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Abstract: In this paper, we study a new model that represents the symmetric connection between
capacitance–voltage and Schottky diode. This model has a symmetrical shape towards the horizontal
direction. In recent times, works conducted on artificial neural network structure, which is one of the
greatest actual artificial intelligence apparatuses used in various fields, stated that artificial neural
networks are apparatuses that proposal very high forecast performance by the side of conventional
structures. In the current investigation, an artificial neural network structure has been generated
to guess the capacitance voltage productions of the Schottky diode with organic polymer edge,
contingent on the frequency with a symmetrical shape. Of the dataset, 130 were grouped for training,
28 for validation, and 28 for testing. In order to evaluate the effect of the number of neurons on the
prediction accuracy, three different models with different neuron numbers have been developed.
This study, in which an artificial neural network model, although well-trained, could not predict the
output values correctly, is a first in the literature. With this aspect, the study can be considered as a
pioneering study that brings a novelty to the literature.

Keywords: artificial neural network; MEH-PPV; capacitance–voltage; Schottky diode; barrier height

1. Introduction

Due to its capabilities in the delicate symmetry of a human brain learning, artificial
neural network systems (ANN) have become the topic of many researchers and studies
today. This ANN model features a symmetrical structure that runs along the flow direction.
Aside from current research into the ANN system’s limits and possibilities, its application
areas are expanding by the day. The ANN system functions in a manner similar to that of
neurons [1]. There are artificial neurons that mimic nerve cells. These neurons typically
function as a multi-input, single-output nonlinear element [2]. By connecting them, they
construct multi-layer perceptron neural networks. These layers produce outputs based on
the algorithm used following a procedure comparable to the learning process [3]. The ANN
system’s unique operation has provided them with opportunities in a variety of fields.
The ability of these systems to generate false data, as well as their success in forecasting
non-linear data, has enabled them to be used in a wide range of applications, ranging
from health to energy and electronics [4–8]. Metal–semiconductor contacts is one of these
areas. Metal–semiconductor interactions have been regarded as a watershed moment in the
evolution of electronics science since their introduction. A physical barrier among metal
and semiconductor has provided humans with numerous chances in electron control [9].
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Many electrical circuit elements based on this arrangement, known as the Schottky barrier,
have been constructed [10–12]. The most essential of these are diodes. Diodes are widely
employed in today’s electronics. Schottky diodes, based on silicon carbide (SiC), are one
type of these diodes [13]. The capacity of these diodes to operate in harsh environments
distinguishes them from regular diodes [14,15]. The area of application of diodes is directly
proportional to their electrical characteristics. As a result, the ANN system may have a
significant role to play in establishing the electrical properties of these diodes. At this
point, it is critical to evaluate the ANN system’s applicability in this field or to discover the
boundaries of its potential.

2. Literature Review

According to the literature, the uses of the ANN system on Schottky diodes appear to
be highly successful due to the analytical data gained from diode measurements. Lim et al.
constructed an ANN neural network to assess the inference accuracy of gated Schottky
diodes. They observed that when the outputs of artificial neural network are compared
with the outputs of test devices, the ANN system can classify with very high accuracy [16].
Rabehi et al. [17] proposed a novel approach for estimating the Schottky diode characteris-
tics with improved precision. They proved that the parameters of the Schottky diode may
be correctly computed using a novel function algorithm. Mellit et al. [18] established a
simple ANN model for modeling and predicting the power generated by a polycrystalline
Schottky diode photovoltaic module. They demonstrated that the suggested model can
accurately forecast module output power. M. Alade [19] calculated the electrical characteris-
tics of GaN Schottky diodes at high temperatures using an ANN system. He contrasted the
system’s outputs to theoretical calculation findings. He demonstrated that the calculated
and theoretical findings are in good agreement. Darwish et al. [20] announced an efficient
method for calculating current–voltage outputs with the ANN system. They stated that
the ANN system’s simulation findings demonstrate a clear and perfect fit with the exper-
imental data. They demonstrated that the ANN technique can be utilized to effectively
predict the current–voltage at the p–n junction. Mittal et al. [21] studied the ANN system’s
applicability in analyzing the performance of photovoltaic Schottky diodes. They built
a network model since current–voltage is the output. They evaluated the experimental
photovoltaic diode output to the ANN system output and the data they collected and
discovered that the results were highly consistent. Liang et al. [22] studied the ANN
system’s availability in the construction of shottky barrier diodes. They used the ANN
model to examine the diode’s nonlinear power features. According to this investigation,
the experimental settings and ANN results agreed well. Torun et al. [23] modeled the I–V
characteristic of an Au/Ni/n-GaN/undoped GaN Schottky diode with different machine
learning tools. The current values were measured for the voltages applied to the diode
terminal of the previously produced Au/Ni/n-GaN/undoped GaN Schottky diode in
the range of 40–400K with 20K steps. Using 5192 experimental samples, four dissimilar
structures were developed. The performance results of the models were compared with
each other. The study results showed that the Adaptive Neuro Fuzzy System can accurately
model the I-V characteristics for all temperature values.

Rahman et al. [24] used an ANN model to predict the oscillation heat transport
coefficient of a thermoacoustic heat exchanger. Using experimental data, the ANN model
for a floating thermoacoustic refrigerator oscillating heat exchanger was built. The MLP
network comprises two input parameters and a hidden layer with ten optimum neurons.
The collected outcomes established the ANN model’s high accuracy prediction ability.
Pang et al. [25] focused on creating an ANN model to predict solar radiation. The ANN
model was trained using real meteorological data from a nearby weather station. The
data collected from the constructed ANN model were compared to the target data, and
the model’s accuracy was evaluated. The results show that ANN model may produce
prediction data that are highly congruent with the target data.
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According to the wide research assessment, ANNs show great prediction performance
in all studies published in the literature. The key motivation for this study is that all of
the studies on ANNs in the literature indicate good predictive capacity of ANNs and no
studies on prediction failure of ANN models are discovered in the literature. For the first
time, an application in which an ANN model failed was reported in this study. The revised
ANN model, which was designed to predict the capacitance–voltage measurement of a
diode with an organic polymer interface based on frequency, had exceptionally high error
rates and failed to anticipate the target data. The core causes of the failure of the ANN
model, which is said to be a mathematical instrument with very good prediction ability,
have been carefully explored and debated in all of the research in the literature. This work,
which reports the failure of the ANN model for the first time in the literature, is significant
since it covers several gaps and is the first study reported on the issue in the literature.

3. Experimental Model

An n-type 6H-SiC wafer with a diameter of 2 inches (001) and a donor density of
2.61017 cm−3 was used to fabricate the 6H-SiC/MEH-PPV/Al Schottky diode. After the SiC
wafer surface was cleaned with the cleaning technique known as the RCA process, it was
kept in HF/H2O (1:10) mixture for 20 s to lift the oxide layer shaped on the surface. After
this procedure, 150 nm thick pristine gold (99.995%) was evaporated on the polished surface
of the semiconductor at 10−6 Torr pressure. The Au/SiC wafer was annealed at 500 ◦C for
5 min to form back contact in the metal evaporation system. Then, Poly[2 -methoxy-5-(2-
ethylhexyloxy)-1,4-phenylenevinylene] (known name MEH-PPV) dissolved in toluene was
plated with a spin coater at 2000 rpm for 1 min to form an interface polymer layer on the
Au/n-SiC wafer surface. The plated wafer was annealed at 60 ◦C for 5 min to eliminate
toluene from the n-6H-SiC surface. Finally, 140 nm thick pristine aluminum (99.999%)
was evaporated onto the matte surface of the SiC wafer to form the Schottky contact. The
schematic diagram of the experimentally produced 6H-SiC/MEH-PPV/Al Schottky diode
is seen in Figure 1. Keithley 2400 Sourcemeter (Tektronix, Inc. Beaverton, OR 97077 United
States) was used for current–voltage (I–V) measurements. Current–voltage was made in
the voltage range between −3 and +3 V.
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4. ANN Model Development

There are numerous mathematical tools in the literature that academics utilize for data
processing and modeling [26–30]. Traditional approaches for constructing simulation mod-
els utilizing data are shown to be insufficient in several circumstances, such as nonlinear
function modeling and irregularity [31]. Artificial intelligence (AI)-based prediction models
have recently become tools regularly utilized by academics in various fields. AI-based pre-
diction relies on simulation modeling once the system has been trained with data. Artificial
neural networks (ANN) are a prominent AI technique among researchers [32]. According
to the literature, ANN models have advantages like straight routes in the learning phase of
nonlinear correlations, the ability to move analogue and digital data together, its strong
structure even in the presence of noisy input data, the convenience of reusing information
thanks to feedback, and high sensitivity in learning new data [33]. ANN models with
various structures exist, including the radial basic functional neural network (RBFNN) [34],
the convolutional neural network (CNN) [35], and the multi-layer perceptron (MLP) [36].
The MLP network model is the most commonly used of these models. There is at least
one hidden layer in MLP networks, in addition to an input and output layer. The MLP
network’s hidden layer contains computational units known as neurons. Each link between
layers is assigned a weight. Signals travelling across each link between layers are multiplied
by the weight assigned to that link. By summing the inputs from the neurons in the next
layers, a bias is added, and the outcome is achieved by employing a transfer function to
acquire the value in the output layer. A connection is produced between nonlinear rules
derived from input data and output data in an MLP network using a feed-forward (FF)
back-propagation (BP) technique. The MLP network is trained in the FF stage by updating
biases and weights. During the training phase, data from the input layer is fed forward
and errors are back-propagated by adjusting the weights between neurons. The training
phase of ANN model continues in this manner until the lowest error rate is obtained, at
which point the training phase of the ANN model is finished.

In this study, an ANN model has been developed to predict the capacitance voltage
outputs of an organic polymer interface 6H-SiC/MEH-PPV/Al diode depending on the
frequency. The first step in developing ANN models is optimizing and ideally grouping
the data. Next comes the determination of hyperparameters such as the number of neurons,
hidden layers, training, and transfer algorithms. After the data set and hyperparameters
are determined ideally, the model is trained by entering data into the model. After verifying
that the training phase is ideally completed, the predictive performance of the model is
analyzed. After the ANN model with the highest prediction performance is determined,
the implementation phase is started, and the prediction values are obtained from the model.
The flowchart of the ANN development methodology is given in Figure 2.

The voltage (V) and frequency (F) values in the input layer of the MLP network
model, which has been developed with a total of 186 data, have been defined as input
parameters and the capacitance (C) value has been predicted at the output layer. Optimizing
the data used in training ANNs is one of the important parameters that directly affects
the prediction performance of ANN. For this reason, optimum data grouping has been
preferred by making different data optimizations. The data used in the development of
ANN are grouped in three separate sections, as frequently preferred in the literature [37–39].
Overall, 70% of the dataset was used for training, 15% for validation, and 15% for testing.
Matlab program was used in the development of ANN models. The basic configuration
structure of the developed ANN model is shown in Figure 3.

One of the main parameters influencing ANN prediction performance is the number
of neurons employed in the hidden layers. For determining the number of neurons to be
employed in ANN models, there is no standard modeling or computation technique [40].
As a consequence, three separate ANN models with 5, 10, and 15 neurons in the hidden
layers have been built to compare the performance of models developed with varying
neuron numbers. The Levenberg–Marquardt method, one of the strongest algorithms
often utilized by academics, was used as the training algorithm in the constructed ANN
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model [41]. Tan-Sig functions were employed as the transfer function in the MLP network’s
hidden layer, and Purelin functions were used in the output layer. The transfer functions
employed are as follows:

f(x) =
1

1 + exp(−x)
(1)

purelin(x) = x (2)

In order to evaluate the prediction performance of the created ANN model, some
parameters should be investigated. The Mean Square Error (MSE) and Coefficient of
Determination (R) parameters were utilized to examine the performance of the MLP
network for this purpose. The rate of variation between the projected values from the
ANN model and the target values was also investigated. The equations utilized to compute
performance parameters are listed below [42]:

MSE =
1
N

N

∑
i=1

(
Xexp (i) − XANN(i)

)2
(3)

R =

√√√√√√1 −
∑N

i=1

(
Xexp (i) − XANN(i)

)2

∑N
i=1

(
Xexp (i)

)2 (4)

Error Rate (%) =

[
Xexp − XANN

Xexp

]
× 100 (5)
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5. Results and Discussion

Figure 4 depicts a capacitance–voltage graph of the 6H-SiC/MEH-PPV/Al diode at
50–1000 kHz and room temperature. Figure 4 shows that when the frequency increases,
the capacitance value increases as well. However, it has been reported in the literature that
as frequency increases, capacitance reduces [43]. This could be owing to the presence of
the MEH-PPV polymer at the interface. Because current conduction might be affected by
the conductive polymer layer at the interface. This could have influenced the recorded
diode capacitance value. Reddy [44] demonstrated that the conductive polymer layer at
the interface can influence the diode’s capacitance value.
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Figures 5–7 exhibit data graphs for each stage of the ANN models developed with 5,
10, and 15 neurons, respectively. While the graphs have target values on the x-axes, the
y-axes include ANN predictions. The dotted line represents the equality line, while the
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solid color lines represent the fitted data values. The objective of these graphs is to assess
and demonstrate the proximity of ANN outputs to target values, as well as the error rates
between them. When the studies on ANN in the literature are analyzed, it is clear that
ANN is a powerful mathematical tool capable of making high-accuracy predictions. The
fitted data and the equality line are very near and compatible in the figures derived from
these investigations, yet the data points are positioned on or very close to both lines. When
the equality line, fitted line, and data points provided in graphics for the data obtained
from each stage of the ANN model are closely inspected, the discrepancy between data
is readily visible. There is a clear difference between the trends of the equality line and
fitted line in each of the graphics. Despite this, the distance and mismatch of data points
from both lines are also apparent. In order to determine the accuracy of the ANN, it is
important to examine the R values calculated for the model. The ANN model’s prediction
accuracy is directly proportional to the proximity of the R values to the 1 value. When the
studies on ANN undertaken by researchers in the literature are evaluated, it is discovered
that the R values are quite close to 1 and positive. When the R values generated for each
stage of the ANN model established in this work are reviewed, a situation that differs from
the situation in the literature emerges. The distances of the values from 1 are seen when
the R values acquired from each built ANN model are inspected. The numerical values
of R values reveal that each ANN model’s prediction performance is quite low, and it can
produce predictions with large inaccuracy.

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 15 
 

between them. When the studies on ANN in the literature are analyzed, it is clear that 
ANN is a powerful mathematical tool capable of making high-accuracy predictions. The 
fitted data and the equality line are very near and compatible in the figures derived from 
these investigations, yet the data points are positioned on or very close to both lines. When 
the equality line, fitted line, and data points provided in graphics for the data obtained 
from each stage of the ANN model are closely inspected, the discrepancy between data is 
readily visible. There is a clear difference between the trends of the equality line and fitted 
line in each of the graphics. Despite this, the distance and mismatch of data points from 
both lines are also apparent. In order to determine the accuracy of the ANN, it is important 
to examine the R values calculated for the model. The ANN model’s prediction accuracy 
is directly proportional to the proximity of the R values to the 1 value. When the studies 
on ANN undertaken by researchers in the literature are evaluated, it is discovered that 
the R values are quite close to 1 and positive. When the R values generated for each stage 
of the ANN model established in this work are reviewed, a situation that differs from the 
situation in the literature emerges. The distances of the values from 1 are seen when the R 
values acquired from each built ANN model are inspected. The numerical values of R 
values reveal that each ANN model’s prediction performance is quite low, and it can pro-
duce predictions with large inaccuracy. 

  

  

Figure 5. Performance of the ANN for all stages for neuron number 5. Figure 5. Performance of the ANN for all stages for neuron number 5.



Symmetry 2022, 14, 1511 8 of 14

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 15 
 

 

  

  

Figure 6. Performance of the ANN for all stages for neuron number 10. 

  

Figure 6. Performance of the ANN for all stages for neuron number 10.

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 15 
 

 

  

  

Figure 6. Performance of the ANN for all stages for neuron number 10. 

  
Figure 7. Cont.



Symmetry 2022, 14, 1511 9 of 14
Symmetry 2022, 14, x FOR PEER REVIEW 10 of 15 
 

  

Figure 7. Performance of the ANN for all stages for neuron number 15. 

Figure 8 depicts experimental data and ANN predictions on the same graph. 
Whereas the x-axes of the graphs show voltage levels, the y-axes show capacitance values. 
The changes in capacitance values at the fixed frequency with regard to the voltage are 
displayed in separate graphs for each frequency value. The goal of displaying these 
graphs is to highlight the disparity between ANN predictions and target values. When 
similar figures in the literature are analyzed, it is discovered that goal values and ANN 
estimation data are positioned on or extremely close to each other. The closeness of ANN 
predictions to target values implies that the ANN model delivers accurate predictions. 
Figure 8 shows that the data points acquired from the ANN model and the goal data 
points are incompatible and positioned at extremely different positions. When the trends 
of data lines are indexed, however, there are noticeable variances and mismatches in trend 
trends. These results reveal that the created ANN model fails to forecast the capacitance 
voltage outputs of the 6H-SiC/MEH-PPV/Al diode with an organic polymer interface de-
pendent on frequency. 

  

f = 50 kHz

Voltage (V)

-4 -3 -2 -1 0 1 2

C
ap

ac
ita

nc
e 

(F
)

0

5e-9

1e-8

2e-8

2e-8

Experimental
ANN Prediction (5 Neuron)
ANN Prediction (10 Neuron)
ANN Prediction (15 Neuron)

(a) f = 100 kHz

Voltage (V)

-4 -3 -2 -1 0 1 2

C
ap

ac
ita

nc
e 

(F
)

0

5e-9

1e-8

2e-8

2e-8

Experimental
ANN Prediction (5 Neuron)
ANN Prediction (10 Neuron)
ANN Prediction (15 Neuron)

(b)

Figure 7. Performance of the ANN for all stages for neuron number 15.

Figure 8 depicts experimental data and ANN predictions on the same graph. Whereas
the x-axes of the graphs show voltage levels, the y-axes show capacitance values. The
changes in capacitance values at the fixed frequency with regard to the voltage are displayed
in separate graphs for each frequency value. The goal of displaying these graphs is to
highlight the disparity between ANN predictions and target values. When similar figures
in the literature are analyzed, it is discovered that goal values and ANN estimation data are
positioned on or extremely close to each other. The closeness of ANN predictions to target
values implies that the ANN model delivers accurate predictions. Figure 8 shows that
the data points acquired from the ANN model and the goal data points are incompatible
and positioned at extremely different positions. When the trends of data lines are indexed,
however, there are noticeable variances and mismatches in trend trends. These results
reveal that the created ANN model fails to forecast the capacitance voltage outputs of the
6H-SiC/MEH-PPV/Al diode with an organic polymer interface dependent on frequency.

Figure 9 shows the error rates between data from the ANN model and the goal values
for each data point. When the error rates of ANN models described in the literature are
analyzed in depth, it is discovered that generally low values are produced, and data points
are positioned near the zero error line. The close proximity of the data points to the zero
error line indicates that the constructed ANN model can make accurate predictions. When
Figure 9 is inspected, it is evident that the data points are distant from the zero error
line. These exceedingly high error rates indicate that there are exceptionally high error
rates between the projected values generated from the constructed ANN model and the
target values.

Figure 10 depicts the anticipated and target values from the ANN model on the same
graph. The graph shows experimental data with target values on the x-axis and predictive
values from the ANN model on the y-axis. The closer the data points are to the equality
line depicted in blue, the lower the error rates of the ANN model. When the data from
the studies on ANN models undertaken by researchers in the literature is evaluated, it is
discovered that the data points are clustered around the equality line. The findings of the
research suggests that ANN models can generate accurate predictions. However, when
the data from the ANN model developed in this work is examined, it is clear that the
location of the data points is unrelated to the equality line. When these data are studied, the
failure of the ANN model, which was built to forecast the capacitance voltage outputs of
the 6H-SiC/MEH-PPV/Al diode with organic polymer interface dependent on frequency,
is plainly visible. Table 1 shows the calculated performance parameters for the created
ANN model.
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Figure 8. Experimental data and ANN predictions. (a) 50 kHz (b) 100 kHz (c) 300 kHz (d) 500 kHz
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Figure 9. Error rates between the data obtained from the ANN model and the target values. (a) 5 neuron
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Table 1. Performance parameters for the ANN model.

Model MSE R MoDav (%)

5 Neuron 1.39 × 10−17 0.09967 −34.92
10 Neuron 3.66 × 10−17 −0.36140 −68.64
15 Neuron 5.89 × 10−16 0.39982 −114.73
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It is thought that there are two reasons why the proposed ANN model fails to forecast
the capacitance–voltage measurements of the diode with organic polymer interface in
this manner, depending on the frequency. The former may be owing to physical reasons,
like the conductive polymer layer employed between metal and semiconductor surfaces
during manufacturing. The polymer layers utilized at the contact have the potential to
impact current conduction [45]. This could have resulted in an inconsistency in the charges,
resulting in a capacitive effect on the interface. This imperfection in the contact could have
hampered the capacitance–voltage–frequency link. This could have led to the ANN system
making inaccurate predictions. The other issue is because the ANN model’s learning
method is insufficient to learn material that is irregular and has no relationship, even
if it is complex. ANN models are one of the mathematical tools with high predictive
ability in modeling complex functions. As can be seen in the comprehensive literature
review given, ANNs have been able to offer high prediction performance in many different
applications. Another reason for the failure of the models in this study is that the non-
functional relationship between the data was not learned enough by the ANN model. As a
result of the study, it was seen that the R values obtained from the models were below 0.5.
Studies in the literature show that R values are around 0.9. The closeness of the R value to
1 indicates the accuracy of the predicted values obtained from the model. The low R values
of the models indicate that the model did not learn enough.

6. Conclusions

In the current work, three dissimilar ANN simulations have been constructed to
estimate the capacitance voltage productions of a Schottky diode with an organic polymer
edge dependent on the frequency. Levenberg–Marquardt procedure has been preferred as
the training procedure in MLP networks created with 5, 10, and 15 neurons in the hidden
layers. Overall, 130 of the data used in the ANN structures, which have been established
using a total of 186 tentative data, have been evaluated in the training of the model, 28 in
the validation phase, and 28 in the testing phase. MSE, R, and MoD factors have been
evaluated for estimation analysis of ANN structures. The outcomes indicate that the ANN
structures have too many deviations and the created ANN structures cannot estimate the
capacitance voltage productions of the organic polymer interface Schottky diode dependent
on the frequency.
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