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Abstract: In this paper, we prove some new generalized inequalities of Hilbert-type on time scales
nabla calculus by applying Holder’s inequality, Young’s inequality, and Jensen’s inequality. Symmet-

rical properties play an essential role in determining the correct methods to solve inequalities.
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1. Introduction
In the time (1862-1943), David Hilbert proved Hilbert’s double series inequality

without an exact determination of the constant in his lectures on integral equations. If {8, }
and {d,} are two real sequences such that 0 < Y5, 2, < c0and 0 < Y3° ; d2 < oo, then
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In 1911, Schur [1] proved that 7t in (1) is sharp and also discovered the integral
analogue of (1), which became known as the Hilbert integral inequality in the form
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where Z and Y are measurable functions such that, 0 < fooo E*(1)dt < oo and
0< [y Y2(y)dy < co.

In 1925, by introducing one pair of conjugate exponents (p, q) with1/p+1/q =1,
Hardy [2] gave an extension of (1) as follows. If p,g > 1, B,dy > 0 such that
0<Y® B <ocand0 < Y2, d} < oo, then
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where the constant 77/ sin(7r/p) in (3) is sharp. In 1934, Hardy et al. [3] proved the
equivalent integral analog of (3) in the form

=

1
q

R e A T

where = and Y are measurable non-negative functions such that 0 < fo (T)dt < 0 and
0< [y Y(y)dy < oo.

In 1998 Pachpatte [4] gave a new inequality closed to that of Hilbert as follows: Let
B(1):{0,1,2,...,p} C N—Rand d(¥9) : {0,1,2,...,9} C N — R with f(0) = d(0) = 0.
Then
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where VB, = B, — B,—1, Vdy = dy — dy_1 and

Clp.q) = 5v/7i

In 2000, Pachpatte [5] generalized (5) by introducing one pair of conjugate expo-
nents (A, u), such that A, > 1 with 1/A +1/u = 1. Then, it is established that if
B(1):{0,1,2,...,p} CN—=Randd(9):{0,1,2,...,q} C N— Rwith (0) =4d(0) =0,

then )

2od |Bildsl 4 A
Zl 1921 Vl)\—1+/\l9}l*1 S D(/\’ ‘M, p’ ‘7) Zl(p —1 + 1)|V:Bl‘
= = 1=

(6)
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where VB, = B, — B,—1, Vdy =dy —dy_1 and

A—1 u—1

DA pp.q) = Alyp g
In 2002, Kim et al. [6] generalized (6) and proved thatif A, u > 1, B(1) : {0,1,2,...,p} C
N—Randd(®9):{0,1,2,...,q} C N— Rwith f(0) =d(0) =0, then

1
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where Vﬁ, = :Bl — /31,1, Vdﬁ = d19 - dl9_1 and

D*(A ) = o

7 ,u/ p/ q - /\ _|_ ‘u P q

Furthermore, the researchers [6] proved the continuous analog of (7) and proved
thatif A, p > 1, and E(1), Y(#) are real continuous functions on the intervals (0, 7), (0,y),

respectively, and let £(0) = Y(0) = 0. Then
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for 7,y € (0,00), where

M, w7, y) =

In recent decades, a new theory has been discovered to unify the continuous calculus
and discrete calculus. Many authors proved some dynamic inequalities of Hilbert type, its
generalizations and also the reversed forms, see the papers [7-9].

The goal of this article is to use time scales nabla calculus to prove various dynamic
inequalities for Hilbert-type. Furthermore, we establish some generalized inequalities of
Hilbert type by using submuliplicative and bounded functions.

The organization of the paper as follows. In Section 2, we show some basics of the
time scale theory and some lemmas needed in Section 3 where we prove our results. Our
results as special cases give the inequalities (7) and (8) proved by Kim et al. [6].

2. Preliminaries

For a time scale T, we define the backward jump operator as following p(7) := sup{: €
T:: <t} .LetZ: T — Rbe a function, we say that E is Id-continuous if it is continuous at
each left dense point in T and the right limit exists as a finite number for all right dense
points t € T. The set of all such ld—continuous functions is ushered by C;;(T,R) and for
any function & : T — R, the notation E°(7) denotes Z(p(7)). For more information about
the time scale calculus, see [10,11].

The nabla derivative of uv and u /v (where v(7)v° (T) # 0) are

wo)¥(r) = u¥(D)o(7) +uf(1)o" (1)
= u(t)oV (1) +u" (1)’ (1),

and

(u ) V(T) uV(t)o(t) —

v v(T)vP(T)

Definition 1 ([10]). A function Z : T — R is called a nabla antiderivative of & : T — R provided
EV(t) = E(t) holds Vt € T. We then define the integral of E by

/ﬁt:z(T)vT —E(t)—E(p) VteT.

Theorem 1 ([10]). Ifﬁ deT,a e Rand E,Y € Cy(T,R), then

1) fﬁ Vr—fﬁ VT+fﬁ T)VT;
(2) fﬁ VT—ﬂéfﬁ VT
® [famve=o.

The integration by parts formula on T is

/: u(t)oV (1)Vt = [u(T)v(T)]z - /: u¥ (1) (1) V1. )

The Holder inequality on T is

/: By | /; 2Pl % [/ﬁd (P g (10)

where B, d € T, 5, Y € Cy(LR),y >1land 1/y+1/v=1.
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Definition 2 ([12]). A function G : J— R is sub-multiplicative if
G(ty) <G(1)G(n), Vrne]CR (11)
The inequality (11) holds with equality when G is the identity map (i.e., G(T) = T).

Lemma 1 (Young's inequality [13]). Let B,d > O be real numbers. Then we have for p,q > 1
and1/p+1/q =1, that

P q
wgﬂ+i
Poq

Lemma 2. Let wy, wy, B1, B2 > 0. Then

w1 pWy < ( w1 +wy UJ1+(U2). 12
Bi'By" < w1+ wy w1py + w2, (12)

Proof. Applying Lemma 1 with p = (w1 +wp)/wy1 > 1,9 = (w1 + wp)/wy > 1, B = B{*
and d = /3‘2"2, we obtain that

lel ‘sz < w1 w1 +wy w» w1 4wy
172 T w1 H+wy 1 w1 + wy 2
1

o w1+ws wﬁ-wz)
= w —+ w
wy + wy ( 1Ay 2h3 !

whichis (12). O

In the following, we present Jensen’s inequality in the time scale nabla calculus which
is a special case of ([14] Theorem 3.3) by taking & = 0.

Lemma 3. Let (o, € T and ry,d € R. If/\ S Cld([go,g]T,R), @ : [ébrC]T — (1’0,(5) is
ld-continuous and ¥ : (rg,r) — R is continuous and convex, then

1 ¢ 1 ¢
T(W /go A(T)qo(r)Vr) < W /g 0 A(T)¥ (1)) V1. (13)

3. Main Results

Throughout the article, we will assume that the functions are 1d-continuous functions
on [B,d]T := [B,d] NT and the integrals considered are assumed to exist.

Theorem 2. Let 1, 8,19 € T, A, u > 1,8 € CL([ro, 7)1, R), Y € CL([ro,y) 1, R) and E(ry) =
Y(ro) = 0. Assume that h € C},([ro, 7)1, R), | € Cl4([ro,y)p, R) and Oy, Q, @, Y are non-
negative functions such that ®,'Y are increasing, convex and submultiplicative functions with

BO <Oy <dd and BY < O, < dY, (14)

where B, d are positive constants such that p < d. If

HO) = [ @IV o L) = [ 1OIVE,
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then we have for 1 € [ro, T), ¢ € [ro,y) that

T \E Q Y
~/Vy/r &l) 2(| ( >|)}l 1 /\+y VlVl9
0 0 F’[(l_ ) A (ﬁ )
d? T V() x

1

:t;?\)rw—pw»wl'é

x Vr:[ll(ﬁ)ﬂz(

where T,y € (rp, 00)y and

1
YAuTy) = o

/\7 )\
At /r

x/,:P’;zgi”]*wl |

Proof. From (14) and (13) and using the fact that ® is a non-negative, increasing, submulti-
plicative and convex function, we have

Q(EW) < d(IEW)])
< d) : 2V T)’VT)
- fr0|h<r>|\3,f(§§) %
B ( RGN 17
(fmh 0)|| 52| v )
<
- [ (D) VT
< (/ Ih(t (3 g )w).

Applying (10) on the term

/r;|h(r)|q>< Ehv(g) )VT

with indices A > 1and A/ (A — 1), we observe that

[cone(

EV(7)

h(7)

)]AVT] % [/r; 1%}1A (18)
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From (17) and (18), we obtain

A—

M(EG]) < dle—ro) ™

—
—
—
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)M*. 0

)]"VT] B 0)

From (19) and (20), we observe that

O ([2() DY (8)])

{/,;@hw( H

w [ {“

)M* o

From Lemma 2, the inequality (21) becomes

O (J2()) (Y (9)]
(A=1)(A+p) (p=1)(A+p)
<d2/\7‘</1\([_70) A —i—l(ﬁ—ro T ”)

" (55
: T(Lﬁgi)) [/0 {'Z(T”‘P( szé;) )rVTF @2
= dz)\lﬂl <#(t ) A=) %”’”)
S oo (5] ]
O e (T2 o]

Dividing the two sides of (22) on the term

—1)(A+p) (p=1)(A+p)

<u(t—ro)ww +A(19—r0)fw>,
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and then integrating with respect to : from r( to T and for ¢ from rq to y, to obtain

r (120 (Y(9)])
/ro /ro A1) (A+#) —oy ViVY

(=) A A ) A
- Atfy/mr ¢§E;)) [/r;{|h(r)|<b( = )}AVT]AW (23)
)}HVTVV&

[ o

Y¥ (1)

I(7)
Applying (10) on the R.H.S of (23), we see that
v O (IE@ND([Y(8)])

/ro /ro A=)(A+p) o vV

pli—ro) M +A(B—rg) M
< [ [pee) K
T A+ H(1)

A x

x //[|h < )] VTV] (24)

YV

"l
x//[u w( :

By applying the Formula (9), we have that

]fere]

'-'V

//[|h |q>( TSA)] VIV
= [ ()] -

£ L5 e

= [ o)) - etenve
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and then substituting into (24), we obtain

[ (|20 (Y ()
s A0 D)
" p(—ro) MA@ —rg)

\YAYS

< (L) )

[

J.
y '/y [¥(L(8))] ;«1W1 "
I

rnl L) |
(o]

From (14) and (16), the last inequality becomes

/y/T O (|E2())D(Y(8 )|) =ViVe

(/\*1)(/\+Il)
Ap (19 7’0

|—

6
N
,.<
—
>
=
,-.]
<
S—

| —

5\,‘

—
=
e
L’
S

N

x l/r:[ll(ﬂ)ﬂz( X

which is (15). O

Corollary 1. Let 1, 9,79 € T, A, u > 1, € CL([ro, 7). R), Y € CL([ro,y)r,
E(rg) = Y(ro) = 0. Then we have for 1 € [rg, T)y, ¢ € [ro,y) that

e [EWIY(®)]
/r /r A1+ o VIV
P ro) M +ADO—rg) M
A=l fim

(T—ro) T y—r)T

OO % I

<
T A+pu

A

for T,y € (ro, o).

1
A

<rp<t>>vl] .

A
V()]

Proof. Since E(rp) = Y(r9) = 0, we have

[ [ & (@ = [20) - Er)| = 20,

‘Vrz

R) and

(25)

(26)
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and
[ ez | [ YT @] = jvo) - vt = (o) @)
By applying (10) on L.H.S of (26) and (27), we obtain
L A % L A %
=0l < ([V@['ve) ([ wrrvr)

= (/rl Ev(r)‘AVT)A(trO)AAl, (28)

and also, )
Y@< ([ o]'ve) o= (29)

From (28) and (29), we see that

=2V (1) ‘AVT> X. (30)

YV(T)‘”VT);(/;

Applying (12) with 1 = (1 — ro) L By = (9 —r0)" ", wp = 1/A, wy = 1/p, we
observe that

EOIN@ < (6-m) ' 0= ([

— 1—1
< 111 (,1\(1—7 YD) 4 g 1>(i+3«)> (31)
LI
.V A RN = G R I o L)
- /\+V(A(l 7"0) # +]/l(l9 1’0) H )

Substituting (31) into (30), we obtain

[EWIY(®)]

IN

)\y 1 (Afl})‘(ﬂu) 1 (Mflgl(H/A)
(R0 e

A
A/ m\ﬂw)i( i
1

A=1)A+p) (p=1)(A+p)

= pu—r) W+ A@ =)
( )

m
YV(T)’MVT) ' (/r;

(L

By dividing (32) on the term

1
A X
EV(T)‘ VT)

1
A

29 (1) ‘)\VT> . (32)

A-1)(htp) (p=1) (1)

‘u(l—ro) A +)\(l9—7‘0) A

and then integrating with respect to ¢ from r( to T and for ¢ from g to y, to obtain

yorT [E()|[Y(8)]
'/ro '/ro Vive
u(

(A=1)(A+p) (p=1)(A+p

t—rg) M+ A(B—ry) M

Sl JA¢:

1

YW o) VT) = £V (1) ’Av1> ! Vz] . ®
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Applying (10) on the two parts of the right term of (33), we see

Y [ZW[[Y ()]
/I’ /,, (A=1)(A+p) (u=1)(A+p) Vive
07 y(t—rg) M —|—)L(19—r0) Ap

w{/,o/,
aiA

Applying (9) on the term

=V(t VTVt} (t —ro)% (34)

-1

v( )T
Y VTV& (y ro) " .

YV(1) ‘#VTVI%

I,
ro JT1o

with u(9) = frlZ|YV(T) "Vt and vV (8) = 1, we obtain

y o
/1,

r)‘”va

9 Y i
= v(9) (/ YV(TWVT) N / IR0
7o 70 o
where v(9) = ¢ — y, and then
8
/y/ YV(T) "vve
ro /1o
— (6-y) (/r Y(r ) ®)|" v~ p(0))vo 35)
0
"y —p(8) V9.
Similarly, by applying (9) on the term
/ / VTVL
ro 1o
we observe that
T A
/ / VTVL / Ev(t)’ (t—p(1)Ve (36)
To ro )
Substituting (35) and (36) into (34), to obtain
VT [EWI[Y)]
/, /, O (o) e VAV
0 t—rg) M HAO—ry) M
1 A-1 p=1
< A+y(7—70) Ty—ro) ¥
1
y Iz . A x
<[ @) w=eenve| | [[e70] o]
o o

which is (25). O

Remark 1. As particular cases of Corollary 1, (when T = N, vy = 0), we obtain the inequality (7)
and (when T = R, ry = 0), we obtain the inequality (8).
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In what follows, we generalize Corollary 1 by using a submultiplicative function.

Corollary 2. Let 1, 8,79 € T, A, u > 1, & € Cl([ro, "), R), Y € C([ro,y)r, R) with
E(rg) = Y(ro) = 0. Assume that h € CL([ro, )1, R), I € CLi([ro,y)r, R) and ®,¥ > 0 are
increasing, convex and submultiplicative functions. If

, 9
:/r0|h(T)|VT and L(ﬁ):/ro 1Q)IVE,

for v € [ro, T)p, © € [ro,y)q, then

Yy T =N (Y(9
/rj/r * (1|)( E))D (Y@ (=) (A+p) ViV
O u(e—rg) M A —ro) M
T =V (, A 1
Y(T,y, A, 1) l/o |h(l)|q>< ~h(L()> )] (T—P(l))V1‘| o)

/: [ll(ﬂ)‘i’(‘ Ylv(lg‘;) Dr(y - p(ﬂ))Vﬁ] ;,

where T,y € (rg, )y and

A-1
A A
1 T ¢(H(L))]A1
Yy = | v
o = g\ ]
L
Y ‘{’(L(ﬁ))]ﬂl ‘
% .
i
Proof. Using the fact that ® is a non-negative, increasing and submultiplicative function
we have
- law
S(EW))) < <1></r B (r)‘v7>
f (T
— ®| HQ) s (38)
f |h )|Vt
h(t
< @ ) frol h(T
J Ih )Vt

Applying (13) on the R.H.S of (38), we observe that

a2l < T ([ mole(

Applying (10) on the term

EV(1)

h(7)

) VT) . (39)




Symmetry 2022, 14, 1512 12 of 15

with indices A > 1and A/ (A — 1), we obtain

/r;|h(‘r)|<1>< )VT
<[ o (55
— =)' | [ [inco) 1o

From (39) and (40), we obtain

EY(7)
h(T)

)]AVT] % [/r; 1%}1“1 (40)
)] v

2V (1)
h(7)

)M*. a

Similarly, we have that

YY) < Tl -

T b
)} VT‘| . (42)

From (41) and (42), we observe that

D2 DFIY(@®)])

A-1
A

<(—r) T (@O—10) T

2

)]”VTV. w)
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From Lemma 2, the inequality (43) becomes

(2T (Y(8)])

< ATHC\(!—TO <A—1>§‘w> N ;(ﬂ—ro (y%‘w))
S0 o582 v

)M; a

A=1)A+p) (r=1)A+p)

= (=) T ag ) TR

I+

>

EY (1)

¥(L(9)) /‘9{ (
X (7)Y
@) | (7))
Dividing the two sides of (44) on the term

pa—r) W +A@-) ),

and then integrating with respect to ¢ from r( to T and for ¢ from rq to y, to obtain

Y P(EWNYY@)])
/,0 /,0 A1) (A +p) ny VIVY
u(t—ro A= A

A A
)} VT‘| Vi (45)

)
< v S o

<[ [ (s

Applying (10) on the R.HL.S of (45), we see that

/y/T Q(|2())Y(Y(®)]) AV
O (=

A=A +p) (=) (A+p)
+ Dy

1
A+u

:/r:/r;[mm@(

. /y{‘P(L(ﬁ))] = w}
(

VTVt] (46)

| [L0)
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By applying (9), we have that

and also,

vore PEWNYY@)])
/, /r G0 0t) e VYO
O w(—rg) M+ A(E—ry) M
A1
1 /T[@(H(mrlv[ A
T A+l HQ)

=Y(t,y, A p) l/:

[ (s -omed]

X

which is (37). O
Remark 2. As a specific case of Corollary 2, when B = d = 1, we obtain Corollary 1.

4. Conclusions and Future Work

In this work, we explored some new generalization inequalities of Hilbert type on time
scales by using nabla calculus, which are used in various problems involving symmetry.
Further, we also applied our inequalities to discrete and continuous calculus to obtain
some new Hilbert type inequalities as special cases. Moreover, some new inequalities as
special cases are discussed. In future work, we will continue to generalize more dynamic
inequalities by conformable fractional calculus on time scales by using Specht’s ratio,
Kantorovich’s ratio and n-tuple fractional integral. It will also be very enjoyable to introduce
such inequalities on quantum calculus.
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of the manuscript.
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