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Abstract: The discrete fractional operators of Riemann–Liouville and Liouville–Caputo are om-
nipresent due to the singularity of the kernels. Therefore, convexity analysis of discrete fractional
differences of these types plays a vital role in maintaining the safe operation of kernels and symmetry
of discrete delta and nabla distribution. In their discrete version, the generalized or modified forms
of various operators of fractional calculus are becoming increasingly important from the viewpoints
of both pure and applied mathematical sciences. In this paper, we present the discrete version of the
recently modified fractional calculus operator with the Mittag-Leffler-type kernel. Here, in this article,
the expressions of both the discrete nabla derivative and its counterpart nabla integral are obtained.
Some applications and illustrative examples are given to support the theoretical results.

Keywords: discrete fractional calculus; discrete Atangana–Baleanu fractional differences; discrete
Liouville–Caputo operator; discrete Mittag-Leffler kernels
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1. Introduction

Fractional calculus is a 327-year-old interdisciplinary field [1,2] in which the integral
and derivatives of a fractional real or complex order have been investigated (see [3–6]) as
well as their applications (see [7–10]). It is well-known that there are many definitions of
fractional calculus operators, mainly due to the fact that there is no single extension of
meaning in this area. We can also mention that the Liouville–Caputo fractional derivative
has appeared in several investigations in the history of fractional calculus (see, for example,
the works of Abel [11], Liouville [12], Caputo [13], and Dzherbashian and Nersesian [14]).
Based on the works of Boltzmann [15] and continuing with the contemporary works, we
conclude that finding some generalized (see, for example, [16–18]) or modified versions [19]
of some existing operators [20] is an interesting issue in the field of fractional calculus.
In passing, we recall Wright’s general function Eα,β(φ; z), which occurred in his study of

Symmetry 2022, 14, 1519. https://doi.org/10.3390/sym14081519 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14081519
https://doi.org/10.3390/sym14081519
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-6837-8075
https://orcid.org/0000-0002-9277-8092
https://orcid.org/0000-0002-0286-7244
https://orcid.org/0000-0002-2908-1807
https://doi.org/10.3390/sym14081519
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14081519?type=check_update&version=1


Symmetry 2022, 14, 1519 2 of 12

the asymptotic behavior of a certain Taylor-Maclaurin series, which obviously provides a
remarkably deep generalization of the Mittag-Leffler function Eα,β(z) of two parameters α
and β (see [21], p. 424):

Eα,β(φ; z) :=
∞

∑
`=0

φ(`)

Γ(α `+ β)
z`

(
α, β ∈ C; Re(α) > 0

)
, (1)

where φ(τ) is a suitably restricted function of τ. Recent works [22,23] (see also [24,25])
provide other historical and important backgrounds in detail regarding an interesting
unification of Equation (1) and several multiparameter extensions of many functions
happening in analytic number theory. It is defined by

Eα,β(ϕ; z, s, a) :=
∞

∑
`=0

ϕ(`)

(`+ a)s Γ(α `+ β)
z`, (2)

for β, α ∈ C with Re(α) > 0, where for a suitably restricted function ϕ, the parameters α, β,
s, and a are appropriately constrained. In its very specialized case where

ϕ(`) = Γ(α `+ β) (` ∈ N0),

the Srivastava function Eα,β(ϕ; z, s, a) reduces immediately to the Hurwitz–Lerch zeta
function Φ(z, s, a). More importantly, the Srivastava function Eα,β(ϕ; z, s, a), defined by
Equation (2), has already been successfully used as the kernel of some general fami-
lies of Riemann–Liouville-type fractional integrals and fractional derivatives (for details,
see [22,23]). Appropriately defined operators of discrete fractional calculus, which are based
upon the general operators of fractional calculus with the Srivastava function Eα,β(ϕ; z, s, a)
in the kernel, can possibly lead to some interesting future investigations.

The discrete fractional calculus [26–29] started to be an interesting part of fractional
calculus [30–33] due to its multiple important applications in solving the complex dy-
namics of several complicated systems [34–36] arising from several fields of science and
engineering [37–39]. Aside from that, the possibility of applying the discrete fractional
calculus to improve some methods and techniques from artificial intelligence (AI) makes
this branch of fractional calculus of great interest to readers. In addition, finding the dis-
crete counterpart of a modified or generalised operator fractional operator is always an
interesting topic, mainly because the discrete version of the continuous non-local operators
possesses qualitatively different properties. In particular, the fractional continuous and
discrete operators involving the Mittag-Leffler kernels (see [17] for the continuous version
and [30,40–42] for the discrete version) present their own interest, due to the fact that this
special function is considered to be the queen of fractional calculus.

Motivated by the aforementioned works, in the current study, we establish the discrete
version of the recently modified fractional calculus operator defined using the Mittag-
Leffler kernel in [19]. Furthermore, we obtain its series representation formula and some
related examples.

The organization of this manuscript is as follows. Section 2 deals with the basic defini-
tions and properties of the discrete fractional calculus used in this manuscript. Section 2.1
is dedicated to discrete Mittag-Leffler functions, and Section 2.2 is for the discrete Laplace
transform, including some of its properties. Section 3 deals with recalling the discrete
Atangana–Baleanu derivative of the Liouville–Caputo-type fractional operators and the
new finding of discrete modifications of the discrete Atangana–Baleanu derivative of the
Liouville–Caputo-type fractional operators. Section 4 contains two illustrative examples,
and the last section is devoted to our conclusions.
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2. Preliminary Tools

This section recalls some basic concepts of discrete fractional calculus, such as discrete
Mittag-Leffler functions and discrete Laplace transformations on the time set Na := {a, a +
1, a + 2, ...} for a ∈ R.

2.1. Riemann–Liouville Fractional Sums and Mittag-Leffler Functions

Definition 1 (see [30,40,43]). For κ ∈ N1, the κ-rising factorial function can be expressed by

zκ =
κ−1

∏
κ=0

(z + κ), z0 = 1.

In general, it can be expressed as follows:

zα =
Γ(z + α)

Γ(z)
, (3)

for z, α ∈ R such that neither z nor z + α is a pole of the Gamma function. One of the major
properties of this function is given by

∇
(

zα
)
= α zα−1.

Definition 2 (see [30,40,43]). For f : Na −→ R and α > 0, the nabla left-sided Riemann–
Liouville fractional sum of the order α can be expressed as follows:

(
a∇−α f

)
(z) =

1
Γ(α)

z

∑
r=a+1

(z + 1− r)α−1 f (r) (∀ z ∈ Na+1), (4)

In addition, for f : bN := {b, b− 1, b− 2, ...} −→ R, the right-sided one can be expressed
as follows:

(
∇−α

b f
)
(z) =

1
Γ(α)

b−1

∑
r=z

(r− ρ(z))α−1 f (r) (∀ z ∈ b−1N). (5)

Lemma 1 (see [30,40,43]). Suppose that a, b, β ∈ R, and α ∈ R+. Then, one can have

a∇−α (z− a)β

Γ(β + 1)
=

1
Γ(β + α + 1)

(z− a)β+α,

∇−α
b

(b− z)β

Γ(β + 1)
=

1
Γ(β + α + 1)

(b− z)β+α.

Definition 3 (see [43]). For α, β, γ, z ∈ C with Re(α) > 0, the discrete Mittag-Leffler function
of a generalized form can be expressed as follows:

Eγ

α,β
(λ, z) :=

∞

∑
κ=0

λκ zκα+β−1(γ)κ

Γ(κα + β)
(∀ λ ∈ R such that |λ| < 1), (6)

where (γ)κ = Γ(γ+κ)
Γ(κ) . Particularly, the discrete Mittag-Leffler function of two parameters can be

deduced when γ = 1 as follows:

Eα,β(λ, z) = E1
α,β(λ, z) :=

∞

∑
κ=0

λκ zκα+β−1

Γ(κα + β)
, (7)

for λ ∈ R, satisfying |λ| < 1.
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Furthermore, the discrete Mittag-Leffler function of one parameter can be deduced when
β = γ = 1 as follows:

Eα(λ, z) = E1
α,β(λ, z) :=

∞

∑
κ=0

λκ zκα

Γ(κα + 1)
, (8)

where λ is as explained above.

Lemma 2 (see [43]). Assume that α > 0, β > −1, γ, z ∈ C. Then, it is asserted that

RL
a∇−νEγ

α,β
(λ, z) = Eγ

α,β+ν
(λ, z),

for λ ∈ R, satisfying |λ| < 1.

2.2. Discrete Laplace Transformation

Definition 4 (see [30]). Let f and g be defined on Na. Then, the discrete Laplace transformation
can be expressed as follows:

(
La f (z)

)
(S) =

∞

∑
t=a+1

f (z)
(1− S)a+1−z . (9)

Furthermore, the discrete convolution of f and g can be expressed as follows:

(
f ∗ g

)
(z) =

z

∑
κ=a+1

f (κ) g
(
z− ρ(κ) + a

)
. (10)

Lemma 3 (see [30]). For any α ∈ R \ {...,−2,−1, 0}, it is asserted that(
La(z− a)α−1

)
(S) =

Γ(α)
Sα

,

provided that |1− S| < 1.

Lemma 4 (see [30]). Let f and g be defined on Na. Then, it is asserted that(
La( f ∗ g)(z)

)
(S) = (La f )(S)(Lag)(S).

Lemma 5 (see [30,40,43]). Let f be defined on Na. Then, it is asserted that(
La(∇ f )(z)

)
(S) = S(La f )(S)− f (a).

More generally, the following result holds true:(
La(∇n f )(z)

)
(S) = Sn(La f )(S)−

n−1

∑
ı=0

Sn−1−ı∇ı f (a + 1).

Lemma 6 (see [30]). Let α be any real numbers. Then, it is asserted that(
La

RL
a∇−α f (z)

)
(S) =

1
Sα

(La f )(S).

Lemma 7 (see [43]). For α, β, λ, S in C with Re(β) > 0, and if |λS−α| < 1 with Re(S) > 0, it is
asserted that (

LaEα,β(λ, z− a)
)
(S) = S−β

[
1− λS−α

]−1 (11)
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and, in particular, that

(LaEα,α(λ, z− a))(S) =
1

Sα − λ
. (12)

3. Discrete Atangana–Baleanu and the Modified Atangana–Baleanu of the
Liouville–Caputo Fractional Differences

We start this section by briefly recalling the Atangana–Baleanu derivative of the
Liouville–Caputo-type fractional difference operators, and then we introduce their modified
versions, which are discrete fractional analogues of the continuous case in [19]. For the
more salient details on these subjects, see [30,40,43].

Definition 5 (see [30]). For λ = − α
1−α and 0 < α < 1/2, the left discrete generalized Atangana–

Baleanu of the Liouville–Caputo-type fractional difference is given by(
ABC

a∇α f
)
(z) =

A(α)

1− α

z

∑
s=a+1

Eα(λ, z− s + 1)
(
∇ f
)
(s) (∀ z ∈ Na) (13)

and the right one is given by

(
ABC∇α

b f
)
(z) =

−A(α)
1− α

b−1

∑
s=z

Eα(λ, s− z + 1)
(
∆ f
)
(s) (∀ z ∈ bN). (14)

The corresponding discrete Atangana–Baleanu fractional sum is given by(
AB

a∇−α f
)
(z) =

1− α

A(α)
f (z) +

α

A(α)

(
a∇−α f

)
(z) (∀ z ∈ Na), (15)

where A(α) > 0 such that A(0) = A(1) = 1.

It is worth mentioning that the above definition is the discrete analogue of the
Atangana–Baleanu fractional operators in [20]. Now, we will proceed to obtain the modified
version of Definition 5.

Considering the definition in Equation (13), we see that(
ABC

a∇α f
)
(z)

=
A(α)

1− α

{
z

∑
s=a+1

Eα(λ, z− s + 1) f (s)−
z

∑
s=a+1

Eα(λ, z− s + 1) f (s− 1)

}

=
A(α)

1− α

{
z

∑
s=a+1

Eα(λ, z− s + 1) f (s)−
z−1

∑
s=a

Eα(λ, z− s) f (s)

}

=
A(α)

1− α

{
f (z)− Eα(λ, z− a) f (a) +

z

∑
s=a+1

{
Eα(λ, z− s + 1)− Eα(λ, z− s)

}
f (s)

}

=
A(α)

1− α

{
f (z)− Eα(λ, z− a) f (a) +

z

∑
s=a+1

∇Eα(λ, z− s + 1) f (s)

}

=
A(α)

1− α

{
f (z)− Eα(λ, z− a) f (a) + λ

z

∑
s=a+1

Eα,α(λ, z− s + 1) f (s)

}
,

where we have used (see [31])

Eα(λ, 1) = 1 and ∇Eα(λ, z) = λ Eα,α(λ, z).
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Therefore, we can define the left discrete modified Atangana–Baleanu of the Liouville–
Caputo-type fractional difference for α ∈

(
0, 1

2

)
as follows:

Definition 6. For λ = − α
1−α and 0 < α < 1/2, the left discrete modified Atangana–Baleanu of

the Liouville–Caputo-type fractional difference is given by(
MABC

a∇α f
)
(z)

=
A(α)

1− α

[
f (z)− Eα(λ, z− a) f (a) + λ

z

∑
s=a+1

Eα,α(λ, z− s + 1) f (s)

]
(16)

for each z in Na. Furthermore, by applying the action of theQ operator to Equation (16) (for further
information on this action, see [32,37]), we can deduce the right one as follows:(

MABC∇α
b f
)
(z)

=
A(α)

1− α

[
f (z)− Eα(λ, b− z) f (b) + λ

b−1

∑
s=z

Eα,α(λ, s− z + 1) f (s)

]
, (17)

for each z in bN.

The above can be generalized by the same technique used for 0 < α < 1, and we can
deduce the following:

Definition 7. For λ` = − α−`
`+1−α with ` < α < ` + 1

2 and ` ∈ N0, the left discrete modified
Atangana–Baleanu of the Liouville–Caputo-type fractional difference of a higher order can be
expressed as follows:(

MABC
a∇α f

)
(z) =

(
ABC

a∇α−`∇` f
)
(z)

=
A(α− `)

`+ 1− α

[(
∇` f

)
(z)− Eα−`(λ`, z− a)

(
∇` f

)
(a)

+ λ`

z

∑
s=a+1

Eα−`,α−`(λ`, z− s + 1)
(
∇` f

)
(s)

]
(18)

for each z in Na. Additionally, the right one can be expressed as follows:

(
MABC∇α

b f
)
(z) =

A(α− `)

`+ 1− α

[(
∇` f

)
(z)− Eα−`(λ`, b− z)

(
∇` f

)
(b)

+ λ`

b−1

∑
s=z

Eα−`,α−`(λ`, s− z + 1)
(
∇` f

)
(s)

]
, (19)

for each z in bN.

Throughout the remainder of this article, we consider the left discrete modified
Atangana–Baleanu of the Liouville–Caputo-type fractional differences. Interested readers
can use the Q operator action on the left one’s results, and they will be able to obtain the
corresponding results for the right one.

Theorem 1. For α ∈
(

0, 1
2

)
, each of the following results holds true:(
AB

a∇−α MABC
a∇α f

)
(z) = f (z)− f (a) (20)
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and (
MABC

a∇α AB
a∇−α f

)
(z) = f (z)− f (a)Eα(λ, z− a), (21)

for z in Na+1.

Proof. Denote the following:(
MABC

a∇α f
)
(z) := u(z), for all z ∈ Na+1.

Take the Laplace transform La on both sides to obtain

(
La

MABC
a∇α f

)
(S)

by
=

Lemma 7

A(α)

1− α

[
F(S)− Sα−1(1− S)a

Sα − λ
f (a) +

λ

Sα − λ
F(S)

]

=
A(α)

1− α

[
Sα

Sα − λ
F(S)− Sα−1(1− S)a

Sα − λ
f (a)

]
= U(S), (22)

where F(S) :=
(
La f

)
(S) and U(S) :=

(
Lau

)
(S). By solving for F(S), we find that

F(S) =
1− α

A(α)
U(S) +

α

A(α)

1
Sα

U(S) +
(1− S)a

S
f (a)

=
(
La

(
AB

a∇−α f
)
(z)
)
(S) +

(1− S)a

S
f (a), (23)

where we used the following (see [30], Equation (32)):(
La

(
AB

a∇−α f
)
(z)
)
(S) =

1− α

A(α)

(
La f

)
(S) +

α

A(α)

1
Sα

(
La f

)
(S). (24)

By taking the inverse Laplace transform L−1
a on both sides of (23), we obtain

f (z) =
(

AB
a∇−αu

)
(z) + f (a),

which rearranges to the desired result of Equation (20).
To prove the second part, we set(

AB
a∇−α f

)
(z) := g(z), for all z ∈ Na+1.

Then, by taking the Laplace transform La on
(

MABC
a∇αg

)
(z), we obtain

(
La

(
MABC

a∇αg
)
(z)
)
(S)

by
=

(22)

A(α)

1− α

[
Sα

Sα − λ
G(S)− Sα−1(1− S)a

Sα − λ
g(a)

]

=
A(α)

1− α

[
Sα

Sα − λ

(
1− α

A(α)
F(S) +

α

A(α)

1
Sα

F(S)
)

− Sα−1(1− S)a

Sα − λ

1− α

A(α)
f (a)

]

= F(S)− Sα−1(1− S)a

Sα − λ
f (a), (25)
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where G(S) :=
(
Lag

)
(S), and we first used

G(S)
by
=

(24)

1− α

A(α)
F(S) +

α

A(α)

1
Sα

F(S),

Later, we used

g(a) =
(

AB
a∇−α f

)
(a)

by
=

(15)

1− α

A(α)
f (a).

By taking the Laplace transform La on both sides of (25), we obtain

(
MABC

a∇αg
)
(z) = f (z)− f (a)L−1

a

{
Sα−1(1− S)a

Sα − λ

}
by
=

(12)
f (z)− f (a)Eα(λ, z− a),

which ends the second part our proof. The proof of Theorem 1 is thus completed.

Theorem 2. For α ∈
(

0, 1
2

)
, the following result provides an alternative series representation of

the discrete modified Atangana–Baleanu of the Liouville–Caputo-type fractional difference:

(
MABC

a∇α f
)
(z) =

A(α)

1− α

[
f (z)− Eα(λ, z− a) f (a) +

∞

∑
κ=0

λκ+1
(

a∇−(α κ+α) f
)
(z)

]
, (26)

for z in Na+1.

Proof. According to Definitions 3 and 6, we can have(
MABC

a∇α f
)
(z)

=
A(α)

1− α

[
f (z)− Eα(λ, z− a) f (a) + λ

z

∑
s=a+1

Eα,α(λ, z− s + 1) f (s)

]

=
A(α)

1− α

[
f (z)− Eα(λ, z− a) f (a) + λ

z

∑
s=a+1

∞

∑
κ=0

λκ (z− s + 1)α κ+α−1

Γ(α κ + α)
f (s)

]

=
A(α)

1− α

[
f (z)− Eα(λ, z− a) f (a) +

∞

∑
κ=0

λκ+1 1
Γ(α κ + α)

z

∑
s=a+1

(z− s + 1)α κ+α−1 f (s)

]

=
A(α)

1− α

[
f (z)− Eα(λ, z− a) f (a) +

∞

∑
κ=0

λκ+1
(

a∇−(α κ+α) f
)
(z)

]
,

which is the result asserted by Theorem 2.

4. Applications

This section presents some specific illustrative examples to verify the results which we
obtained in the preceding sections. In addition, each of these examples shows the applica-
bility of the alternative discrete modified Atangana–Baleanu of the Liouville–Caputo-type
fractional difference series representation.
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Example 1. Let f (z) = ` be any constant function. We can see from Definition 6 that

(
MABC

a∇α1
)
(z) =

A(α)

1− α

[
`− `Eα(λ, z− a) + ` λ

z

∑
s=a+1

Eα,α(λ, z− s + 1)

]

=
A(α)

1− α

[
`− `Eα(λ, z− a) + `

z

∑
s=a+1

∇Eα(λ, z− s + 1)

]

=
A(α)

1− α

[
`− `Eα(λ, z− a) + `

∫ z

a
∇Eα(λ, z− s)∇s

]

=
A(α)

1− α

[
`− `Eα(λ, z− a)− `Eα(λ, z− s)

∣∣∣s=z

s=a

]
= 0.

On the other hand, by using the series representation theorem (Theorem 2), we have

(
MABC

a∇α1
)
(z) =

A(α)

1− α

[
`− `Eα(λ, z− a) + `

∞

∑
κ=0

λκ+1
(

a∇−(α κ+α)1
)
(z)

]

=
A(α)

1− α

[
`− `Eα(λ, z− a) + `

∞

∑
κ=0

λκ+1 (z− a)α κ+α

Γ(α κ + α + 1)︸ ︷︷ ︸
by Lemma 1

]

=
A(α)

1− α

[
−`Eα(λ, z− a) + `

∞

∑
κ=0

λκ (z− a)α κ

Γ(α κ + 1)

]
,

=
A(α)

1− α

[
−`Eα(λ, z− a) + `Eα(λ, z− a)

]
= 0,

where we used (z− a)0 = 1.

Example 2. Consider

f (z) = (z− a)β,

for β ∈ R and α ∈ R+. Then, from, Equation (26), we have(
MABC

a∇α(z− a)β
)
(z)

=
A(α)

1− α

[
(z− a)β − Eα(λ, z− a)(0)β +

∞

∑
κ=0

λκ+1
(

a∇−(α κ+α)(z− a)β
)
(z)

]

=
A(α)

1− α

[
(z− a)β − Eα(λ, z− a)(0)β + Γ(β + 1)

∞

∑
κ=0

λκ+1 (z− a)α κ+α+β

Γ(α κ + α + β + 1)

]

=
A(α)

1− α

[
(z− a)β + Γ(β + 1)

∞

∑
κ=1

λκ (z− a)α κ+β

Γ(α κ + β + 1)

]

=
Γ(β + 1)A(α)

1− α

∞

∑
κ=0

λκ (z− a)α κ+β

Γ(α κ + β + 1)

=
Γ(β + 1)A(α)

1− α
Eα,β+1(λ, z− a),

where we used (0)β = 0.
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In particular, for

f (z) = (1− α)
(z− a)α−1

A(α)Γ(α)
,

it becomes (
MABC

a∇α (1− α)(z− a)α−1

Γ(α)A(α)

)
(z) = Eα,α(λ, z− a).

This has been shown in Figure 1 for α = 0.1, 0.2, 0.3, 0.4, and z ∈ Na+20
a .

2 4 6 8 10 12 14 16 18 20

z

0.5

1

=0.1

=0.2

=0.3

=0.4

Figure 1. Graph of Eα,α(λ, z− a) for different values of α.

5. Concluding Remarks

Continuous fractional calculus, as an extension of its meaning, has a profound impact
on its discrete version counterpart. During recent years, several singular and nonsingular
fractional calculus operators were deeply scrutinized from the perspective and viewpoints
of both pure and applied mathematical sciences. In particular, discrete fractional calculus
has huge potential for applications in treating the extraction and modeling of hidden as-
pects from complicated real-world problems. Typically, the results provided by discrete
fractional calculus can be easily adapted to improve and extend the classical methods and
techniques within the artificial intelligence field. In particular, the operator possessing the
Mittag-Leffler-type kernel, in the Liouville–Caputo sense, was extended in several ways
in order to bypass the standard initialization procedure. In this paper, we constructed the
modified nabla version of the Atangana–Baleanu discrete operator of the Liouville–Caputo
type in Definitions 6 and 7, which was derived from the original discrete Atangana–Baleanu
operator as defined in Definition 5. Furthermore, we proved the corresponding commuta-
tion relations and its series representation formula in Theorem 2. Aside from that, some
examples were provided to see the similarities and differences with the classical discrete
counterpart. We believe that the new expressions presented in this paper can be applied
successfully in the modeling of complicated systems from various branches of engineering
and science. We also briefly indicated some potential directions for further research by
using much more general families of the appropriately defined operators of discrete frac-
tional calculus, which are based upon the continuous fractional calculus operators with the
kernel involving the Srivastava function Eα,β(ϕ; z, s, a) defined by Equation (2) (for details,
see [22,23]).
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