0 (85)

This is exactly the same as Equation (32).

5. Summary and Prospect

In this paper, the Schrödinger equation with a new generalized trigonometric tangent
superpotential A tan npx + B tan mpx is solved within the framework of SUSYQM. We
show that the superpotential is the new superpotential that can be solved exactly, which
expands the number of exactly solvable potentials shown in Appendix A. At first, the
shape invariant relation of partner potential generated by superpotential are discussed
from three aspects, which are all satisfied with the additivity, and the energy spectrum and
eigenfunctions are obtained. Then, we again study the three aspects with additive shape
invariance from the potential algebra, and we obtain the exact same energy eigenvalues as
previously. Of course, the exact solutions of the equation can be derived from the ground
state wave function. Finally, the energy eigenvalues are discussed.

In conclusion, this paper studies another generalization of the existing solvable poten-
tial. Taking the linear combination of tanmpx superpotential and tannpx superpotential
as our generalization potential, the results are still exciting. The two generalizations of
our research group, including [26], actually give some important information: There are
two parameters, and the relationship between the parameters is reversed by the shape
invariance, with constraints between the two parameters that meet the shape invariant
requirement. These are quite meaningful.



Symmetry 2022, 14, 1593 14 of 18

Author Contributions: L.X. (First Author): conceptualization, methodology, writing—original draft;
writing—review and editing; X.T.: formal analysis, project administration; S.Z. and W.C.: validation,
resources; G.L. (Corresponding Author): conceptualization, funding acquisition, resources, super-
vision, writing—review and editing. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. All Potentials That Can Be Solved Exactly

Table A1. The newly constructed potential that can be solved exactly.

Name Superpotential Eigenenergies Ground State Eigenfunction

Generalized Hyperbolic
Tangent 1 A tanh npx + B tanh mpx (A+ B)2− (A+ B− knp− kmp)2 (cosh npx)−

A
np (cosh mpx)−

B
mp

Generalized Hyperbolic
Tangent 2 A tanh px + B tanh 6px (A + B)2 − (A + B− 7np)2 cosh px

1
2

(
−1+ B0

6p

)
cosh 6px−

B0
6p

Generalized Hyperbolic
Tangent 3

(
− b

2
+ p

)
tanh px+ b tanh 2px

(
1
2

b + p
)2
−
(

1
2

b− (n + 1)p
)2

cosh px−1+ b0
2p cosh 2px−

b0
2p

Generalized Hyperbolic
Tangent 4

1
4
(−b+ 4p) tanh px+ b tanh 4px

(
3
4

b + p
)2
−
(

3
4

b− (3n + 1)p
)2

cosh px
b

4p cosh 4px1− b
4p

Generalized trigonometric
tangent (this paper) Λ tan npx + B tan mpx (A0 + nkp)2 + (B0

+ mkp)2 − A2
0 − B2

0

(A1) N0(cos mpx)
B0
mp (cos mpx)

A0
np
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Table A2. Exactly solvable potentials constructed long ago.

Name Superpotential Eigenenergies Ground State Eigenfunction

Harmonic oscillator 1
2 ωx nω exp

(
− 1

4 ωx2
)

3-D Oscillator 1
2 ωr− `+1

r 2nω rl+1 exp
(
−ωr2

4

)

Coulomb e2

2(`+ 1)
− `+ 1

r
1
4

[(
e2

`+ 1

)2

−
(

e2

`+ n + 1

)2]
r`+1 exp

(
−1

2
e2

`+ 1
r
)

Morse A− e−x A2 − (A− n)2 exp
[
−
(

Ax +
B
α

e−αx
)]

Scarf (hyperbolic) A tanh x + B sech x A2 − (A− n)2 (sech αx)A/α exp
[
−2B tan−1(eαx)

]

Scarf (trigonometric) A tan x− B sec x(A > B) (A + n)2 − A2
(

cos
x
2
− sin

x
2

)A−B(
sin

x
2
+ cos

x
2

)A+B

Rosen–Morse
(trigonometric)

−A cot x− B
A

(A + n)2 − A2 + B2
[

1
A2 −

1
(A + n)2

]
exp

(
Bx
A

)
sinA x

Rosen–Morse (hyperbolic) A tanh αx +
B
A

(
B < A2

)
A2 − (A− n)2 − B2

(A− n)2 +
B2

A2
(sech αx)A/α exp

(
−Bx

A

)

Eckart (hyperbolic) −A coth r +
B
A

(
B > A2

)
A2 − (A + n)2 +B2

[
1

A2 −
1

(A + n)2

]
(sinh αr)A/α exp

(
−Br

A

)
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Table A2. Cont.

Name Superpotential Eigenenergies Ground State Eigenfunction

Eckart (trigonometric) −A cot αx + B csc αx(A > B) (A + nα)2 − A2 (sin αx)(A−B)/α (1 + cos αx)B/α

Posch–Teller (hyperbolic)
A coth r− B csch r

A < B
A2 − (A− n)2 (sinh αr)(A/α)(B−A)

(1 + cosh αr)B/α

Posch–Teller I (hyperbolic) A tan αx− B cot αx (A + B + 2nα)2 − (A + B)2 (sin αx)B/α(cos αx)A/α

Posch–Teller II (hyperbolic) A tanh r− B coth r(B < A) (A− B)2 − (A− B− 2nα)2 (sinh αr◦)B/α

(cosh αr∗)A/α
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