
Citation: Kouli, M.; Rasoolzadegan,

A. A Feature-Based Method for

Detecting Design Patterns in Source

Code. Symmetry 2022, 14, 1491.

https://doi.org/10.3390/

sym14071491

Academic Editor: Kuo-Hui Yeh

Received: 12 June 2022

Accepted: 19 July 2022

Published: 21 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Feature-Based Method for Detecting Design Patterns in
Source Code
Mariam Kouli and Abbas Rasoolzadegan *

Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad,
Mashhad 9177948974, Iran; kouli.mariam@mail.um.ac.ir
* Correspondence: rasoolzadegan@um.ac.ir

Abstract: Design patterns are common solutions to existing issues in software engineering. In recent
decades, design patterns have been researched intensively because they increase the quality factors
of software systems such as flexibility, maintainability, and reusability. Design pattern detection
refers to the determination of the symmetry between a code fragment and the definition of a design
pattern. One of the major challenges in design pattern detection is how to obtain accurate information
about the design patterns used in the software system due to the existence of different design pattern
variants. Increasing the number of design pattern variants covered by a detection method is one of
the main factors that increase its accuracy. In this paper, a step toward solving this challenge was
taken by proposing a new feature-based method that builds on concrete definitions of existing design
pattern variants and supports the definition and detection of new variants. In this proposed method,
the needed features are extracted from the signatures of the design patterns. This method was applied
to the 23 Gang of Four (GoF) design patterns and evaluated using four open-source Java projects.
Afterward, it was compared with some previous methods using automatically generated testbeds.
The experimental results demonstrated that the proposed method has better performance in terms of
precision and recall compared to the other methods.

Keywords: design pattern variants; feature-based pattern detection; design patterns’ signature
analysis; reverse engineering; software quality

1. Introduction

Designing reusable object-oriented (OO) software systems is not a straightforward
process. The designed system should be symmetric to the problem and generalizable to
similar problems at the same time. Design patterns represent general solutions that are
symmetric to specific problems in certain contexts. Since the effectiveness of these solutions
has been proven, their use has increased the speed of the system development process [1].
To ease the implementation of design patterns, they have been informally defined by means
of classes and relations between them using a modeling language such as the unified
modeling language (UML).

The appropriate use of design patterns can have a positive impact on many quality
factors of a software system [2–4], and developers tend to use design patterns to build
more flexible software systems [5]. Moreover, design patterns increase the reusability of the
software system [6] and increase its maintainability by providing developers with essential
information about the underlying structure of the system [7]. Therefore, design pattern
detection is important to maintain and modify systems with inadequate documentation.

One of the major challenges in design pattern detection is to accurately identify the
symmetry between the definition of a design pattern and the design pattern instances in
software systems. By considering more variants, detection methods become more capable
of determining the symmetry between the design pattern instances that particularly apply
to these variants and the design pattern definition. Therefore, increasing the number of

Symmetry 2022, 14, 1491. https://doi.org/10.3390/sym14071491 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14071491
https://doi.org/10.3390/sym14071491
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-8668-5650
https://doi.org/10.3390/sym14071491
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14071491?type=check_update&version=2

Symmetry 2022, 14, 1491 2 of 43

design pattern variants covered by a detection method plays an important role in increasing
its accuracy [8–11].

Thus far, several detection methods with different approaches have been claimed to
be successful in detecting design pattern variants [3,9,12,13]. However, to the best of the
authors’ knowledge, none of these methods have provided detailed information about
the variants covered or detected. Such information is essential to understand important
aspects of the variant handling process of the detection method. Later, in Section 5, some
examples of design pattern variants that failed to be detected by existing detection methods
are illustrated.

In this paper, a solution to address the abovementioned problem is proposed, which
is referred to as Ex-DPDFE (Extended Design Pattern Detection based on Feature Extrac-
tion) and which builds on the concrete definitions of the existing design pattern variants.
Although several variants of the GoF (Gang of Four (Gamma, Helm, Johnson, and Vlis-
sides)) [1] design patterns have been discussed in the literature [14–17], the catalog of
Rasool et al. [18] was considered in this research since it is the only catalog of the variants
of the GoF design patterns proposed thus far.

Ex-DPDFE consists of two main phases: the feature-based design pattern definition
phase and the design pattern detection phase. During the first phase, a set of structural
and behavioral features that represent the main roles of a design pattern are extracted from
its signature. After that, the extracted features are organized in a structured textual form
and added to a vocabulary of reusable features that represent design patterns. The design
pattern variants are considered in this phase as well. During the second phase, the detection
process tries to determine the symmetry between a code fragment of the input system and
the design pattern textual definition obtained during the first phase. To accomplish this,
the detection process starts by analyzing the feature-based textual definition of the design
pattern. Then, it looks for classes that satisfy the features that define a specific role in the
source code of the input system. Finally, the relations between the candidate role classes
are validated based on the signature of the design pattern, and only role classes that are
related using the specified relations are considered as an instance of that pattern.

Ex-DPDFE uses structural and static behavioral analysis to detect design patterns.
Moreover, Ex-DPDFE reduces the number of false negative instances and achieves high
accuracy by considering the different variants of the design pattern in the process of the
feature-based design pattern definition. Thus, the features are specified appropriately to
distinguish the design patterns and cover their variants.

Ex-DPDFE detects the design patterns using a new set of features that is extracted
from the signatures of the design patterns, and it can detect more design pattern variants
than other detection methods since these variants are considered in the feature extraction
process. Therefore, Ex-DPDFE is important because it takes a step toward increasing the
accuracy of the design pattern detection methods. Moreover, it tries to address some of
the most important challenges faced by the feature-based methods proposed thus far. The
considered challenges include choosing the appropriate set of features that define a specific
design pattern and determining the proper threshold values for the considered features.

In summary, the main contributions of this paper are as follows:

• A new set of features is proposed that is based on the signatures of the design patterns.
By using these features, we try to take a step toward solving some of the problems
faced by the feature-based detection methods proposed thus far.

• A new design pattern detection method is proposed that builds on concrete definitions
of the design pattern variants.

• The proposed method can detect more design pattern variants than other methods
with acceptable accuracy.

Since the proposed method belongs to the feature-based approach, it preserves the
main advantages of the methods within this category, such as their low complexity, pat-
tern independence, and distinction ability. On the other hand, the proposed method
increases the accuracy of the feature-based methods by using an extended feature set,

Symmetry 2022, 14, 1491 3 of 43

which is extracted from the signatures of the design patterns; this method obtains more
accurate detection results than other methods with different approaches by considering
more variants.

The remainder of this paper is organized as follows. Section 2 presents a literature
review of related works, and Ex-DPDFE is explained in Section 3. In Section 4, the imple-
mentation of Ex-DPDFE is discussed. In Section 5, Ex-DPDFE is evaluated and the obtained
results are compared to other previous methods. Threats to the validity are explained in
Section 6. Finally, the conclusion and future work directions are presented in Section 7.

2. Related Work

In recent decades, many design pattern detection methods have been proposed. The
main purpose of these methods is to identify a symmetry between the design patterns and
their instances in software systems. In the following, the previous methods are highlighted
and the proposed method is compared to those previous ones.

2.1. Detection Approaches

Detection methods can differ based on their analysis type, detection process, input
type, and detection results. However, they are generally divided into two main categories
based on their analysis type [9]: structural and behavioral, as illustrated in Figure 1. Struc-
tural analysis methods detect the design patterns based on their structural characteristics,
such as class hierarchies, associations, and modifiers of methods and classes, whereas
behavioral methods consider the behavior of the system by using static and dynamic
techniques. While the static analysis techniques depend on studying the source code of the
system to determine its behavioral characteristics, such as method calls and delegations, the
dynamic analysis techniques consider the runtime behavior of the system. Behavioral anal-
ysis is essential to distinguish the patterns that expose similar structural characteristics [11].
In addition, semantic analysis, which focuses on meanings, can be used to complement the
structural and behavioral analysis and improve the detection results. It is worth mentioning
here that a detection method can use one or more analysis types.

Symmetry 2022, 14, x FOR PEER REVIEW 3 of 44

Since the proposed method belongs to the feature-based approach, it preserves the

main advantages of the methods within this category, such as their low complexity, pat-

tern independence, and distinction ability. On the other hand, the proposed method in-

creases the accuracy of the feature-based methods by using an extended feature set, which

is extracted from the signatures of the design patterns; this method obtains more accurate

detection results than other methods with different approaches by considering more var-

iants.

The remainder of this paper is organized as follows. Section 2 presents a literature

review of related works, and Ex-DPDFE is explained in Section 3. In Section 4, the imple-

mentation of Ex-DPDFE is discussed. In Section 5, Ex-DPDFE is evaluated and the obtained

results are compared to other previous methods. Threats to the validity are explained in

Section 6. Finally, the conclusion and future work directions are presented in Section 7.

2. Related Work

In recent decades, many design pattern detection methods have been proposed. The

main purpose of these methods is to identify a symmetry between the design patterns and

their instances in software systems. In the following, the previous methods are high-

lighted and the proposed method is compared to those previous ones.

2.1. Detection Approaches

Detection methods can differ based on their analysis type, detection process, input

type, and detection results. However, they are generally divided into two main categories

based on their analysis type [9]: structural and behavioral, as illustrated in Figure 1. Struc-

tural analysis methods detect the design patterns based on their structural characteristics,

such as class hierarchies, associations, and modifiers of methods and classes, whereas be-

havioral methods consider the behavior of the system by using static and dynamic tech-

niques. While the static analysis techniques depend on studying the source code of the

system to determine its behavioral characteristics, such as method calls and delegations,

the dynamic analysis techniques consider the runtime behavior of the system. Behavioral

analysis is essential to distinguish the patterns that expose similar structural characteris-

tics [11]. In addition, semantic analysis, which focuses on meanings, can be used to com-

plement the structural and behavioral analysis and improve the detection results. It is

worth mentioning here that a detection method can use one or more analysis types.

Figure 1. Design pattern detection approaches based on their analysis type.

In addition to the above, detection methods are classified into nine main categories

based on their detection process [9,19,20]. In the following, these categories are summa-

rized.

Design pattern detection using structural analysis: This approach depends on trans-

forming both the system under study and the design patterns into intermediate structures

such as graphs and matrices. After that, the detection algorithm looks within the system

Figure 1. Design pattern detection approaches based on their analysis type.

In addition to the above, detection methods are classified into nine main categories based
on their detection process [9,19,20]. In the following, these categories are summarized.

Design pattern detection using structural analysis: This approach depends on trans-
forming both the system under study and the design patterns into intermediate structures
such as graphs and matrices. After that, the detection algorithm looks within the system
structure for structures that represent specific design patterns [9,13,21–29]. Methods that
depend on structural analysis have high accuracy [10,11]. On the other hand, these methods
cannot distinguish design patterns with similar structures [9,22]. For this reason, using

Symmetry 2022, 14, 1491 4 of 43

behavioral analysis along with structural analysis increases the accuracy of the detection
results [7,30–34].

Design pattern detection using database queries: In the query-based approach, the
source code of the input system is transformed into an intermediate structure such as AST,
ASG, UML, and XMI. After that, database queries are applied to the intermediate structure
to extract the information needed to detect the design patterns [35–41]. The accuracy of
these methods depends on the used database and the information represented by the
intermediate structure [9–11].

Parsing-based approach: In this approach, the source code of the system under study
is transformed into scalable vector graphics (SVG). On the other hand, design patterns are
represented using a visual language. The visual representation of the design patterns is
parsed and mapped to the representation of the system [42–45]. Generally, parsing-based
methods demonstrate good detection results, but they cannot detect behavioral design
patterns [11,32].

Reasoning-based approach: This approach contains two sub-categories: fuzzy rea-
soning and logical reasoning. In the fuzzy reasoning methods, the design patterns are
represented using fuzzy-reasoning nets that represent the conditions that must be satisfied
by a micro-architecture to be considered as a design pattern [8]. These methods usually
demonstrate low precision [9]. Meanwhile, in the logical reasoning methods, detection
conditions are represented, and design patterns are detected considering these condi-
tions [46–48]. These methods are mostly incapable of detecting the design pattern instances
that are slightly different from the specified conditions.

Constraint satisfaction approach: This approach considers the detection problem as
a constraint satisfaction problem. For this purpose, the design patterns are represented
as constraint systems in which a variable represents a role of a design pattern, and the
constraints between these variables represent the relations between their corresponding
roles [49–51]. Commonly, these methods demonstrate high recall and low precision, and
they show high complexity [9,11].

Formal approach: In this approach, mathematical-based and logical-based techniques
are used [52–55]. This approach is not necessarily more accurate than other approaches. At
the same time, it has high complexity and it is only capable of detecting design patterns
with a specific number of roles in most cases [9].

Feature-based approach: The feature-based approach depends on defining a set of
features such as DIT (Depth of the Inheritance Tree), LCOM (Lack of Cohesion in Methods),
the number of associations, and the types of attributes. After that, the values of these
features are calculated for the classes of the input system and compared with the definitions
of the design patterns [56–62]. Feature-based methods have low computational complex-
ity [10,22], but the methods proposed within this category thus far have only considered
general OO features to detect the design patterns, except for the method of [56]. For this
reason, the accuracy of their detection results is generally low [9,11,22].

Machine learning approach: Machine learning is a multi-disciplinary field that has
been recently used for design pattern detection [63]. Learning-based methods map the
design pattern detection problem to a learning problem. These methods use supervised and
unsupervised learning techniques to detect the design patterns [20,64–77]. The accuracy
of these methods depends on the training dataset. Furthermore, they can only detect the
design pattern variants available in the training set [22].

Miscellaneous approaches: There are several approaches that cannot be categorized
under one of the categories mentioned above, such as data mining [78] and concept analy-
sis [12,79]. These approaches are used basically to improve the results of other approaches.

2.2. Variant Detection

Different design pattern detection methods have tried to address the problem of
design pattern variants. One of the recent works is the method proposed in [12], which
covers the design pattern variants by determining the necessity of the roles and their

Symmetry 2022, 14, 1491 5 of 43

relations in the pattern’s structure. Therefore, all the design pattern instances that only
have the necessary roles and relations are considered as candidate instances. After that, the
candidate instances are verified manually, considering specific conditions. In another recent
method [2], the authors concentrated on the implementation variants of the design patterns.
They considered the structural, behavioral, and semantic characteristics of the design
patterns and applied static analysis and inference techniques in the detection process. In [9],
the authors addressed the variant problem by concentrating on the main body of a design
pattern, which is shared among its different variants. The method proposed in [73] uses
machine learning for design pattern detection and it can detect the design pattern variants
available in the training dataset. The authors of [80] used fine-grained rules to capture
the structural aspects of the design patterns; they detected the design pattern variants by
labeling specific rules as optional. A graph matching method to detect the design patterns
was proposed in [76]. This method addresses the variant problem by considering the
partial occurrences of the design patterns. In [15], a metamodel for formal design pattern
specification was proposed. This metamodel covers the design pattern variants by relaxing
the conditions on the design pattern elements and introducing terms such as Optional,
In case of, and Alternatives. SSA [13] represents the structural characteristics of the input
system using matrices and detects the implementation variants of the design patterns by
considering the transitive relations.

2.3. Concluding Remarks

By analyzing the existing detection methods of different approaches (please refer
to sqlab:A_detailed_comparison_between_Ex_DPDfe_and_other_detection_methods.pdf)
(accessed on 11 June 2022), it has been noticed that the detection methods that have tried to
address the variant problem thus far concentrate on a limited number of variants, more
specifically, structural variants. Moreover, these methods do not clarify the characteristics
of the variants considered and they have been evaluated using systems with certain types
of variants, which threatens their evaluation credibility.

In this research, a step forward to solve the above challenges was taken by proposing
a new feature-based method, which will be described in detail within the next sections.
The proposed method covers more design pattern variants compared to other methods by
considering both structural and behavioral characteristics of these variants. In addition,
it is based on the concrete definitions of the existing variants and supports new variants.
Finally, the proposed method was evaluated using software systems with different variants
and compared to other existing methods.

This method employs features because they facilitate the automation of the detection
process, and they can capture both structural and behavioral characteristics of the design
patterns with acceptable accuracy and computational complexity (please refer to sqlab:A_
detailed_comparison_between_Ex_DPDfe_and_other_detection_methods.pdf) (accessed
on 11 June 2022). Moreover, the proposed method tries to take a step toward improving
the feature-based methods proposed thus far by addressing some of the common issues
related to the features used to define the design patterns and their threshold values.

The idea of the proposed method is built on the method of Guéhéneuc [61], which
was chosen since it has shown more strengths and exposed fewer limitations compared to
other feature-based methods (please refer to sqlab:A_comparison_between_feature_based_
methods.pdf) (accessed on 11 June 2022).

The signatures used to detect the design patterns are one of the main factors that affect
the accuracy of the detection results. Therefore, several design pattern signatures have been
proposed in the literature [8,55,61,81–84]. However, in most cases, these signatures do not
cover the design pattern variants. To address this problem, the structural and behavioral
signatures proposed in [9] were applied in the proposed method since they demonstrate
higher accuracy in comparison with other signatures and allow us to cover more design
pattern variants.

sqlab:A_detailed_comparison_between_Ex_DPDfe_and_other_detection_methods.pdf
sqlab:A_detailed_comparison_between_Ex_DPDfe_and_other_detection_methods.pdf
sqlab:A_detailed_comparison_between_Ex_DPDfe_and_other_detection_methods.pdf
sqlab:A_comparison_between_feature_based_methods.pdf
sqlab:A_comparison_between_feature_based_methods.pdf

Symmetry 2022, 14, 1491 6 of 43

3. Ex-DPDFE

Ex-DPDFE contains two main phases: the feature-based design pattern definition
phase and the design pattern detection phase, as shown in Figure 2. These two phases are
explained here using the Adapter design pattern (the Object Adapter) as a running example.

Symmetry 2022, 14, x FOR PEER REVIEW 6 of 44

have been proposed in the literature [8,55,61,81–84]. However, in most cases, these signa-

tures do not cover the design pattern variants. To address this problem, the structural and

behavioral signatures proposed in [9] were applied in the proposed method since they

demonstrate higher accuracy in comparison with other signatures and allow us to cover

more design pattern variants.

3. Ex-DPDFE

Ex-DPDFE contains two main phases: the feature-based design pattern definition

phase and the design pattern detection phase, as shown in Figure 2. These two phases are

explained here using the Adapter design pattern (the Object Adapter) as a running exam-

ple.

Figure 2. The main phases of Ex-DPDFE.

3.1. The First Phase: Feature-Based Design Pattern Definition

In this phase, each design pattern is represented using a structured textual form that

contains a set of roles that satisfy specific features. To cover all the GoF categories of de-

sign patterns (creational, structural, and behavioral), two types of features are deployed:

structural and behavioral. Structural features refer to the features that can be extracted

from the structural signature (main body) of a design pattern and include features such

as the class abstraction level, inheritance, and association. Meanwhile, behavioral features

describe the features that are extracted from the behavioral signature of the design pat-

tern. Some examples of behavioral features include method call, delegation, and method

return type.

This phase consists of two steps that are carried out manually, as shown in Figure 3.

These two steps are described as the following.

Figure 3. The steps of the feature-based design pattern definition phase.

Figure 2. The main phases of Ex-DPDFE.

3.1. The First Phase: Feature-Based Design Pattern Definition

In this phase, each design pattern is represented using a structured textual form that
contains a set of roles that satisfy specific features. To cover all the GoF categories of design
patterns (creational, structural, and behavioral), two types of features are deployed: struc-
tural and behavioral. Structural features refer to the features that can be extracted from the
structural signature (main body) of a design pattern and include features such as the class
abstraction level, inheritance, and association. Meanwhile, behavioral features describe
the features that are extracted from the behavioral signature of the design pattern. Some
examples of behavioral features include method call, delegation, and method return type.

This phase consists of two steps that are carried out manually, as shown in Figure 3.
These two steps are described as the following.

Symmetry 2022, 14, x FOR PEER REVIEW 6 of 44

have been proposed in the literature [8,55,61,81–84]. However, in most cases, these signa-

tures do not cover the design pattern variants. To address this problem, the structural and

behavioral signatures proposed in [9] were applied in the proposed method since they

demonstrate higher accuracy in comparison with other signatures and allow us to cover

more design pattern variants.

3. Ex-DPDFE

Ex-DPDFE contains two main phases: the feature-based design pattern definition

phase and the design pattern detection phase, as shown in Figure 2. These two phases are

explained here using the Adapter design pattern (the Object Adapter) as a running exam-

ple.

Figure 2. The main phases of Ex-DPDFE.

3.1. The First Phase: Feature-Based Design Pattern Definition

In this phase, each design pattern is represented using a structured textual form that

contains a set of roles that satisfy specific features. To cover all the GoF categories of de-

sign patterns (creational, structural, and behavioral), two types of features are deployed:

structural and behavioral. Structural features refer to the features that can be extracted

from the structural signature (main body) of a design pattern and include features such

as the class abstraction level, inheritance, and association. Meanwhile, behavioral features

describe the features that are extracted from the behavioral signature of the design pat-

tern. Some examples of behavioral features include method call, delegation, and method

return type.

This phase consists of two steps that are carried out manually, as shown in Figure 3.

These two steps are described as the following.

Figure 3. The steps of the feature-based design pattern definition phase. Figure 3. The steps of the feature-based design pattern definition phase.

3.1.1. The First Step: Improving the Signatures of the Design Patterns

The signature of each design pattern is defined based on the design pattern definitions
proposed in [1]. The signature definition process is usually carried out manually [8,9,55,81–84].
Here, the signatures proposed in [9] were considered because they facilitate the detection of
the design pattern variants by concentrating on the main body and behavioral characteristics

Symmetry 2022, 14, 1491 7 of 43

of the design patterns. Additionally, these signatures were partially improved to cover the
23 GoF design patterns since only 11 design patterns were considered in [9].

According to [9], the signature of a design pattern consists of two parts: structural
and behavioral. The main body of the design pattern, which represents its structural
signature, consists of its main roles. The behavioral signature describes the relations
between these roles. Hence, the structural signatures are defined based on the class
diagrams of the design patterns, whereas the behavioral signatures are extracted from
their sequence diagrams. Figure 4 demonstrates the structural signature (main body)
of the Adapter design pattern, and Figure 5 represents its behavioral signature. The
signatures of some of the most commonly used GoF design patterns are illustrated in
Appendix A; the signatures of the remaining GoF design patterns are available online at
sqlab:The-signatures-of-some-GoF-patterns.pdf (accessed on 11 June 2022).

Symmetry 2022, 14, x FOR PEER REVIEW 7 of 44

3.1.1. The First Step: Improving the Signatures of the Design Patterns

The signature of each design pattern is defined based on the design pattern defini-

tions proposed in [1]. The signature definition process is usually carried out manually

[8,9,55,81–84]. Here, the signatures proposed in [9] were considered because they facilitate

the detection of the design pattern variants by concentrating on the main body and be-

havioral characteristics of the design patterns. Additionally, these signatures were par-

tially improved to cover the 23 GoF design patterns since only 11 design patterns were

considered in [9].

According to [9], the signature of a design pattern consists of two parts: structural

and behavioral. The main body of the design pattern, which represents its structural sig-

nature, consists of its main roles. The behavioral signature describes the relations between

these roles. Hence, the structural signatures are defined based on the class diagrams of

the design patterns, whereas the behavioral signatures are extracted from their sequence

diagrams. Figure 4 demonstrates the structural signature (main body) of the Adapter de-

sign pattern, and Figure 5 represents its behavioral signature. The signatures of some of

the most commonly used GoF design patterns are illustrated in Appendix A; the signa-

tures of the remaining GoF design patterns are available online at sqlab:The-signatures-

of-some-GoF-patterns.pdf (accessed on 11 June 2022).

Figure 4. The structural signature (main body) of the Object Adapter design pattern.

Object Adapter

Behavioral

characteristics

A method in the Adapter that overrides a method in the Target calls

a method in the Adaptee

Figure 5. The behavioral signature of the Object Adapter design pattern.

3.1.2. The Second Step: Feature Extraction

In this step, features are extracted considering the OO features that have been widely

used in the literature [85], the signatures defined in the previous step, and the variants

proposed in [18].

By analyzing the feature-based methods proposed thus far, it was noticed that adopt-

ing features with fixed ranges of values that are determined using specific systems is one

of the most significant limitations of these methods. The determined values affect the ac-

curacy of these methods when applied to new systems [57]. Furthermore, the relations

between the OO features used thus far and the design patterns have been obtained based

on specific software systems [86]. These systems take advantage of the characteristics of

the programming languages used for their implementation. For example, some program-

ming languages, such as Java and C++, provide a method for cloning objects, which can

be used for implementing the Prototype design pattern. In contrast, other programming

languages do not provide such a method. As a result, there is no guarantee that the gen-

eralization of the obtained relations to other systems with different programming lan-

guages would generate similar detection results [87]. Moreover, selecting the appropriate

set of features that represent a design pattern accurately is an open issue [86].

Figure 4. The structural signature (main body) of the Object Adapter design pattern.

Symmetry 2022, 14, x FOR PEER REVIEW 7 of 44

3.1.1. The First Step: Improving the Signatures of the Design Patterns

The signature of each design pattern is defined based on the design pattern defini-

tions proposed in [1]. The signature definition process is usually carried out manually

[8,9,55,81–84]. Here, the signatures proposed in [9] were considered because they facilitate

the detection of the design pattern variants by concentrating on the main body and be-

havioral characteristics of the design patterns. Additionally, these signatures were par-

tially improved to cover the 23 GoF design patterns since only 11 design patterns were

considered in [9].

According to [9], the signature of a design pattern consists of two parts: structural

and behavioral. The main body of the design pattern, which represents its structural sig-

nature, consists of its main roles. The behavioral signature describes the relations between

these roles. Hence, the structural signatures are defined based on the class diagrams of

the design patterns, whereas the behavioral signatures are extracted from their sequence

diagrams. Figure 4 demonstrates the structural signature (main body) of the Adapter de-

sign pattern, and Figure 5 represents its behavioral signature. The signatures of some of

the most commonly used GoF design patterns are illustrated in Appendix A; the signa-

tures of the remaining GoF design patterns are available online at sqlab:The-signatures-

of-some-GoF-patterns.pdf (accessed on 11 June 2022).

Figure 4. The structural signature (main body) of the Object Adapter design pattern.

Object Adapter

Behavioral

characteristics

A method in the Adapter that overrides a method in the Target calls

a method in the Adaptee

Figure 5. The behavioral signature of the Object Adapter design pattern.

3.1.2. The Second Step: Feature Extraction

In this step, features are extracted considering the OO features that have been widely

used in the literature [85], the signatures defined in the previous step, and the variants

proposed in [18].

By analyzing the feature-based methods proposed thus far, it was noticed that adopt-

ing features with fixed ranges of values that are determined using specific systems is one

of the most significant limitations of these methods. The determined values affect the ac-

curacy of these methods when applied to new systems [57]. Furthermore, the relations

between the OO features used thus far and the design patterns have been obtained based

on specific software systems [86]. These systems take advantage of the characteristics of

the programming languages used for their implementation. For example, some program-

ming languages, such as Java and C++, provide a method for cloning objects, which can

be used for implementing the Prototype design pattern. In contrast, other programming

languages do not provide such a method. As a result, there is no guarantee that the gen-

eralization of the obtained relations to other systems with different programming lan-

guages would generate similar detection results [87]. Moreover, selecting the appropriate

set of features that represent a design pattern accurately is an open issue [86].

Figure 5. The behavioral signature of the Object Adapter design pattern.

3.1.2. The Second Step: Feature Extraction

In this step, features are extracted considering the OO features that have been widely
used in the literature [85], the signatures defined in the previous step, and the variants
proposed in [18].

By analyzing the feature-based methods proposed thus far, it was noticed that adopting
features with fixed ranges of values that are determined using specific systems is one of the
most significant limitations of these methods. The determined values affect the accuracy
of these methods when applied to new systems [57]. Furthermore, the relations between
the OO features used thus far and the design patterns have been obtained based on
specific software systems [86]. These systems take advantage of the characteristics of the
programming languages used for their implementation. For example, some programming
languages, such as Java and C++, provide a method for cloning objects, which can be used
for implementing the Prototype design pattern. In contrast, other programming languages
do not provide such a method. As a result, there is no guarantee that the generalization
of the obtained relations to other systems with different programming languages would
generate similar detection results [87]. Moreover, selecting the appropriate set of features
that represent a design pattern accurately is an open issue [86].

Considering the information mentioned above, the main advantage of Ex-DPDFE over
other detection methods, especially these feature-based methods, lies in exploiting the
signature of the design pattern to extract the needed features based on the general OO
features. Therefore, the extraction of new features eliminates the need for comparing

sqlab:The-signatures-of-some-GoF-patterns.pdf

Symmetry 2022, 14, 1491 8 of 43

the calculated values with fixed thresholds, which compromises the accuracy of feature-
based methods, as discussed earlier. For example, instead of identifying the Adapter
design pattern by measuring features such as Coupling Between Object classes (CBO) and
comparing its value with a predefined threshold, which is how the feature-based methods
commonly identify the Adapter [20,56,61,69,71], Ex-DPDFE studies the existence of a more
specific feature, namely, method call to an associated class by an overriding method. Moreover,
the relations between the new features and the design patterns are clear and independent
of the software system because, unlike the OO features that are commonly used to describe
OO software systems, these features are pattern oriented. Adopting such features provides
a step toward increasing the accuracy of the feature-based methods while preserving their
main advantages, such as time efficiency. Moreover, the proposed features enable the
detection of the different categories of design patterns since they are based on the structural
and behavioral aspects specified in the signatures of these patterns.

On the other hand, the defined features cover as many design pattern variants as
possible since they are considered in the feature extraction process. To the best of the
authors’ knowledge, the catalog of Rasool et al. [18] is the only catalog on the design
patterns’ variants proposed thus far in which a total of 107 variants of the 23 GoF design
patterns has been presented. For this reason, the variants proposed in [18] were considered
for conducting this research. It is notable that compound patterns were out of the scope of
this research. Moreover, some variants differ significantly in their structural and behavioral
characteristics from the basic form of the design pattern. For these reasons, a total of
58 variants of those specified in [18] can be detected thus far using Ex-DPDFE. The remaining
variants can be detected independently after defining the appropriate features.

The extracted features are then organized in a structured textual form that represents
a design pattern. Using this form to represent the design patterns is another advantage of
Ex-DPDFE since it enables the developers to define new design patterns other than those
considered in this research and to apply Ex-DPDFE to them regardless of their implementa-
tion aspects.

Considering the main body of the Adapter design pattern shown in Figure 4, it has
been noticed that the Adapter class inherits from the Target class. Thus, being a subclass
is the first feature that defines the Adapter role (FAR11) (the first Feature of the Adapter’s
Role1). In addition, the Adapter class is associated with the Adaptee class. As a result,
having a one-to-one association to another class is the second feature that defines the Adapter
role (FAR12). No more structural features can be extracted from the structural signature of
the Adapter design pattern to define the Adapter role. Therefore, studying its behavioral
signature is required to define its behavioral features. Considering the behavioral signature
of the Adapter design pattern shown in Figure 5, two features have been defined: overriding
a method of its superclass and calling a method of an associated class. The latest two features
have been merged to achieve a more accurate definition, which reduces the number of
false positive instances. Therefore, the third feature that defines the Adapter is having
a method call to an associated class by an overriding method (FAR13). A similar analysis is
performed to extract the features that define the remaining roles. The extracted features do
not require any additional modifications since they cover one of the variants of the Adapter
design pattern (the Pluggable Adapter) [18]. The other variant (the Two-Ways Adapter) is
related to the Class Adapter, which is analyzed independently. Figure 6c shows the resulting
feature-based textual definition of the Adapter design pattern. The proposed feature-based
textual definitions of some of the most commonly used GoF design patterns are shown in
Appendix B; the feature-based textual definitions of the 23 GoF design patterns are available
online at sqlab:The-definitions-of-GoF-design-patterns.zip (accessed on 11 June 2022).

sqlab:The-definitions-of-GoF-design-patterns.zip

Symmetry 2022, 14, 1491 9 of 43Symmetry 2022, 14, x FOR PEER REVIEW 9 of 44

Figure 6. Extracting the features that represent the Object Adapter design pattern from its signature:

(a) the structural signature of the Object Adapter; (b) the behavioral signature of the Object Adapter;

(c) the feature-based textual definition of the Object Adapter.

Newly defined features are then compared with those previously defined to avoid

redundancy. Furthermore, in this step, any feature with two different names is corrected,

and any two features with the same name are recognized. After that, the new features are

added to a vocabulary of reusable features that define the design patterns. The proposed

features consist of one or more of the structural and behavioral OO features summarized

in Table 1. Moreover, the basic OO features used to identify some of the most commonly

used design patterns are presented in Table 2.

On the other hand, Figure 7 depicts the extracted features that define the different

cases of association for the design patterns that use association in their structures and how

these features differ to provide an accurate representation for each design pattern. Simi-

larly, Figure 8 illustrates the extracted features that define the different cases of method

call.

Although these features are used to define the GoF design patterns, including their

variants, they can be used by the design pattern developers to define other design pat-

terns. Feature reusability refers to the use of different combinations of features to properly

define different design patterns, which does not threaten the accuracy of these features

when extended to new design patterns. However, for some design patterns, it may be

required to define new features using the illustrated definition process. It is remarkable

that the results of the detection process depend on the accuracy of the signatures and the

features extracted from them.

Figure 6. Extracting the features that represent the Object Adapter design pattern from its signature:
(a) the structural signature of the Object Adapter; (b) the behavioral signature of the Object Adapter;
(c) the feature-based textual definition of the Object Adapter.

Newly defined features are then compared with those previously defined to avoid
redundancy. Furthermore, in this step, any feature with two different names is corrected,
and any two features with the same name are recognized. After that, the new features are
added to a vocabulary of reusable features that define the design patterns. The proposed
features consist of one or more of the structural and behavioral OO features summarized in
Table 1. Moreover, the basic OO features used to identify some of the most commonly used
design patterns are presented in Table 2.

On the other hand, Figure 7 depicts the extracted features that define the different
cases of association for the design patterns that use association in their structures and how
these features differ to provide an accurate representation for each design pattern. Similarly,
Figure 8 illustrates the extracted features that define the different cases of method call.

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 44

Overriding  ×  × × ×   ×  ×

Delegation × × × × × × ×  × × ×

Composition × × × × × × × × ×  ×

Figure 7. The extracted features that define the different cases of association for different design

patterns.

Figure 8. The extracted features that define the different cases of method call for different design

patterns.

3.2. The Second Phase: Design Pattern Detection

The design pattern detection phase, which is depicted in Figure 9, focuses on the de-

termination of the symmetry between a code fragment of the input system and the feature-

based design pattern definition resulting from the previous phase. This phase consists of

the following steps:

Figure 9. The steps of the design pattern detection phase.

• Parsing the source code of the input system: To measure behavioral features, the

source code of the input system is parsed, and the needed characteristics are stored

in a database. Moreover, the different relations between the classes of the input sys-

tem are extracted and stored in the database. To be time-efficient, source code parsing

is performed only once for all the design patterns.

Figure 7. The extracted features that define the different cases of association for different design patterns.

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 44

Overriding  ×  × × ×   ×  ×

Delegation × × × × × × ×  × × ×

Composition × × × × × × × × ×  ×

Figure 7. The extracted features that define the different cases of association for different design

patterns.

Figure 8. The extracted features that define the different cases of method call for different design

patterns.

3.2. The Second Phase: Design Pattern Detection

The design pattern detection phase, which is depicted in Figure 9, focuses on the de-

termination of the symmetry between a code fragment of the input system and the feature-

based design pattern definition resulting from the previous phase. This phase consists of

the following steps:

Figure 9. The steps of the design pattern detection phase.

• Parsing the source code of the input system: To measure behavioral features, the

source code of the input system is parsed, and the needed characteristics are stored

in a database. Moreover, the different relations between the classes of the input sys-

tem are extracted and stored in the database. To be time-efficient, source code parsing

is performed only once for all the design patterns.

Figure 8. The extracted features that define the different cases of method call for different design patterns.

Symmetry 2022, 14, 1491 10 of 43

Table 1. The basic OO features used for defining the new features.

Feature Name

Characteristics
Explanation Used Values Type

Class abstraction level

Refers to the type of a
class (interface,
abstract, or concrete
class)

• Interface (abstract class)
• Subclass
• Superclass
• Not superclass

Structural

Constructor visibility

Refers to the
accessibility of the
constructor of a class
(private, protected, or
public)

• No public constructor

Method visibility

Refers to the
accessibility of a
method (private,
protected, or public)

• Public method

Method modifier

Refers to the modifiers
of a method (static,
final, synchronized, or
abstract)

• Static method

Inheritance
Refers to a class that
exists within an
inheritance hierarchy

• Superclass
• Subclass
• Inheritance
• Implementation

Association
Refers to a class that
has a reference to
another class

• (One to one/one to many)
association (to/from)

Overriding

Refers to a method that
overrides (implements)
a method of its
superclass

• Overriding (implementing)
• Overridden (implemented)

Method return type

Refers to a method
that returns an
instance of the same or
another class

• Returns a new instance of (the
same/another) class

• Returns a copy of the same class
• An instance returned from

Behavioral

Method call
Refers to a method that
calls a method of the
same or another class

• Method call to
• Called method from

Dependency

Refers to a class that
has a method with a
parameter of the type
of another class

• Dependency (to/from)

Delegation
Refers to a method
that delegates to
another method

• Delegation (with loop)
(to/from)

Composition
Refers to an object that
only exists within
another object

• Constructor with a parameter of
the type of another class

Symmetry 2022, 14, 1491 11 of 43

Table 2. The basic OO features used for defining some design patterns.

Feature Name

Design Pattern

A
bs

tr
ac

tF
ac

to
ry

/
Fa

ct
or

y
M

et
ho

d

Si
ng

le
to

n

D
ec

or
at

or

St
ra

te
gy

/S
ta

te

Te
m

pl
at

e
M

et
ho

d

V
is

it
or

A
da

pt
er

C
om

po
si

te

O
bs

er
ve

r

C
om

m
an

d

Pr
ox

y

Class abstraction level X × X X X X X X × X X
Constructor visibility × X × × × × × × × × ×

Method modifier × X × × × × × × × × ×
Method return type X X × × × × × × × × ×

Method call × × X X X X X X X X X
Inheritance × × × X × X × × × × ×

Dependency × × × × × X × × × × ×
Association × × X X × X X X X X X
Overriding X × X × × × X X × X ×
Delegation × × × × × × × X × × ×

Composition × × × × × × × × × X ×

Although these features are used to define the GoF design patterns, including their
variants, they can be used by the design pattern developers to define other design patterns.
Feature reusability refers to the use of different combinations of features to properly define
different design patterns, which does not threaten the accuracy of these features when
extended to new design patterns. However, for some design patterns, it may be required to
define new features using the illustrated definition process. It is remarkable that the results
of the detection process depend on the accuracy of the signatures and the features extracted
from them.

3.2. The Second Phase: Design Pattern Detection

The design pattern detection phase, which is depicted in Figure 9, focuses on the
determination of the symmetry between a code fragment of the input system and the
feature-based design pattern definition resulting from the previous phase. This phase
consists of the following steps:

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 44

Overriding  ×  × × ×   ×  ×

Delegation × × × × × × ×  × × ×

Composition × × × × × × × × ×  ×

Figure 7. The extracted features that define the different cases of association for different design

patterns.

Figure 8. The extracted features that define the different cases of method call for different design

patterns.

3.2. The Second Phase: Design Pattern Detection

The design pattern detection phase, which is depicted in Figure 9, focuses on the de-

termination of the symmetry between a code fragment of the input system and the feature-

based design pattern definition resulting from the previous phase. This phase consists of

the following steps:

Figure 9. The steps of the design pattern detection phase.

• Parsing the source code of the input system: To measure behavioral features, the

source code of the input system is parsed, and the needed characteristics are stored

in a database. Moreover, the different relations between the classes of the input sys-

tem are extracted and stored in the database. To be time-efficient, source code parsing

is performed only once for all the design patterns.

Figure 9. The steps of the design pattern detection phase.

• Parsing the source code of the input system: To measure behavioral features, the
source code of the input system is parsed, and the needed characteristics are stored in
a database. Moreover, the different relations between the classes of the input system
are extracted and stored in the database. To be time-efficient, source code parsing is
performed only once for all the design patterns.

• Measuring the values of the specified features for the classes of the input system:
The feature-based textual definition file resulting from the definition phase is parsed,

Symmetry 2022, 14, 1491 12 of 43

and the values of the specified features are measured for the classes of the input system.
Every class is associated with a flag in the database. This flag refers to the number
of features satisfied by its corresponding class for one role. This step is described in
detail in Section 4.

• Extracting the classes that satisfy all the features of a specific role: System classes
that satisfy all the features that define a role in the design pattern are considered as
candidate role classes.

• Finding related role classes: To eliminate possible false positive instances, only the
candidate role classes that are related by utilizing the relations specified in the signature
of the design pattern are considered as a design pattern instance.

Considering the Adapter design pattern example, the detection process starts from the
first role (the Adapter). It then modifies the flags of the system classes that satisfy one or
more of the defined features. Figure 10 represents a code fragment of the class DrawApplet
in JHotDraw v5.1 that is identified by Ex-DPDFE as an Adapter role. A field of the type
ToolButton, named fSelectedToolButton, is declared, which means that a one-to-one associ-
ation from DrawApplet to ToolButton exists. In addition, the method PaletteUserOver()
in DrawApplet, which overrides the method PaletteUserOver() in PaletteListener, calls the
method name() of the class ToolButton for the field fSelectedToolButton. As a result, this
class is considered as a candidate Adapter. In the same way, since the class ToolButton
satisfies the features defined for the Adaptee role, it is considered as a candidate Adaptee.
Because an association between these two classes exists, they form an instance of the
Adapter design pattern.

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 44

• Measuring the values of the specified features for the classes of the input system:

The feature-based textual definition file resulting from the definition phase is parsed,

and the values of the specified features are measured for the classes of the input sys-

tem. Every class is associated with a flag in the database. This flag refers to the num-

ber of features satisfied by its corresponding class for one role. This step is described

in detail in Section 4.

• Extracting the classes that satisfy all the features of a specific role: System classes

that satisfy all the features that define a role in the design pattern are considered as

candidate role classes.

• Finding related role classes: To eliminate possible false positive instances, only the

candidate role classes that are related by utilizing the relations specified in the signa-

ture of the design pattern are considered as a design pattern instance.

Considering the Adapter design pattern example, the detection process starts from

the first role (the Adapter). It then modifies the flags of the system classes that satisfy one

or more of the defined features. Figure 10 represents a code fragment of the class Draw-

Applet in JHotDraw v5.1 that is identified by Ex-DPDFE as an Adapter role. A field of the

type ToolButton, named fSelectedToolButton, is declared, which means that a one-to-one

association from DrawApplet to ToolButton exists. In addition, the method PaletteUse-

rOver() in DrawApplet, which overrides the method PaletteUserOver() in PaletteListener,

calls the method name() of the class ToolButton for the field fSelectedToolButton. As a

result, this class is considered as a candidate Adapter. In the same way, since the class

ToolButton satisfies the features defined for the Adaptee role, it is considered as a candi-

date Adaptee. Because an association between these two classes exists, they form an in-

stance of the Adapter design pattern.

Figure 10. A code fragment of the class DrawApplet in JHotDraw v5.1, which represents the

Adapter role of the Adapter design pattern.

3.3. Implementation Cost

The first phase of Ex-DPDFE (the definition phase) was performed manually, as illus-

trated in Section 3.1. A team of three master’s degree and Ph.D. degree students was re-

sponsible for improving the signatures of the design patterns; the same team conducted

the feature extraction process. The complexity of this phase depends on the design pattern

under study and its variants. Some design patterns, such as the Singleton, are easier to

distinguish and define than other design patterns that have similar structural and behav-

ioral characteristics, such as the Bridge and Builder design patterns. Furthermore, some

design patterns have a limited number of variants, while other patterns have more vari-

ants with different characteristics. However, once design patterns are properly defined,

the resulting definitions can be used in the detection process for any input system without

any further human intervention.

The second phase of Ex-DPDFE (the detection phase) was completely automated by

the authors of this paper. The Java parser used in the first step of this phase was developed

by a team of master’s degree students for different purposes prior to conducting this re-

search. This parser was partially enhanced to fit the goal of this research. Parser enhance-

ment requires analyzing and understanding the existing code and designing and imple-

menting the additional functionality required. Moreover, some functionalities were re-

moved to reduce the parsing time. To conduct the second step of this phase, a text parser

was developed to analyze the textual definition files of the design patterns. Additionally,

Figure 10. A code fragment of the class DrawApplet in JHotDraw v5.1, which represents the Adapter
role of the Adapter design pattern.

3.3. Implementation Cost

The first phase of Ex-DPDFE (the definition phase) was performed manually, as il-
lustrated in Section 3.1. A team of three master’s degree and Ph.D. degree students was
responsible for improving the signatures of the design patterns; the same team conducted
the feature extraction process. The complexity of this phase depends on the design pattern
under study and its variants. Some design patterns, such as the Singleton, are easier to dis-
tinguish and define than other design patterns that have similar structural and behavioral
characteristics, such as the Bridge and Builder design patterns. Furthermore, some design
patterns have a limited number of variants, while other patterns have more variants with
different characteristics. However, once design patterns are properly defined, the resulting
definitions can be used in the detection process for any input system without any further
human intervention.

The second phase of Ex-DPDFE (the detection phase) was completely automated by the
authors of this paper. The Java parser used in the first step of this phase was developed by
a team of master’s degree students for different purposes prior to conducting this research.
This parser was partially enhanced to fit the goal of this research. Parser enhancement
requires analyzing and understanding the existing code and designing and implementing
the additional functionality required. Moreover, some functionalities were removed to
reduce the parsing time. To conduct the second step of this phase, a text parser was
developed to analyze the textual definition files of the design patterns. Additionally, in this
step, the methods that measure the features specified in the definition files are implemented.

Symmetry 2022, 14, 1491 13 of 43

Structural features, such as the class abstraction level, are easier to measure than behavioral
features, such as method call. After measuring feature values, the candidate role classes
can be easily determined, and their relations can be immediately identified based on the
information stored in the database.

4. Software Implementation

The second phase of Ex-DPDFE (the detection phase) is implemented in Java. In
this section, the developed software system is illustrated; after that, the computational
complexity of the developed system is discussed.

4.1. The Software System of Ex-DPDFE

The graphical user interface (GUI) of the developed software system is illustrated
in Figure 11. First, the user needs to specify the location of the Java files of the input
system; after that, the software system of Ex-DPDFE parses these files using a Java parser
developed using ANTLR 4.7. The parser is required for measuring the features that cannot
be measured using direct analysis of the input source code, such as delegation and method
call. The developed parser matches single statements in the input source code and stores
the extracted information in a database. The MySQL Workbench 8.0 was used to store and
retrieve this information using standard queries. The extracted information includes the
following:

• Class attributes (visibility, parent classes);
• Method attributes (type, visibility, parameter types, return type);
• Method calls (source and destination);
• The relations between classes (association, dependency, generalization, composition).

Symmetry 2022, 14, x FOR PEER REVIEW 13 of 44

in this step, the methods that measure the features specified in the definition files are im-

plemented. Structural features, such as the class abstraction level, are easier to measure

than behavioral features, such as method call. After measuring feature values, the candi-

date role classes can be easily determined, and their relations can be immediately identi-

fied based on the information stored in the database.

4. Software Implementation

The second phase of Ex-DPDFE (the detection phase) is implemented in Java. In this

section, the developed software system is illustrated; after that, the computational com-

plexity of the developed system is discussed.

4.1. The Software System of Ex-DPDFE

The graphical user interface (GUI) of the developed software system is illustrated in

Figure 11. First, the user needs to specify the location of the Java files of the input system;

after that, the software system of Ex-DPDFE parses these files using a Java parser developed

using ANTLR 4.7. The parser is required for measuring the features that cannot be meas-

ured using direct analysis of the input source code, such as delegation and method call.

The developed parser matches single statements in the input source code and stores the

extracted information in a database. The MySQL Workbench 8.0 was used to store and

retrieve this information using standard queries. The extracted information includes the

following:

• Class attributes (visibility, parent classes);

• Method attributes (type, visibility, parameter types, return type);

• Method calls (source and destination);

• The relations between classes (association, dependency, generalization, composi-

tion).

It is notable that source code parsing is only required when the user desires to detect

the design patterns in a new software system for the first time. Once the characteristics of

the input system are stored in the database, they are accessible until the user enters a dif-

ferent input system.

Figure 11. The GUI of the developed software system.

It is worth mentioning here that the modified implementations of a design pattern

are considered. For example, when class A inherits from class B, and class B inherits from

Figure 11. The GUI of the developed software system.

It is notable that source code parsing is only required when the user desires to detect
the design patterns in a new software system for the first time. Once the characteristics
of the input system are stored in the database, they are accessible until the user enters a
different input system.

Symmetry 2022, 14, 1491 14 of 43

It is worth mentioning here that the modified implementations of a design pattern
are considered. For example, when class A inherits from class B, and class B inherits
from class C, then class A inherits from class C. This case is depicted in Figure 12, which
shows an instance of the Decorator design pattern in JHotDraw v5.1. As can be noticed,
the class AbstractLocator has been added between the class Locator, which represents
the Component role of the Decorator design pattern, and the class OffsetLocator, which
represents the Decorator role.

Symmetry 2022, 14, x FOR PEER REVIEW 14 of 44

class C, then class A inherits from class C. This case is depicted in Figure 12, which shows

an instance of the Decorator design pattern in JHotDraw v5.1. As can be noticed, the class

AbstractLocator has been added between the class Locator, which represents the Compo-

nent role of the Decorator design pattern, and the class OffsetLocator, which represents

the Decorator role.

Figure 12. A modified implementation of the Decorator design pattern in JHotDraw v5.1.

Next, the user needs to enter the location of the binary files of the input system and

choose a design pattern from the list of patterns. Here, the textual feature-based definition

file that represents the design pattern is parsed using a text file parser developed using

ANTLR 4.7. Then, the resulting Abstract Syntax Tree (AST) is walked using an ANTLR

listener, which is responsible for calling the appropriate methods that measure the speci-

fied features. In this research, the Java reflection library was used for measuring structural

features, such as inheritance and constructor visibility. Nevertheless, behavioral features,

such as delegation and method call, are not supported by Java reflection. For this reason,

these features were measured using the information stored in the database. It is worth

mentioning here that all features can be measured using the information stored in the

database. However, this reduces the accuracy of the detection results since they become

entirely dependent on the quality of the parser. Moreover, increasing the number of data-

base queries reduces time efficiency.

It is notable that the binary files of the input system need to be generated in order to

apply Ex-DPDFE to it because Java reflection cannot be applied to Java files. For this reason,

a customized class loader was used to handle these binary files. Nonetheless, the class

loader cannot handle the classes of external online libraries. Therefore, the project’s librar-

ies must be locally accessible to enable the class loader to resolve class dependencies.

To identify the candidate role classes, the canonical name of every class of the input

system is stored in the database, along with a flag that indicates the number of features

satisfied by that class for a particular role. When a class satisfies a specified feature, its

associated flag value is incremented by 1; the classes that satisfy all the features that define

a particular role are considered as candidate role classes. Algorithm 1 clarifies the process

of extracting candidate role classes.

Figure 12. A modified implementation of the Decorator design pattern in JHotDraw v5.1.

Next, the user needs to enter the location of the binary files of the input system and
choose a design pattern from the list of patterns. Here, the textual feature-based definition
file that represents the design pattern is parsed using a text file parser developed using
ANTLR 4.7. Then, the resulting Abstract Syntax Tree (AST) is walked using an ANTLR
listener, which is responsible for calling the appropriate methods that measure the specified
features. In this research, the Java reflection library was used for measuring structural
features, such as inheritance and constructor visibility. Nevertheless, behavioral features,
such as delegation and method call, are not supported by Java reflection. For this reason,
these features were measured using the information stored in the database. It is worth
mentioning here that all features can be measured using the information stored in the
database. However, this reduces the accuracy of the detection results since they become
entirely dependent on the quality of the parser. Moreover, increasing the number of
database queries reduces time efficiency.

It is notable that the binary files of the input system need to be generated in order
to apply Ex-DPDFE to it because Java reflection cannot be applied to Java files. For this
reason, a customized class loader was used to handle these binary files. Nonetheless, the
class loader cannot handle the classes of external online libraries. Therefore, the project’s
libraries must be locally accessible to enable the class loader to resolve class dependencies.

To identify the candidate role classes, the canonical name of every class of the input
system is stored in the database, along with a flag that indicates the number of features
satisfied by that class for a particular role. When a class satisfies a specified feature, its
associated flag value is incremented by 1; the classes that satisfy all the features that define
a particular role are considered as candidate role classes. Algorithm 1 clarifies the process
of extracting candidate role classes.

Symmetry 2022, 14, 1491 15 of 43

Algorithm 1 Extraction of the candidate role classes

Symmetry 2022, 14, x FOR PEER REVIEW 15 of 44

Algorithm 1. Extraction of the candidate role classes.

Inputs: The feature-based textual definition of a design pattern D, and the characteristics
of the parsed input system S
Output: Candidate role classes
foreach Role r in D do
 foreach Class c in S do
 flag = 0
 foreach Feature f in r do
 if c satisfies f then
 flag ++
 end
 end
 if flag = featurescount then
 add c to candidateclasses
 end
 end
end
ruturn candidateclasses

It is worth mentioning here that some classes can satisfy the features that identify
different roles and participate in more than one instance of the same design pattern. For
this reason, the different relations between the candidate role classes, which are stored in
the database, are mapped to the signature of the design pattern under study, considering
all their possible combinations. The correct combinations that satisfy the relations speci-
fied in the signature of the design pattern are outputted as instances of this design pattern.
After that, the classes that satisfy the specified features and do not participate in any com-
bination are eliminated. Finally, detection results are presented to the user without any
human intervention.

In the context of our running example (the Adapter design pattern), the ANTLR lis-
tener walks the Abstract Syntax Tree that represents the textual definition file of the
Adapter design pattern. At this point, the initial flag values of all the classes of the input
system are 0. Afterward, the ANTLR listener calls the method responsible for measuring
the first feature ‘subclass’. This method uses Java reflection to identify subclasses and in-
creases the flag values of these classes by 1. Then, the ANTLR listener calls the method
responsible for measuring the second feature ‘one-to-one association to another class’, which
also uses Java reflection to identify the classes that satisfy this feature based on the types
of their fields and increases their flag values by 1. After that, the ANTLR listener calls the
method responsible for measuring the third feature ‘method call to another class by an over-
riding method’. This method uses the information stored in the database to analyze the
methods of the system classes and increases the flag values of the classes that satisfy the
third feature by 1. Finally, system classes whose flag values are equal to 3 are considered
as candidate Adapter classes. Figure 13 illustrates the flag values of some JHotDraw v5.1
classes after measuring each feature of the Adapter role of the Adapter design pattern.
Moreover, Figure 14 shows some candidate Adapter classes, and Figure 15 demonstrates
a code fragment of the class DrawApplet in JHotDraw v5.1, which represents the Adapter
role of the Adapter design pattern.

It is worth mentioning here that some classes can satisfy the features that identify
different roles and participate in more than one instance of the same design pattern. For
this reason, the different relations between the candidate role classes, which are stored in
the database, are mapped to the signature of the design pattern under study, considering
all their possible combinations. The correct combinations that satisfy the relations specified
in the signature of the design pattern are outputted as instances of this design pattern.
After that, the classes that satisfy the specified features and do not participate in any
combination are eliminated. Finally, detection results are presented to the user without any
human intervention.

In the context of our running example (the Adapter design pattern), the ANTLR
listener walks the Abstract Syntax Tree that represents the textual definition file of the
Adapter design pattern. At this point, the initial flag values of all the classes of the input
system are 0. Afterward, the ANTLR listener calls the method responsible for measuring
the first feature ‘subclass’. This method uses Java reflection to identify subclasses and
increases the flag values of these classes by 1. Then, the ANTLR listener calls the method
responsible for measuring the second feature ‘one-to-one association to another class’, which
also uses Java reflection to identify the classes that satisfy this feature based on the types
of their fields and increases their flag values by 1. After that, the ANTLR listener calls
the method responsible for measuring the third feature ‘method call to another class by an
overriding method’. This method uses the information stored in the database to analyze the
methods of the system classes and increases the flag values of the classes that satisfy the
third feature by 1. Finally, system classes whose flag values are equal to 3 are considered
as candidate Adapter classes. Figure 13 illustrates the flag values of some JHotDraw v5.1
classes after measuring each feature of the Adapter role of the Adapter design pattern.
Moreover, Figure 14 shows some candidate Adapter classes, and Figure 15 demonstrates a
code fragment of the class DrawApplet in JHotDraw v5.1, which represents the Adapter
role of the Adapter design pattern.

Symmetry 2022, 14, 1491 16 of 43
Symmetry 2022, 14, x FOR PEER REVIEW 16 of 44

(a) (b)

(c) (d)

Figure 13. The flag values of some JHotDraw v5.1 classes after measuring each feature of the

Adapter role of the Adapter design pattern: (a) initial values; (b) the first feature (subclass); (c) the

second feature (one-to-one association to another class); (d) the third feature (method call to an as-

sociated class by an overriding method).

Figure 13. The flag values of some JHotDraw v5.1 classes after measuring each feature of the Adapter
role of the Adapter design pattern: (a) initial values; (b) the first feature (subclass); (c) the second
feature (one-to-one association to another class); (d) the third feature (method call to an associated
class by an overriding method).

Symmetry 2022, 14, 1491 17 of 43Symmetry 2022, 14, x FOR PEER REVIEW 17 of 44

Figure 14. Some of the candidate Adapter classes in JHotDraw v5.1.

Figure 15. A code fragment of the class DrawApplet in JHotDraw v5.1, which clarifies the features

satisfied by the Adapter role of the Adapter design pattern.

After that, the candidate Adaptee classes are identified by applying the same previ-

ous steps. Then, the detection process looks in the database for the candidate Adapter

classes that are associated with the candidate Adaptee classes using a one-to-one associa-

tion. Such classes are considered as an instance of the Adapter design pattern.

It is worth mentioning here that no special hardware elements were used in the im-

plementation of the developed software system. The source code of Ex-DPDFE is available

online at https://sqlab.um.ac.ir/images-/219/files/detection%20method.zip (accessed on 11

June 2022).

4.2. Computational Complexity

The computational complexity of the developed software system was calculated us-

ing Microsoft Windows 10 with Intel(R) Core(TM) i5 2.20 GHz CPU and 8 GB memory.

The first step of the detection process (the parsing step) is the most time consuming since

the time required for parsing the source code of an input system depends on its size. To

avoid this step, the characteristics of the input systems used to conduct this research were

stored. Therefore, they can be immediately restored to the database when needed. The

computational complexity of this step is O(LOC).

In the second step (feature measurement), the time required to measure a feature

depends on its type. Measuring structural features, which is conducted using Java reflec-

tion, is more straightforward than measuring behavioral features, which is conducted us-

ing database queries. The number of required database queries, in turn, depends on the

Figure 14. Some of the candidate Adapter classes in JHotDraw v5.1.

Symmetry 2022, 14, x FOR PEER REVIEW 17 of 44

Figure 14. Some of the candidate Adapter classes in JHotDraw v5.1.

Figure 15. A code fragment of the class DrawApplet in JHotDraw v5.1, which clarifies the features

satisfied by the Adapter role of the Adapter design pattern.

After that, the candidate Adaptee classes are identified by applying the same previ-

ous steps. Then, the detection process looks in the database for the candidate Adapter

classes that are associated with the candidate Adaptee classes using a one-to-one associa-

tion. Such classes are considered as an instance of the Adapter design pattern.

It is worth mentioning here that no special hardware elements were used in the im-

plementation of the developed software system. The source code of Ex-DPDFE is available

online at https://sqlab.um.ac.ir/images-/219/files/detection%20method.zip (accessed on 11

June 2022).

4.2. Computational Complexity

The computational complexity of the developed software system was calculated us-

ing Microsoft Windows 10 with Intel(R) Core(TM) i5 2.20 GHz CPU and 8 GB memory.

The first step of the detection process (the parsing step) is the most time consuming since

the time required for parsing the source code of an input system depends on its size. To

avoid this step, the characteristics of the input systems used to conduct this research were

stored. Therefore, they can be immediately restored to the database when needed. The

computational complexity of this step is O(LOC).

In the second step (feature measurement), the time required to measure a feature

depends on its type. Measuring structural features, which is conducted using Java reflec-

tion, is more straightforward than measuring behavioral features, which is conducted us-

ing database queries. The number of required database queries, in turn, depends on the

Figure 15. A code fragment of the class DrawApplet in JHotDraw v5.1, which clarifies the features
satisfied by the Adapter role of the Adapter design pattern.

After that, the candidate Adaptee classes are identified by applying the same previous
steps. Then, the detection process looks in the database for the candidate Adapter classes
that are associated with the candidate Adaptee classes using a one-to-one association. Such
classes are considered as an instance of the Adapter design pattern.

It is worth mentioning here that no special hardware elements were used in the im-
plementation of the developed software system. The source code of Ex-DPDFE is available
online at https://sqlab.um.ac.ir/images-/219/files/detection%20method.zip (accessed on
11 June 2022).

4.2. Computational Complexity

The computational complexity of the developed software system was calculated using
Microsoft Windows 10 with Intel(R) Core(TM) i5 2.20 GHz CPU and 8 GB memory. The
first step of the detection process (the parsing step) is the most time consuming since
the time required for parsing the source code of an input system depends on its size. To
avoid this step, the characteristics of the input systems used to conduct this research were
stored. Therefore, they can be immediately restored to the database when needed. The
computational complexity of this step is O(LOC).

In the second step (feature measurement), the time required to measure a feature
depends on its type. Measuring structural features, which is conducted using Java reflection,
is more straightforward than measuring behavioral features, which is conducted using
database queries. The number of required database queries, in turn, depends on the size of

https://sqlab.um.ac.ir/images-/219/files/detection%20method.zip

Symmetry 2022, 14, 1491 18 of 43

the input system. Assuming that f is the total number of features used to define a design
pattern and n is the number of classes of the input system, the computational complexity of
this step is O(fn).

The third step (candidate role class extraction) is a simple step that is the least time
consuming, and it only requires one database query. The computational complexity of this
step is O(1).

Finally, the execution time of the fourth step (finding related roles) depends on the
number of candidate role classes (c) and the number of database queries required to
determine their relations (r). Therefore, the computational complexity of this step is O(cr).

5. Evaluation and Discussion

In this section, the efficiency of Ex-DPDFE is assessed and compared with some other
detection methods.

5.1. Research Questions

To address the goal of this study, we aimed to answer the following research ques-
tions (RQ):

RQ1: What is the accuracy of Ex-DPDFE in detecting design patterns?
RQ2: Can Ex-DPDFE detect more design pattern variants than other existing methods?
RQ3: How do design pattern variants affect the accuracy of detection methods?
While RQ1 concentrates on the accuracy of Ex-DPDFE, RQ2 and RQ3 compare the

accuracy of Ex-DPDFE with that of other methods, considering the effect of the number of
variants detected by a detection method on the quality of the detection results.

In the following subsection, we clarify the case studies used to respond to the above
research questions.

5.2. Case Studies

To answer RQ1, Ex-DPDFE was evaluated using four open-source Java projects, namely,
JRefactory v2.6.24, JHotDraw v5.1, JUnit v3.7, and QuickUML 2001. These projects have
been used to evaluate many design pattern detection methods, which makes it easier to
compare the results of Ex-DPDFE with those of the other methods. The characteristics of
these projects are illustrated in Table 3. Moreover, to respond to research questions RQ2
and RQ3, the Java testbeds generated by PDBGTGT [88], which is a benchmark developed
as a solution to the problem of the absence of a golden standard, were used. Furthermore,
the use of PDBGTGT enables a comprehensive and fair evaluation of the design pattern
detection methods and facilitates an accurate comparison between Ex-DPDFE and other
methods regarding variants’ detection.

Table 3. The characteristics of the open-source Java projects used to evaluate Ex-DPDFE.

Systems

Characteristics
Number of Classes Number of Methods KLOC

JRefactory v2.6.24 566 4609 93.1
JHotDraw v5.1 155 1334 13.5

JUnit v3.7 93 681 6.4
QuickUML 2001 217 1094 18.4

In PDBGTGT, testbeds with different levels of complexity that are composed of Java
source codes and their corresponding class diagrams are generated automatically using
graph theory. These codes are injected with different design patterns and their variants.
The types, numbers, and locations of the injected patterns are well defined and controlled.
The testbeds generated by PDBGTGT are only applicable to the detection methods that can
receive input in the form of a class diagram or a Java source code. To define new design
patterns in PDBGTGT, the developers provided a grammar that has an XML structure in
which a set of predefined tags is used to specify the role classes that participate in a design

Symmetry 2022, 14, 1491 19 of 43

pattern and their relations. The definitions used to generate the design patterns are not
published publicly to preserve confidentiality. The generated testbeds were provided as
an input to the detection methods under study to measure their accuracy practically. In
this research, PDBGTGT was used to generate 11 design patterns and examine the ability of
different detection methods to detect their variants. These 11 design patterns were chosen
because they can be detected by all the methods under study.

The use of PDBGTGT to evaluate the detection methods provides several advantages:
(1) accurate values of recall can be obtained since the number of injected instances of a
design pattern is well defined; (2) the ability of each detection method to detect the variants
of a design pattern can be evaluated; and (3) different detection methods can be evaluated
under the same conditions, including the used testbeds, the considered design patterns,
and the calculated evaluation metrics (i.e., precision and recall).

To evaluate the investigated detection methods, 30 auto-generated testbeds were used;
the main characteristics of these testbeds are summarized in Table 4. The source codes of
the testbeds generated by PDBGTGT are available online at sqlab:SourceCodes_Generated_
by_PDBGTGT.zip (accessed on 11 June 2022).

Table 4. The main characteristics of the evaluation testbeds auto-generated using PDBGTGT.

Testbeds

Characteristics Number of Classes per
Project Average KLOC

Testbed1–Testbed10 200 9.87
Testbed11–Testbed20 300 14.89
Testbed21–Testbed30 400 19.65

To verify the scalability of Ex-DPDFE, it was applied to five open-source Java projects
of different sizes, namely, JHotDraw v5.2, JHotDraw v5.3, JUnit v2, JUnit v3, and JUnit
v3.8.1. The main characteristics of these projects are shown in Table 5. It is notable that the
design pattern instances available in these projects have not been documented. Therefore,
the recall of Ex-DPDFE cannot be calculated using these five projects.

Table 5. The characteristics of the open-source Java projects used to assess the scalability of Ex-DPDFE.

Systems

Characteristics
Number of Classes Number of Methods KLOC

JHotDraw v5.2 168 1460 14.7
JHotDraw v5.3 242 2316 24.8

JUnit v2 39 315 2.7
JUnit v3 116 841 7.2

JUnit v3.8.1 56 514 4.8

5.3. Method Selection

Ex-DPDFE was compared with DeMIMA [50], SSA [13], SparT [2], GTM [9], and
CA [31]. These methods were chosen since they all satisfy at least two of the following
conditions: (1) they have been used to evaluate many design pattern detection meth-
ods; (2) their detection results are available online; (3) they provide runnable tools or
online support for practical evaluation; and (4) they demonstrate accurate detection re-
sults in terms of precision and recall. One thing to mention is that the SparT group
link is not working at the moment, although it was accessible when this study was
conducted. However, the evaluation results of SparT are still available online at sqlab:
The_design_pattern_instances_detected_by_Ex_DPDfe_and_some_other.pdf (accessed on
11 June 2022). Additionally, since GTM is a semi-automated method in which a candidate
design pattern is validated manually by mapping its behavior to the proposed behavioral
signature, it cannot be evaluated using the considered benchmark. Therefore, we only
considered the evaluation results reported by its developers.

sqlab:SourceCodes_Generated_by_PDBGTGT.zip
sqlab:SourceCodes_Generated_by_PDBGTGT.zip
sqlab:The_design_pattern_instances_detected_by_Ex_DPDfe_and_some_other.pdf
sqlab:The_design_pattern_instances_detected_by_Ex_DPDfe_and_some_other.pdf

Symmetry 2022, 14, 1491 20 of 43

5.4. Metrics

In this research, three widely adopted metrics (precision (P), recall (R), and F-measure)
were used to measure the accuracy of the evaluation results. These metrics are defined
as follows:

Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
, (2)

F-measure =
2× Precision× Recall

Precison + Recall
, (3)

where TP refers to the number of design pattern instances that are correctly detected, FP
refers to the number of design pattern instances that are incorrectly detected, and FN refers
to the number of design pattern instances that are incorrectly not detected [89,90]. Generally,
the use of these metrics to measure the accuracy of Ex-DPDFE allows a fair comparison
between the investigated detection methods.

To calculate the precision obtained from applying Ex-DPDFE to the open-source Java
projects, the design pattern instances detected by Ex-DPDFE were verified manually to
identify true positive instances. Moreover, to identify all the design pattern instances in the
projects under study and calculate the recall of Ex-DPDFE, the union of the true positive
instances detected by the investigated methods with the true positive instances detected by
Ex-DPDFE was considered as a golden standard after manual verification in addition to the
instances reported in the P-MART (http://www.ptidej.net/tools/designpatterns/index_
html#2 (accessed on 11 June 2022)) dataset. These verified instances are available online at
sqlab:The-gold-standard-of-Ex-DPDfe.pdf. Table 6 summarizes the number of the design
pattern instances identified in the used dataset, and Table 7 illustrates the design patterns
considered by the methods used to build the dataset.

Table 6. The number of the design pattern instances identified in the used dataset.

Design Patterns

Open-Source Projects
JRefactory v2.6.24 JHotDraw v5.1 JUnit v3.7

QuickUML
2001

Singleton 10 1 0 1
Adapter 40 26 7 10

Abstract Factory/Factory
Method 11 17 0 5

Template Method 18 8 3 5
Composite 0 1 1 1
Observer 6 5 3 8

State/Strategy 29 42 3 5
Decorator 0 4 1 1

Visitor 2 0 0 0
Prototype 0 2 0 1

Builder 0 0 0 0
Bridge 0 0 0 0
Facade 0 0 0 0

Flyweight 0 0 0 0
Proxy 11 1 0 6

Chain of Responsibility 0 0 0 0

http://www.ptidej.net/tools/designpatterns/index_html#2
http://www.ptidej.net/tools/designpatterns/index_html#2
sqlab:The-gold-standard-of-Ex-DPDfe.pdf

Symmetry 2022, 14, 1491 21 of 43

Table 6. Cont.

Design Patterns

Open-Source Projects
JRefactory v2.6.24 JHotDraw v5.1 JUnit v3.7

QuickUML
2001

Command 7 14 0 0
Mediator 0 0 0 0
Iterator 0 0 0 0

Memento 0 0 0 0
Interpreter 0 0 0 0

Table 7. The design patterns considered by the methods used to build the dataset.

Design Patterns

Detection Methods
DeMIMA SSA SparT GTM CA Ex-DPDFE P-MART

Singleton X X X X X X X
Adapter X X X X X X X

Abstract Factory X X X X X X X
Factory Method X X X X X X X

Template Method X X X X X X X
Composite X X X X X X X
Observer X X X X X X X

State X X X X X X X
Strategy X X X X X X X

Decorator X X X X X X X
Visitor X X X X X X X

Prototype X X X × X X X
Builder × × X × X X X
Bridge × × X × X X X
Facade × × X × X X X

Flyweight × × X × X X X
Proxy × × X × X X X

Chain of Responsibility × × X × X X X
Command X X X × X X X
Mediator × × X × X X X
Iterator × × X × X X X

Memento × × X × X X X
Interpreter × × X × X X X

Similarly, precision and recall were calculated manually when applying Ex-DPDFE to
PDBGTGT using the information about the injected design patterns that was provided along
with the generated testbeds.

5.5. Results

The results are organized as follows. Table 8 summarizes the results of applying
Ex-DPDFE to the four open-source projects mentioned above, while Table 9 presents the
detection results of Ex-DPDFE in comparison with the other methods under study according
to the results reported by their developers. Detailed evaluation results are available at sqlab:
The_design_pattern_instances_detected_by_Ex_DPDfe.pdf (accessed on 11 June 2022).
Table 10 illustrates the results of evaluating Ex-DPDFE using 30 testbeds, automatically
generated using PDBGTGT, and Table 11 presents a comparison between Ex-DPDFE and the
other methods under study using the same testbeds. In these tables, the use of ‘0′ means
that no design pattern instances were correctly detected (TP = 0). Finally, Table 12 shows
the implementation cost of Ex-DPDFE, and Table 13 illustrates its time complexity.

sqlab:The_design_pattern_instances_detected_by_Ex_DPDfe.pdf
sqlab:The_design_pattern_instances_detected_by_Ex_DPDfe.pdf

Symmetry 2022, 14, 1491 22 of 43

Table 8. The results of applying Ex-DPDFE to four open-source Java projects.

Design Patterns

Detection Results JHotDraw v5.1 JUnit v3.7 QuickUML 2001 JRefactory v2.6.24

TP FP P% F% TP FP P% F% TP FP P% F% TP FP P% F%

Singleton 1 0 100 100 0 0 100 100 1 0 100 100 10 0 100 100
Adapter 26 1 96.3 98 7 1 87.5 93 10 1 90.9 95 40 4 90.9 95

Abstract Factory/
Factory Method 17 2 89.5 94 0 0 100 100 5 0 100 100 11 1 91.7 96

Template Method 8 0 100 100 3 0 100 100 5 0 100 100 18 2 90 95
Composite 1 0 100 100 1 0 100 100 1 0 100 100 0 0 100 100
Observer 5 1 83.3 91 3 1 75 86 8 2 80 89 6 1 85.7 92

State/Strategy 42 2 95.5 98 3 0 100 100 5 2 71.4 83 29 4 87.9 94
Decorator 4 0 100 100 1 0 100 100 1 0 100 100 0 0 100 100

Visitor 0 0 100 100 0 0 100 100 0 0 100 100 2 0 100 100
Prototype 2 0 100 100 0 0 100 100 1 0 100 100 0 0 100 100

Builder 0 0 100 100 0 0 100 100 0 0 100 100 0 0 100 100
Bridge 0 0 100 100 0 0 100 100 0 0 100 100 0 0 100 100
Facade 0 0 100 100 0 0 100 100 0 0 100 100 0 0 100 100

Flyweight 0 0 100 100 0 0 100 100 0 0 100 100 0 0 100 100
Proxy 1 0 100 100 0 0 100 100 6 0 100 100 11 0 100 100

Chain of Responsibility 0 0 100 100 0 0 100 100 0 0 100 100 0 0 100 100
Command 14 2 87.5 93 0 0 100 100 0 0 100 100 7 3 70 82.4
Mediator 0 0 100 100 0 0 100 100 0 0 100 100 0 0 100 100
Iterator 0 0 100 100 0 0 100 100 0 0 100 100 0 0 100 100

Memento 0 0 100 100 0 0 100 100 0 0 100 100 0 0 100 100
Interpreter 0 0 100 100 0 0 100 100 0 0 100 100 0 0 100 100

Symmetry 2022, 14, 1491 23 of 43

Table 9. The results of Ex-DPDFE in comparison with those reported by the developers of the other methods when applied to four open-source Java projects.

Design Patterns

Detection Results DeMIMA SSA SparT GTM CA Ex-DPDFE

P% R% F% P% R% F% P% R% F% P% R% F% P% R% F% P% R% F%

Singleton 78.6 100 88 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Adapter 9.95 100 18.1 100 100 100 85.8 83.2 84.5 100 100 100 100 100 100 91.4 100 95.5

Abstract Factory/
Factory Method

26.35/
0.75

100/
100

41.7/
1.5 100 63.9 78 100 100 100 100 100 100 100 100 100 95.3 100 97.6

Template Method 1.6 100 3.1 100 100 100 100 100 100 100 100 100 100 100 100 97.5 100 98.7
Composite 67.7 100 80.7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Observer 25 100 40 100 100 100 93.8 100 96.8 100 100 100 100 50 66.7 81 100 89.5

State/Strategy 9.4 100 17.2 100 95.7 97.8 63.3 94.2 75.7 100 100 100 100 100 100 88.7 100 94
Decorator 51.9 100 68.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Visitor 87.5 100 93.3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Prototype 75 100 85.7 100 100 100 100 100 100 - - - 100 100 100 100 100 100

Builder - - - - - - 100 100 100 - - - 100 100 100 100 100 100
Bridge - - - - - - 100 100 100 - - - 100 100 100 100 100 100
Facade - - - - - - 100 100 100 - - - 100 100 100 100 100 100

Flyweight - - - - - - 100 100 100 - - - 100 100 100 100 100 100
Proxy - - - - - - 95.8 97.7 96.7 - - - 100 100 100 100 100 100

Chain of Responsibility - - - - - - 100 100 100 - - - 100 100 100 100 100 100
Command 8.53 100 15.7 100 100 100 100 100 100 - - - 100 100 100 89.4 100 94.4
Mediator - - - - - - 100 100 100 - - - 100 100 100 100 100 100
Iterator - - - - - - 100 100 100 - - - 100 100 100 100 100 100

Memento - - - - - - 100 100 100 - - - 100 100 100 100 100 100
Interpreter - - - - - - 100 100 100 - - - 100 100 100 100 100 100

Symmetry 2022, 14, 1491 24 of 43

Table 10. The results of applying Ex-DPDFE to 30 testbeds generated using the PDBGTGT benchmark.

Design Patterns

Detection Methods
DeMIMA SSA SparT GTM CA Ex-DPDFE

Singleton 87 87 0 100 100 100
Class Adapter 34 34 0 100 100 100

Object Adapter 42 42 0 100 100 100
Abstract Factory/
Factory Method

Variant F1 34 34 0 100 100 100
Variant F2 121 121 0 100 100 100

Template Method 48 48 0 100 100 100

Composite
Variant C1 39 39 0 100 100 100
Variant C2 42 42 0 100 100 100
Variant C3 33 33 0 100 100 100

Observer
Variant O1 41 41 0 100 100 100
Variant O2 38 38 0 100 100 100

State/Strategy 157 157 0 100 100 100
Decorator 40 40 0 100 100 100

Visitor 34 34 0 100 100 100

Table 11. The results of comparing Ex-DPDFE with other methods using the PDBGTGT benchmark.

Design Patterns

Detection Results DeMIMA SSA SparT CA Ex-DPDFE

P% R% F% P% R% F% P% R% F% P% R% F% P% R% F%

Singleton 100 53.8 70 100 100 100 100 100 100 56.7 78.3 65.8 100 100 100
Adapter 0 0 na 100 * 100 * 100 100 * 100 * 100 100 94.3 97 100 100 100

Abstract Factory/
Factory Method 9.9 24.4 14 100 21.9 36 0 0 na 89 19.8 32.4 100 100 100

Template
Method 0 0 na 0 0 na 0 0 na 0 0 na 100 100 100

Composite 0 0 na 100 34.2 51 100 71.1 83.1 72.3 24.3 36.4 100 100 100
Observer 0 0 na 100 48.1 65 100 48.1 65 21 30.2 24.8 100 100 100

State/Strategy 91.1 100 95.3 100 100 100 100 100 100 50.3 100 66.9 100 100 100
Decorator 0 0 na 100 100 100 100 100 100 27.7 22 24.5 100 100 100

Visitor 0 0 na 0 0 na 0 0 na 0 0 na 100 100 100
* Only Object Adapter.

Table 12. The implementation cost of Ex-DPDFE.

Step

Cost
Average Human Hours

The definition phase Signatures’ improvement 2 h per pattern
Feature extraction 2 h per pattern

The detection phase

Source code parsing 120 h
Features’ measurement 4 h per feature
Candidate Role classes’

extraction 1 h

Finding related role classes 1 h

Symmetry 2022, 14, 1491 25 of 43

Table 13. The time complexity of Ex-DPDFE.

Step

Cost
Feature Type KLOC Time (s)

Source code parsing -

2.7 90
4.8 135
6.4 210
7.2 300
9.87 390
13.5 540
14.7 600

14.89 615
18.4 750

19.65 870
24.8 1130
93.1 2245

Features’ measure-
ment(features’

average)

Structural No major effect 0.03

Behavioral

2.7 0.05
4.8 0.09
6.4 0.11
7.2 0.14
9.87 0.17
13.5 0.21
14.7 0.23

14.89 0.24
18.4 0.29

19.65 0.32
24.8 0.37
93.1 0.63

Candidate Role
classes’ extraction No major effect No major effect 0.01

Finding related role
classes(patterns’

average)
No major effect

2.7 0.02
4.8 0.023
6.4 0.027
7.2 0.028
9.87 0.031
13.5 0.037
14.7 0.039

14.89 0.04
18.4 0.061

19.65 0.063
24.8 0.08
93.1 0.14

Since the State and Strategy design patterns share the same signature, they could not
be identified independently using Ex-DPDFE. Therefore, to distinguish between them, a
further study of the purpose of using the design patterns is needed. Similarly, since the
Abstract Factory design pattern contains a Factory Method in its Concrete Factory class that
creates and returns an instance of the Concrete Product class, these two design patterns
were identified together.

Ex-DPDFE demonstrated an average precision of 97% on the projects used to evaluate
its scalability, which are presented in Table 5. Detailed results are available online at
sqlab:The_precision_of_Ex_DPDfe.pdf (accessed on 11 June 2022).

In the following, we answer the research questions according to the obtained results.

5.5.1. RQ1: What Is the Accuracy of Ex-DPDFE in Detecting Design Patterns?

Considering Tables 8 and 9 and comparing the detected design pattern instances of
Ex-DPDFE with those of other methods, some cases in which the results did not match were
noticed. For instance, both SSA and SparT considered the class Iconkit in JHotDraw v5.1 as

sqlab:The_precision_of_Ex_DPDfe.pdf

Symmetry 2022, 14, 1491 26 of 43

an instance of the Singleton design pattern even though it has a public constructor. This is
a good indication of the high accuracy of the signatures considered by Ex-DPDFE as well as
the extracted features. In addition, since Ex-DPDFE covers more variants, it identified the
classes AbstractFigure, CompositeFigure, and GroupFigure in JHotDraw v5.1, which are
depicted in Figure 16, as three independent instances of the Concrete Creator of the Factory
Method design pattern. In contrast, SSA and SparT only identified the AbstracFigure class.

Symmetry 2022, 14, x FOR PEER REVIEW 27 of 44

14.89 0.04

18.4 0.061

19.65 0.063

24.8 0.08

93.1 0.14

In the following, we answer the research questions according to the obtained results.

5.5.1. RQ1: What Is the Accuracy of Ex-DPDFE in Detecting Design Patterns?

Considering Tables 8 and 9 and comparing the detected design pattern instances of

Ex-DPDFE with those of other methods, some cases in which the results did not match were

noticed. For instance, both SSA and SparT considered the class Iconkit in JHotDraw v5.1

as an instance of the Singleton design pattern even though it has a public constructor. This

is a good indication of the high accuracy of the signatures considered by Ex-DPDFE as well

as the extracted features. In addition, since Ex-DPDFE covers more variants, it identified

the classes AbstractFigure, CompositeFigure, and GroupFigure in JHotDraw v5.1, which

are depicted in Figure 16, as three independent instances of the Concrete Creator of the

Factory Method design pattern. In contrast, SSA and SparT only identified the AbstracFig-

ure class.

Figure 16. Some instances of the Factory Method design pattern in JHotDraw v5.1 that were not

detected by other methods.

Similarly, considering that GTM and SSA have not been evaluated using QuickUML

2001, it was noticed that neither DeMIMA nor SparT could detect the classes shown in

Figure 17 as instances of the Factory Method design pattern. These instances were only

detected by Ex-DPDFE.

Figure 17. Some instances of the Factory Method design pattern in QuickUML2001 that were not

detected by other methods.

Figure 16. Some instances of the Factory Method design pattern in JHotDraw v5.1 that were not
detected by other methods.

Similarly, considering that GTM and SSA have not been evaluated using QuickUML
2001, it was noticed that neither DeMIMA nor SparT could detect the classes shown in
Figure 17 as instances of the Factory Method design pattern. These instances were only
detected by Ex-DPDFE.

Symmetry 2022, 14, x FOR PEER REVIEW 27 of 44

14.89 0.04

18.4 0.061

19.65 0.063

24.8 0.08

93.1 0.14

In the following, we answer the research questions according to the obtained results.

5.5.1. RQ1: What Is the Accuracy of Ex-DPDFE in Detecting Design Patterns?

Considering Tables 8 and 9 and comparing the detected design pattern instances of

Ex-DPDFE with those of other methods, some cases in which the results did not match were

noticed. For instance, both SSA and SparT considered the class Iconkit in JHotDraw v5.1

as an instance of the Singleton design pattern even though it has a public constructor. This

is a good indication of the high accuracy of the signatures considered by Ex-DPDFE as well

as the extracted features. In addition, since Ex-DPDFE covers more variants, it identified

the classes AbstractFigure, CompositeFigure, and GroupFigure in JHotDraw v5.1, which

are depicted in Figure 16, as three independent instances of the Concrete Creator of the

Factory Method design pattern. In contrast, SSA and SparT only identified the AbstracFig-

ure class.

Figure 16. Some instances of the Factory Method design pattern in JHotDraw v5.1 that were not

detected by other methods.

Similarly, considering that GTM and SSA have not been evaluated using QuickUML

2001, it was noticed that neither DeMIMA nor SparT could detect the classes shown in

Figure 17 as instances of the Factory Method design pattern. These instances were only

detected by Ex-DPDFE.

Figure 17. Some instances of the Factory Method design pattern in QuickUML2001 that were not

detected by other methods.
Figure 17. Some instances of the Factory Method design pattern in QuickUML2001 that were not
detected by other methods.

On the other hand, GTM only considers three types of relations between classes
(inheritance, aggregation, and association) in its first phase (the structural analysis phase).
The other types of relations, such as dependency and method call, which are essential to
distinguish design patterns with similar structures, are checked manually in its second
phase (the behavioral analysis phase). As a result, many false positive instances are left for
design pattern experts to exclude manually based on the proposed signatures. Moreover,
in certain cases, GTM mislabels some classes and, therefore, misses some design pattern
instances. Such a case is depicted in Figure 18, which shows an example of the Strategy
design pattern in JHotDraw v5.1. In this example, the class ConnectionFigure was not
labeled correctly by GTM. As a result, it was not recognized as a Concrete Strategy class; it
was only recognized as a Strategy class. For this reason, the class Figure was not detected
as a Strategy.

Symmetry 2022, 14, 1491 27 of 43

Symmetry 2022, 14, x FOR PEER REVIEW 28 of 44

On the other hand, GTM only considers three types of relations between classes (in-

heritance, aggregation, and association) in its first phase (the structural analysis phase).

The other types of relations, such as dependency and method call, which are essential to

distinguish design patterns with similar structures, are checked manually in its second

phase (the behavioral analysis phase). As a result, many false positive instances are left

for design pattern experts to exclude manually based on the proposed signatures. More-

over, in certain cases, GTM mislabels some classes and, therefore, misses some design

pattern instances. Such a case is depicted in Figure 18, which shows an example of the

Strategy design pattern in JHotDraw v5.1. In this example, the class ConnectionFigure

was not labeled correctly by GTM. As a result, it was not recognized as a Concrete Strategy

class; it was only recognized as a Strategy class. For this reason, the class Figure was not

detected as a Strategy.

Figure 18. An example of an instance of the Strategy design pattern in JHotDraw v5.1 that was not

detected by GTM.

It is notable that Ex-DPDFE was able to avoid false negatives by utilizing three strate-

gies:

• Using the appropriate features that accurately define design patterns: The used fea-

tures are extracted from the signatures of design patterns. Therefore, these features

represent each design pattern properly.

• Considering both structural and behavioral characteristics of the design patterns

in the feature extraction process: The extracted features cover the different aspects

of the design patterns (structural and behavioral). Therefore, they enable us to detect

the design patterns of all categories (creational, structural, and behavioral).

• Considering the design pattern variants in the process of feature extraction and

covering as many variants as possible: By including the characteristics of the design

pattern variants within the extracted features, the instances that do not apply to the

standard form of a design pattern can be detected.

As a result of the above, all the instances of the design patterns were detected, and

the values of recall were equal to 100% for all the design patterns.

On the other hand, in some cases, an instance can satisfy all the features that define

a design pattern. Nonetheless, this instance may not satisfy the purpose of this pattern.

Therefore, a false positive instance will be detected by Ex-DPDFE. An example that clarifies

this case is depicted in Figure 19, which shows a code fragment of the class ChangeCon-

nectionHandle in JHotDraw v5.1. This class is a subclass of the class AbstractHandle and

it is associated with the class Figure by the field fTarget. Moreover, the method in-

vokeStep(), which is an overriding method, calls the method connectorVisibility() of the

class Figure. However, this class does not satisfy the purpose of the Adapter design pat-

tern.

The total number of false positive instances detected by Ex-DPDFE in the four open-

source Java projects used for evaluation was 30. On the other hand, the total number of

true positive instances was 316, as clarified in Table 8. Therefore, the average precision of

Figure 18. An example of an instance of the Strategy design pattern in JHotDraw v5.1 that was not
detected by GTM.

It is notable that Ex-DPDFE was able to avoid false negatives by utilizing three strategies:

• Using the appropriate features that accurately define design patterns: The used
features are extracted from the signatures of design patterns. Therefore, these features
represent each design pattern properly.

• Considering both structural and behavioral characteristics of the design patterns
in the feature extraction process: The extracted features cover the different aspects of
the design patterns (structural and behavioral). Therefore, they enable us to detect the
design patterns of all categories (creational, structural, and behavioral).

• Considering the design pattern variants in the process of feature extraction and
covering as many variants as possible: By including the characteristics of the design
pattern variants within the extracted features, the instances that do not apply to the
standard form of a design pattern can be detected.

As a result of the above, all the instances of the design patterns were detected, and the
values of recall were equal to 100% for all the design patterns.

On the other hand, in some cases, an instance can satisfy all the features that define
a design pattern. Nonetheless, this instance may not satisfy the purpose of this pattern.
Therefore, a false positive instance will be detected by Ex-DPDFE. An example that clarifies
this case is depicted in Figure 19, which shows a code fragment of the class ChangeConnec-
tionHandle in JHotDraw v5.1. This class is a subclass of the class AbstractHandle and it is
associated with the class Figure by the field fTarget. Moreover, the method invokeStep(),
which is an overriding method, calls the method connectorVisibility() of the class Figure.
However, this class does not satisfy the purpose of the Adapter design pattern.

Symmetry 2022, 14, x FOR PEER REVIEW 29 of 44

Ex-DPDFE was equal to 91.3. Appendix C illustrates some examples of true positive and

false positive instances (if any) of some design patterns detected in JHotDraw v5.1, with

an explanation of the main reasons for their detection. Furthermore, all the detected de-

sign pattern instances are available at sqlab:The_design_pattern_instances_de-

tected_by_Ex_DPDfe.pdf (accessed on 11 June 2022). It is worth mentioning here that such

false positive instances were also detected by the other detection methods under study for

similar reasons. However, the number of false positive instances can be reduced in the

future by considering semantic analysis.

Figure 19. A code fragment of the class ChangeConnectionHandle in JHotDraw v5.1, which repre-

sents a false positive instance of the Adapter design pattern detected by EX-DPDFE.

Since such a case was not encountered when evaluating Ex-DPDFE using PDBGTGT,

Ex-DPDFE reported accurate detection results, although this benchmark generates codes

containing more variants than other open-source projects. Nevertheless, obtaining lower

precision using the open-source Java projects does not threaten the validity of the results

obtained using PDBGTGT since it provides a fair comparison between detection methods

that is conducted under the same conditions.

Ex-DPDFE obtained relatively low precision for the Observer design pattern (81%)

when evaluated using the open-source projects since the total number of Observer design

pattern instances in these projects is low. Therefore, detecting a false instance results in a

rapid drop in precision. Moreover, the design patterns are detected based on their struc-

tural and behavioral signatures. Therefore, Ex-DPDFE cannot distinguish between design

patterns with similar structural and behavioral characteristics, such as the State and Strat-

egy design patterns.

5.5.2. RQ2: Can Ex-DPDFE Detect More Design Pattern Variants than Some Other Existing

Methods?

Based on the evaluation results shown in Tables 9–11, it was noticed that both SSA

and SparT did not detect some common variants of some design patterns. DeMIMA, being

a constraint satisfaction method, could not detect most of the variants since these variants

were not considered in the constraint specification process. Moreover, CA was not able to

detect any of the injected variants.

Except for Ex-DPDFE, none of the other detection methods could detect the classes

FileSummary and PackageSummary in JRefactory v2.6.24 as instances of the Singleton

design pattern because the private static variables in these classes are of the HashMap

type. Unlike Ex-DPDFE, which considers all types of variables, the other methods only de-

tect the Singleton class when its private static variable represents a single object and not a

list of objects. This, in turn, demonstrates the wide variant coverage of Ex-DPDFE.

Figure 19. A code fragment of the class ChangeConnectionHandle in JHotDraw v5.1, which repre-
sents a false positive instance of the Adapter design pattern detected by EX-DPDFE.

Symmetry 2022, 14, 1491 28 of 43

The total number of false positive instances detected by Ex-DPDFE in the four open-
source Java projects used for evaluation was 30. On the other hand, the total number of
true positive instances was 316, as clarified in Table 8. Therefore, the average precision of
Ex-DPDFE was equal to 91.3. Appendix C illustrates some examples of true positive and
false positive instances (if any) of some design patterns detected in JHotDraw v5.1, with an
explanation of the main reasons for their detection. Furthermore, all the detected design
pattern instances are available at sqlab:The_design_pattern_instances_detected_by_Ex_
DPDfe.pdf (accessed on 11 June 2022). It is worth mentioning here that such false positive
instances were also detected by the other detection methods under study for similar reasons.
However, the number of false positive instances can be reduced in the future by considering
semantic analysis.

Since such a case was not encountered when evaluating Ex-DPDFE using PDBGTGT,
Ex-DPDFE reported accurate detection results, although this benchmark generates codes
containing more variants than other open-source projects. Nevertheless, obtaining lower
precision using the open-source Java projects does not threaten the validity of the results
obtained using PDBGTGT since it provides a fair comparison between detection methods
that is conducted under the same conditions.

Ex-DPDFE obtained relatively low precision for the Observer design pattern (81%)
when evaluated using the open-source projects since the total number of Observer design
pattern instances in these projects is low. Therefore, detecting a false instance results
in a rapid drop in precision. Moreover, the design patterns are detected based on their
structural and behavioral signatures. Therefore, Ex-DPDFE cannot distinguish between
design patterns with similar structural and behavioral characteristics, such as the State and
Strategy design patterns.

5.5.2. RQ2: Can Ex-DPDFE Detect More Design Pattern Variants than Some Other
Existing Methods?

Based on the evaluation results shown in Tables 9–11, it was noticed that both SSA
and SparT did not detect some common variants of some design patterns. DeMIMA, being
a constraint satisfaction method, could not detect most of the variants since these variants
were not considered in the constraint specification process. Moreover, CA was not able to
detect any of the injected variants.

Except for Ex-DPDFE, none of the other detection methods could detect the classes
FileSummary and PackageSummary in JRefactory v2.6.24 as instances of the Singleton
design pattern because the private static variables in these classes are of the HashMap type.
Unlike Ex-DPDFE, which considers all types of variables, the other methods only detect the
Singleton class when its private static variable represents a single object and not a list of
objects. This, in turn, demonstrates the wide variant coverage of Ex-DPDFE.

In addition to the above, after analyzing the variants injected within the codes gener-
ated by PDBGTGT, which are defined and reported, two variants were recognized for the
Observer design pattern. In the first variant (O1), the Observer class is a concrete class
that does not participate in any inheritance hierarchy, while in the second variant (O2), the
Observer class is an abstract class (interface) that exists within an inheritance hierarchy.
These two variants are illustrated in Figure 20. Both SSA and SparT were only able to detect
variant O2. In comparison, Ex-DPDFE could detect both O1 and O2, and DeMIMA could
not detect either of them.

sqlab:The_design_pattern_instances_detected_by_Ex_DPDfe.pdf
sqlab:The_design_pattern_instances_detected_by_Ex_DPDfe.pdf

Symmetry 2022, 14, 1491 29 of 43

Symmetry 2022, 14, x FOR PEER REVIEW 30 of 44

In addition to the above, after analyzing the variants injected within the codes gen-

erated by PDBGTGT, which are defined and reported, two variants were recognized for the

Observer design pattern. In the first variant (O1), the Observer class is a concrete class that

does not participate in any inheritance hierarchy, while in the second variant (O2), the

Observer class is an abstract class (interface) that exists within an inheritance hierarchy.

These two variants are illustrated in Figure 20. Both SSA and SparT were only able to

detect variant O2. In comparison, Ex-DPDFE could detect both O1 and O2, and DeMIMA

could not detect either of them.

Similarly, three variants were identified for the Composite design pattern, as illus-

trated in Figure 21. In the first variant (C1), the Component class is abstract (interface),

while in the second variant (C2), both the Component and the Composite are concrete

classes. The third variant (C3) is called Reflexive connection between Leaf and Composite [18].

Both SSA and SparT were able to detect C1. However, only SparT was able to detect C2.

In comparison, variant C3 was only detected by Ex-DPDFE after extracting the appropriate

features independently. It is worth mentioning here that the three Composite instances

detected in JHotDraw v5.1, Junit v3.7, and QuickUML 2001 were of C1 type.

Moreover, two variants of the Factory Method design pattern were recognized, as

depicted in Figure 22. The first variant (F1) consists of four roles: Creator, Concrete Crea-

tor, Product, and Concrete Product. In the second variant (F2), the Product class is elimi-

nated. Unlike Ex-DPDFE, which was able to detect both F1 and F2, SSA was only able to

detect F1, while SparT could not detect either case.

(a) (b)

Figure 20. The variants of the Observer design pattern that were used in the codes generated by the

PDBGTGT benchmark: (a) Variant O1; (b) Variant O2.

(a) (b) (c)

Figure 21. The variants of the Composite design pattern that were used in the codes generated by

the PDBGTGT benchmark: (a) Variant C1; (b) Variant C2; (c) Variant C3.

Figure 20. The variants of the Observer design pattern that were used in the codes generated by the
PDBGTGT benchmark: (a) Variant O1; (b) Variant O2.

Similarly, three variants were identified for the Composite design pattern, as illustrated
in Figure 21. In the first variant (C1), the Component class is abstract (interface), while
in the second variant (C2), both the Component and the Composite are concrete classes.
The third variant (C3) is called Reflexive connection between Leaf and Composite [18]. Both
SSA and SparT were able to detect C1. However, only SparT was able to detect C2. In
comparison, variant C3 was only detected by Ex-DPDFE after extracting the appropriate
features independently. It is worth mentioning here that the three Composite instances
detected in JHotDraw v5.1, Junit v3.7, and QuickUML 2001 were of C1 type.

Symmetry 2022, 14, x FOR PEER REVIEW 30 of 44

In addition to the above, after analyzing the variants injected within the codes gen-

erated by PDBGTGT, which are defined and reported, two variants were recognized for the

Observer design pattern. In the first variant (O1), the Observer class is a concrete class that

does not participate in any inheritance hierarchy, while in the second variant (O2), the

Observer class is an abstract class (interface) that exists within an inheritance hierarchy.

These two variants are illustrated in Figure 20. Both SSA and SparT were only able to

detect variant O2. In comparison, Ex-DPDFE could detect both O1 and O2, and DeMIMA

could not detect either of them.

Similarly, three variants were identified for the Composite design pattern, as illus-

trated in Figure 21. In the first variant (C1), the Component class is abstract (interface),

while in the second variant (C2), both the Component and the Composite are concrete

classes. The third variant (C3) is called Reflexive connection between Leaf and Composite [18].

Both SSA and SparT were able to detect C1. However, only SparT was able to detect C2.

In comparison, variant C3 was only detected by Ex-DPDFE after extracting the appropriate

features independently. It is worth mentioning here that the three Composite instances

detected in JHotDraw v5.1, Junit v3.7, and QuickUML 2001 were of C1 type.

Moreover, two variants of the Factory Method design pattern were recognized, as

depicted in Figure 22. The first variant (F1) consists of four roles: Creator, Concrete Crea-

tor, Product, and Concrete Product. In the second variant (F2), the Product class is elimi-

nated. Unlike Ex-DPDFE, which was able to detect both F1 and F2, SSA was only able to

detect F1, while SparT could not detect either case.

(a) (b)

Figure 20. The variants of the Observer design pattern that were used in the codes generated by the

PDBGTGT benchmark: (a) Variant O1; (b) Variant O2.

(a) (b) (c)

Figure 21. The variants of the Composite design pattern that were used in the codes generated by

the PDBGTGT benchmark: (a) Variant C1; (b) Variant C2; (c) Variant C3.

Figure 21. The variants of the Composite design pattern that were used in the codes generated by the
PDBGTGT benchmark: (a) Variant C1; (b) Variant C2; (c) Variant C3.

Moreover, two variants of the Factory Method design pattern were recognized, as
depicted in Figure 22. The first variant (F1) consists of four roles: Creator, Concrete Creator,
Product, and Concrete Product. In the second variant (F2), the Product class is eliminated.
Unlike Ex-DPDFE, which was able to detect both F1 and F2, SSA was only able to detect F1,
while SparT could not detect either case.

Furthermore, unlike Ex-DPDFE, in which both cases of the Adapter design pattern (the
Object Adapter and the Class Adapter) were considered, the remaining methods could only
detect the Object Adapter. Since none of the considered methods detected the Template
Method and Visitor design patterns in the generated codes, improving the used benchmark
is recommended.

Symmetry 2022, 14, 1491 30 of 43

Symmetry 2022, 14, x FOR PEER REVIEW 31 of 44

(a) (b)

Figure 22. The variants of the Factory Method design pattern that were used in the codes generated

by the PDBGTGT benchmark: (a) Variant F1; (b) Variant F2.

Furthermore, unlike Ex-DPDFE, in which both cases of the Adapter design pattern (the

Object Adapter and the Class Adapter) were considered, the remaining methods could

only detect the Object Adapter. Since none of the considered methods detected the Tem-

plate Method and Visitor design patterns in the generated codes, improving the used

benchmark is recommended.

5.5.3. RQ3: How Do Design Pattern Variants Affect the Accuracy of Detection Methods?

By analyzing the design pattern instances detected in the four open-source projects

considering the variants proposed in [18], it can be concluded that the open-source Java

projects only include specific design pattern variants. The results of this analysis are

shown in Table 14, which illustrates the variants covered by Ex-DPDFE thus far and their

use in the projects under study. Based on these results, it can be noticed that the develop-

ers of a software project tend to use similar elements to reduce the complexity of the pro-

ject and increase its maintainability and coherence. For example, the developers of

JHotDraw v5.1 and QuickUML 2001 use the eager instantiation variant of the Singleton

design pattern, while the developers of JRefactory v2.6.24 use the lazy instantiation vari-

ant. Moreover, developers focus on variants with low complexity rather than more com-

plex variants. Therefore, it can be concluded that the evaluation results obtained using

these projects are not deterministic and there is no guarantee that the evaluation of the

same detection methods using other projects would generate similar results.

Considering Tables 9 and 11, it is remarkable that the recall values obtained by eval-

uating the detection methods using the PDBGTGT benchmark were generally lower than

those obtained by evaluating them using the open-source Java projects. Furthermore, it

can be noted that, by covering more variants, Ex-DPDFE was able to achieve more accurate

detection results in comparison with the other detection methods.

It should be mentioned here that compound design patterns and variants that have

different structural and behavioral characteristics were not considered in this research. As

a result, a total of 58 variants could be detected using Ex-DPDFE. Detailed information

about the variants listed in Table 14 is available online at https://sqlab.um.ac.ir/im-

ages/219/files/G.rasool%20design%20-pattern%20variants.zip (accessed on 11 June 2022).

In addition, the variants detected by Ex-DPDFE share the essential structural and behav-

ioral characteristics specified by the extracted features that define the design patterns.

Figure 22. The variants of the Factory Method design pattern that were used in the codes generated
by the PDBGTGT benchmark: (a) Variant F1; (b) Variant F2.

5.5.3. RQ3: How Do Design Pattern Variants Affect the Accuracy of Detection Methods?

By analyzing the design pattern instances detected in the four open-source projects
considering the variants proposed in [18], it can be concluded that the open-source Java
projects only include specific design pattern variants. The results of this analysis are shown
in Table 14, which illustrates the variants covered by Ex-DPDFE thus far and their use in
the projects under study. Based on these results, it can be noticed that the developers of a
software project tend to use similar elements to reduce the complexity of the project and
increase its maintainability and coherence. For example, the developers of JHotDraw v5.1
and QuickUML 2001 use the eager instantiation variant of the Singleton design pattern,
while the developers of JRefactory v2.6.24 use the lazy instantiation variant. Moreover,
developers focus on variants with low complexity rather than more complex variants.
Therefore, it can be concluded that the evaluation results obtained using these projects
are not deterministic and there is no guarantee that the evaluation of the same detection
methods using other projects would generate similar results.

Table 14. The variants considered by Ex-DPDFE thus far and their use in the four open-source Java
projects under study.

Design Patterns

Covered Variants
Variant Name Usage Project

Adapter Pluggable Adapters × -
Two-way Adapters × -

Composite

Composites of Composites X JH
1-N Relationship using arrays × -
1-N Relationship using hash

tables × -

Reference participant × -
Supplementary relationship × -
Association implementation × -

Decorator Omitting the abstract
Decorator class X JH

Symmetry 2022, 14, 1491 31 of 43

Table 14. Cont.

Design Patterns

Covered Variants
Variant Name Usage Project

Abstract Factory/
Factory Method

Different Product types inside
Factory class X JH, JR

Default Product
implementation × -

Parameterized Factory
Method × -

One Concrete Creator for all × -
Single Concrete class for

Product selection without
Client

× -

Observer
Multiple instance Observer X JH, QUML
Compound implementation × -

Singleton

Eager instantiation X JH, QUML
Lazy instantiation (non-thread

safe) X JR

Lazy instantiation (thread
safe) × -

Lazy instantiation with
double lock mechanism X JR

Replaceable instance × -
SubClassed Singleton × -

Delegated construction X JR
Different placeholder × -

Limiton × -

State/Strategy

Statemaps × -
Three-level finite state

machine × -

Flexible Strategy pattern × -

Template method Enhanced Template design
pattern × -

Visitor

Visitor combinators × -
Distributed monitoring using

Visitor pattern × -

Extended Visitor pattern × -
Builder Nested Builder × -

Prototype Only has a basic form - -

Bridge

Cascading Bridge × -
Folded cascading Bridge × -

Partially folded cascading
Bridge × -

Architectural cascading
Bridge × -

Bi-directional cascading
Bridge × -

Façade
Encapsulating layered Facade × -

Wrapper Facade × -
Subsystem Facade × -

Flyweight
Constrainedly shared

Flyweight × -

Externalizing extrinsic State × -

Proxy Pipe and filter implementation × -
Dynamic Proxies × -

Chain of Responsibility
Handling strategy × -

Forwarding strategy × -
Bureaucracy pattern × -

Command Basic form only - -
Interpreter Only has a basic form - -
Mediator Traffic generator Mediator × -

Symmetry 2022, 14, 1491 32 of 43

Table 14. Cont.

Design Patterns

Covered Variants
Variant Name Usage Project

Iterator

External Iterators × -
Static structure Iterators × -

Nested object Iterator × -
Single integral Iterator × -

Multiple integral Iterator × -
Magic cookie × -

External magic cookie Iterator × -
Internal Iterator × -

Memento HybridPrM × -
JH = JHotDraw v5.1; JR = JRefactory v2.6.24; JU = JUnit v3.7; QUML = QuickUML 2001.

Considering Tables 9 and 11, it is remarkable that the recall values obtained by eval-
uating the detection methods using the PDBGTGT benchmark were generally lower than
those obtained by evaluating them using the open-source Java projects. Furthermore, it
can be noted that, by covering more variants, Ex-DPDFE was able to achieve more accurate
detection results in comparison with the other detection methods.

It should be mentioned here that compound design patterns and variants that have
different structural and behavioral characteristics were not considered in this research. As
a result, a total of 58 variants could be detected using Ex-DPDFE. Detailed information
about the variants listed in Table 14 is available online at https://sqlab.um.ac.ir/images/
219/files/G.rasool%20design%20-pattern%20variants.zip (accessed on 11 June 2022). In
addition, the variants detected by Ex-DPDFE share the essential structural and behavioral
characteristics specified by the extracted features that define the design patterns.

6. Threats to Validity

Threats to internal validity refer to the factors that affect the results. In this paper, the
design patterns were defined based on their structural and behavioral features. However,
extracting a set of features that is shared among the different variants of a specific design
pattern is challenging. Moreover, considering the absence of full documentation of the
design pattern instances existing in the open-source software systems used for evaluation,
the reported variants are not deterministic and there may still be other undetected variants.
Furthermore, detection results can be affected by the quality of the parser and the informa-
tion stored in the database. This threat was alleviated by using the Java reflection library to
measure structural features. The information extracted by the Java parser was only used to
measure the behavioral features, which are not supported by the Java reflection library.

Threats to external validity refer to the ability to generalize the evaluation results. In
this paper, Ex-DPDFE was only applied to the GoF design patterns. Therefore, there is
no guarantee that the detection results obtained by applying it to other design patterns
with different structural and behavioral characteristics will be similar to those obtained by
its application to the GoF design patterns. This threat can be addressed in the future by
applying Ex-DPDFE to a wider variety of design patterns. Additionally, another threat to
external validity results from only considering input systems with the Java programming
language. Finally, it is worthwhile to apply Ex-DPDFE to input systems with other program-
ming languages. Since both Java functions and source code parsing were used to measure
the different features, the application of Ex-DPDFE to input systems with a different pro-
gramming language only requires using the appropriate parser in addition to modifying
features’ implementation appropriately. Moreover, we cannot claim that Ex-DPDFE gener-
ates similar results on software systems that are based on principles such as microservices
and distribution. Therefore, it is desirable to apply Ex-DPDFE to such systems.

https://sqlab.um.ac.ir/images/219/files/G.rasool%20design%20-pattern%20variants.zip
https://sqlab.um.ac.ir/images/219/files/G.rasool%20design%20-pattern%20variants.zip

Symmetry 2022, 14, 1491 33 of 43

7. Conclusions and Future Work

In this paper, a new feature-based design pattern detection method, Ex-DPDFE, was
proposed. This method is composed of two phases. Within the first phase, the required
features are extracted from the signatures of the design patterns, and the variants of those
design patterns are considered in the feature extraction process. These features, in turn, are
then organized into a feature-based textual design pattern definition form and added to a
reusable vocabulary. In the second phase, the resulting design pattern definition is applied
to the input system to detect the design pattern instances.

Ex-DPDFE was applied to four open-source Java projects in addition to 30 auto-
generated testbeds injected with different design pattern variants. Ex-DPDFE demonstrated
high precision and recall because of its wide coverage of the design pattern variants. The
detected design pattern variants were analyzed and reported intensively.

As future work, it is intended to expand the reusable vocabulary and apply Ex-DPDFE
to other design patterns to assess its extendibility. Furthermore, it is intended to consider
semantic analysis to reduce the number of false positive instances and make it possible
to differentiate between the design patterns that share the same signature, such as the
Strategy and State design patterns. In addition, Ex-DPDFE can be improved by considering
input systems with other programming languages such as C and C++. Finally, it is planned
to apply Ex-DPDFE to similar contexts, such as systems that are based on microservices,
distributed systems, and cloud design patterns.

Author Contributions: Conceptualization, A.R.; methodology, M.K.; software, M.K.; validation,
M.K.; formal analysis, M.K.; investigation, M.K.; resources, M.K.; data curation, M.K.; writing—
original draft preparation, M.K.; writing—review and editing, A.R.; visualization, M.K.; supervision,
A.R.; project administration, A.R.; funding acquisition, M.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Codes and results are available online at https://sqlab.um.ac.ir/index.
php (accessed on 11 June 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Signatures of Some of the GoF Design Patterns

Symmetry 2022, 14, x FOR PEER REVIEW 34 of 44

language. Finally, it is worthwhile to apply Ex-DPDFE to input systems with other pro-

gramming languages. Since both Java functions and source code parsing were used to

measure the different features, the application of Ex-DPDFE to input systems with a differ-

ent programming language only requires using the appropriate parser in addition to mod-

ifying features’ implementation appropriately. Moreover, we cannot claim that Ex-DPDFE

generates similar results on software systems that are based on principles such as micro-

services and distribution. Therefore, it is desirable to apply Ex-DPDFE to such systems.

7. Conclusions and Future Work

In this paper, a new feature-based design pattern detection method, Ex-DPDFE, was

proposed. This method is composed of two phases. Within the first phase, the required

features are extracted from the signatures of the design patterns, and the variants of those

design patterns are considered in the feature extraction process. These features, in turn,

are then organized into a feature-based textual design pattern definition form and added

to a reusable vocabulary. In the second phase, the resulting design pattern definition is

applied to the input system to detect the design pattern instances.

Ex-DPDFE was applied to four open-source Java projects in addition to 30 auto-gener-

ated testbeds injected with different design pattern variants. Ex-DPDFE demonstrated high

precision and recall because of its wide coverage of the design pattern variants. The de-

tected design pattern variants were analyzed and reported intensively.

As future work, it is intended to expand the reusable vocabulary and apply Ex-DPDFE

to other design patterns to assess its extendibility. Furthermore, it is intended to consider

semantic analysis to reduce the number of false positive instances and make it possible to

differentiate between the design patterns that share the same signature, such as the Strat-

egy and State design patterns. In addition, Ex-DPDFE can be improved by considering in-

put systems with other programming languages such as C and C++. Finally, it is planned

to apply Ex-DPDFE to similar contexts, such as systems that are based on microservices,

distributed systems, and cloud design patterns.

Author Contributions: Conceptualization, A.R.; methodology, M.K.; software, M.K.; validation,

M.K.; formal analysis, M.K.; investigation, M.K.; resources, M.K.; data curation, M.K.; writing—

original draft preparation, M.K.; writing—review and editing, A.R.; visualization, M.K.; supervi-

sion, A.R.; project administration, A.R.; funding acquisition, M.K. All authors have read and agreed

to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Codes and results are available online at https://sqlab.um.ac.ir/in-

dex.php (accessed on 11 June 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Signatures of Some of the GoF Design Patterns

Figure A1. The signature of the Singleton design pattern: (a) the structural signature of the Single-

ton; (b) the behavioral signature of the Singleton.

Figure A1. The signature of the Singleton design pattern: (a) the structural signature of the Singleton;
(b) the behavioral signature of the Singleton.

https://sqlab.um.ac.ir/index.php
https://sqlab.um.ac.ir/index.php

Symmetry 2022, 14, 1491 34 of 43Symmetry 2022, 14, x FOR PEER REVIEW 35 of 44

Figure A2. The signature of the Class Adapter design pattern: (a) the structural signature of the

Class Adapter; (b) the behavioral signature of the Class Adapter.

Figure A3. The signature of the Observer design pattern: (a) the structural signature of the Observer;

(b) the behavioral signature of the Observer.

Figure A4. The signature of the Strategy (State) design pattern: (a) the structural signature of the

Strategy (State); (b) the behavioral signature of the Strategy (State).

Figure A5. The signature of the Composite design pattern: (a) the structural signature of Composite;

(b) the behavioral signature of the Composite.

Figure A6. The signature of the Abstract Factory (Factory Method) design pattern: (a) the structural

signature of Abstract Factory (Factory Method); (b) the behavioral signature of the Abstract Factory

(Factory Method).

Figure A2. The signature of the Class Adapter design pattern: (a) the structural signature of the Class
Adapter; (b) the behavioral signature of the Class Adapter.

Symmetry 2022, 14, x FOR PEER REVIEW 35 of 44

Figure A2. The signature of the Class Adapter design pattern: (a) the structural signature of the

Class Adapter; (b) the behavioral signature of the Class Adapter.

Figure A3. The signature of the Observer design pattern: (a) the structural signature of the Observer;

(b) the behavioral signature of the Observer.

Figure A4. The signature of the Strategy (State) design pattern: (a) the structural signature of the

Strategy (State); (b) the behavioral signature of the Strategy (State).

Figure A5. The signature of the Composite design pattern: (a) the structural signature of Composite;

(b) the behavioral signature of the Composite.

Figure A6. The signature of the Abstract Factory (Factory Method) design pattern: (a) the structural

signature of Abstract Factory (Factory Method); (b) the behavioral signature of the Abstract Factory

(Factory Method).

Figure A3. The signature of the Observer design pattern: (a) the structural signature of the Observer;
(b) the behavioral signature of the Observer.

Symmetry 2022, 14, x FOR PEER REVIEW 35 of 44

Figure A2. The signature of the Class Adapter design pattern: (a) the structural signature of the

Class Adapter; (b) the behavioral signature of the Class Adapter.

Figure A3. The signature of the Observer design pattern: (a) the structural signature of the Observer;

(b) the behavioral signature of the Observer.

Figure A4. The signature of the Strategy (State) design pattern: (a) the structural signature of the

Strategy (State); (b) the behavioral signature of the Strategy (State).

Figure A5. The signature of the Composite design pattern: (a) the structural signature of Composite;

(b) the behavioral signature of the Composite.

Figure A6. The signature of the Abstract Factory (Factory Method) design pattern: (a) the structural

signature of Abstract Factory (Factory Method); (b) the behavioral signature of the Abstract Factory

(Factory Method).

Figure A4. The signature of the Strategy (State) design pattern: (a) the structural signature of the
Strategy (State); (b) the behavioral signature of the Strategy (State).

Symmetry 2022, 14, x FOR PEER REVIEW 35 of 44

Figure A2. The signature of the Class Adapter design pattern: (a) the structural signature of the

Class Adapter; (b) the behavioral signature of the Class Adapter.

Figure A3. The signature of the Observer design pattern: (a) the structural signature of the Observer;

(b) the behavioral signature of the Observer.

Figure A4. The signature of the Strategy (State) design pattern: (a) the structural signature of the

Strategy (State); (b) the behavioral signature of the Strategy (State).

Figure A5. The signature of the Composite design pattern: (a) the structural signature of Composite;

(b) the behavioral signature of the Composite.

Figure A6. The signature of the Abstract Factory (Factory Method) design pattern: (a) the structural

signature of Abstract Factory (Factory Method); (b) the behavioral signature of the Abstract Factory

(Factory Method).

Figure A5. The signature of the Composite design pattern: (a) the structural signature of Composite;
(b) the behavioral signature of the Composite.

Symmetry 2022, 14, x FOR PEER REVIEW 35 of 44

Figure A2. The signature of the Class Adapter design pattern: (a) the structural signature of the

Class Adapter; (b) the behavioral signature of the Class Adapter.

Figure A3. The signature of the Observer design pattern: (a) the structural signature of the Observer;

(b) the behavioral signature of the Observer.

Figure A4. The signature of the Strategy (State) design pattern: (a) the structural signature of the

Strategy (State); (b) the behavioral signature of the Strategy (State).

Figure A5. The signature of the Composite design pattern: (a) the structural signature of Composite;

(b) the behavioral signature of the Composite.

Figure A6. The signature of the Abstract Factory (Factory Method) design pattern: (a) the structural

signature of Abstract Factory (Factory Method); (b) the behavioral signature of the Abstract Factory

(Factory Method).

Figure A6. The signature of the Abstract Factory (Factory Method) design pattern: (a) the structural
signature of Abstract Factory (Factory Method); (b) the behavioral signature of the Abstract Factory
(Factory Method).

Symmetry 2022, 14, 1491 35 of 43Symmetry 2022, 14, x FOR PEER REVIEW 36 of 44

Figure A7. The signature of the Decorator design pattern: (a) the structural signature of Decorator;

(b) the behavioral signature of the Decorator.

Figure A8. The signature of the Template Method design pattern: (a) the structural signature of

Template Method; (b) the behavioral signature of the Template Method.

Figure A9. The signature of the Visitor design pattern: (a) the structural signature of Visitor; (b) the

behavioral signature of the Visitor.

Appendix B. The Proposed Feature-Based Textual Definitions of Some of the GoF

Design Patterns

Table A1. The definition of the Singleton design pattern.

Pattern Name: Singleton

Role1 name: Singleton

FSR11 Public static method

FSR12
Method returns an object of

the same class

FSR13 Non-public constructor

Table A2. The definition of the Class Adapter design pattern.

Pattern Name: Class Adapter

Role1 name: Adapter

FAR11 Inheritance

FAR12 Implementation

FAR13
Method call to its superclass by a

method that overrides another class

Role2 name: Adaptee FAR21
Called method from its subclass by a

method that overrides another class

Table A3. The definition of the Observer design pattern.

Pattern Name: Observer

Figure A7. The signature of the Decorator design pattern: (a) the structural signature of Decorator;
(b) the behavioral signature of the Decorator.

Symmetry 2022, 14, x FOR PEER REVIEW 36 of 44

Figure A7. The signature of the Decorator design pattern: (a) the structural signature of Decorator;

(b) the behavioral signature of the Decorator.

Figure A8. The signature of the Template Method design pattern: (a) the structural signature of

Template Method; (b) the behavioral signature of the Template Method.

Figure A9. The signature of the Visitor design pattern: (a) the structural signature of Visitor; (b) the

behavioral signature of the Visitor.

Appendix B. The Proposed Feature-Based Textual Definitions of Some of the GoF

Design Patterns

Table A1. The definition of the Singleton design pattern.

Pattern Name: Singleton

Role1 name: Singleton

FSR11 Public static method

FSR12
Method returns an object of

the same class

FSR13 Non-public constructor

Table A2. The definition of the Class Adapter design pattern.

Pattern Name: Class Adapter

Role1 name: Adapter

FAR11 Inheritance

FAR12 Implementation

FAR13
Method call to its superclass by a

method that overrides another class

Role2 name: Adaptee FAR21
Called method from its subclass by a

method that overrides another class

Table A3. The definition of the Observer design pattern.

Pattern Name: Observer

Figure A8. The signature of the Template Method design pattern: (a) the structural signature of
Template Method; (b) the behavioral signature of the Template Method.

Symmetry 2022, 14, x FOR PEER REVIEW 36 of 44

Figure A7. The signature of the Decorator design pattern: (a) the structural signature of Decorator;

(b) the behavioral signature of the Decorator.

Figure A8. The signature of the Template Method design pattern: (a) the structural signature of

Template Method; (b) the behavioral signature of the Template Method.

Figure A9. The signature of the Visitor design pattern: (a) the structural signature of Visitor; (b) the

behavioral signature of the Visitor.

Appendix B. The Proposed Feature-Based Textual Definitions of Some of the GoF

Design Patterns

Table A1. The definition of the Singleton design pattern.

Pattern Name: Singleton

Role1 name: Singleton

FSR11 Public static method

FSR12
Method returns an object of

the same class

FSR13 Non-public constructor

Table A2. The definition of the Class Adapter design pattern.

Pattern Name: Class Adapter

Role1 name: Adapter

FAR11 Inheritance

FAR12 Implementation

FAR13
Method call to its superclass by a

method that overrides another class

Role2 name: Adaptee FAR21
Called method from its subclass by a

method that overrides another class

Table A3. The definition of the Observer design pattern.

Pattern Name: Observer

Figure A9. The signature of the Visitor design pattern: (a) the structural signature of Visitor; (b) the
behavioral signature of the Visitor.

Appendix B. The Proposed Feature-Based Textual Definitions of Some of the GoF
Design Patterns

Table A1. The definition of the Singleton design pattern.

Pattern Name: Singleton

Role1 name: Singleton

FSR11 Public static method

FSR12
Method returns an object of

the same class
FSR13 Non-public constructor

Table A2. The definition of the Class Adapter design pattern.

Pattern Name: Class Adapter

Role1 name: Adapter

FAR11 Inheritance
FAR12 Implementation

FAR13

Method call to its superclass
by a method that overrides

another class

Role2 name: Adaptee FAR21

Called method from its
subclass by a method that

overrides another class

Symmetry 2022, 14, 1491 36 of 43

Table A3. The definition of the Observer design pattern.

Pattern Name: Observer

Role1 name: Subject
FOR11

One-to-many association to
another class

FOR12
Method call to an associated

class in loop

Role2 name: Observer
FOR21

One-to-many association
from another class

FOR22
Called method from an
associated class in loop

Table A4. The definition of the Strategy (State) design pattern.

Pattern Name: Strategy (State)

Role1 name: Context
FSR11

One-to-one association to an
interface

FSR12
Method call to an associated

interface

Role2 name: Strategy

FSR21 Interface

FSR22
One-to-one association from

another class

FSR23
Called method from an

associated class

Table A5. The definition of the Composite design pattern.

Pattern Name: Composite

Role1 name: Composite

FCR11 Subclass

FCR12
One-to-many association to

its superclass

FCR13

Delegation to its superclass
with loop by an overriding

method

Role2 name: Component

FCR21 Superclass

FCR22
One-to-many association

from its subclass

FCR23

Delegation from its subclass
with loop by an overriding

method

Table A6. The definition of the Abstract Factory (Factory Method) design pattern.

Pattern Name: Abstract Factory (Factory Method)

Role1 name: Concrete
Product FFR11

A new instance returned from
another class by an
overriding method

Role2 name: Concrete
Factory (Concrete Creator)

FFR21 Subclass
FFR22 Not interface

FFR23

Returns a new instance of
another class by an
overriding method

Symmetry 2022, 14, 1491 37 of 43

Table A7. The definition of the Decorator design pattern.

Pattern Name: Decorator

Role1 name: Decorator

FDR11 Subclass

FDR12
One-to-one association to its

superclass

FDR13
Method call to its superclass

by an overriding method

Role2 name: Component

FDR21 Superclass

FDR22
Called method from its

subclass

FDR23
One-to-one association from

its subclass

Table A8. The definition of the Template Method design pattern.

Pattern Name: Template Method

Role1 name: Abstract Class
FTR11 Interface

FTR12
Method call to an overridden

method of the same class

Table A9. The definition of the Visitor design pattern.

Pattern Name: Visitor

Role1 name: Visitor

FVR11 Superclass

FVR12

Called method from another
class with an overriding

method that has a parameter
of the type of the caller

FVR13
One-to-one association from

another class

FVR14
Method with a parameter of

the type of another class

Role2 name: Element

FVR21 Superclass

FVR22
Method with a parameter of

the type of another class

FVR23

Method call to another class
with a parameter of the type

of the caller class

Role3 name: Concrete
Element

FVR31 Subclass

FVR32
Method with a parameter of

the type of another class

FVR33

Method call to another class
with a parameter of the type

of the caller class

Symmetry 2022, 14, 1491 38 of 43

Appendix C. Some Examples of True Positive and False Positive Instances (If Any) of Some Design Patterns Detected in JHotDraw v5.1

Design Patterns

Instance Details
Detected Instance Instance Type The Reason of Detection

Singleton
Singleton:

CH.ifa.draw.util.Clipboard
TP

Singleton:
• Public static method: getClipboard().
• Method returns an object: getClipboard() returns a Clipboard.
• Nonpublic constructor: The class has a private constructor.

Template Method
Abstract Class:

CH.ifa.draw.standard.AbstractFigure
TP

Abstract Class:
• Interface: The class AbstractFigure is an abstract class.
• Method call to the same class: The method moveBy() of the class

AbstractFigure calls the methods willChange(), basicMoveBy (),
and changed() of the same class.

Observer
Subject: CH.ifa.draw.standard.StandardDrawing,

Observer:
CH.ifa.draw.framework.DrawingChangeListener

TP

Subject:
• One-to-many association to another class: The class Standard-

Drawing is associated with the class DrawingChangeListener
using the vector named fListeners.

• Method call to an associated class in loop: The class StandardDraw-
ing calls the drawingRequestUpdate() method of the class Drawing
Change Listener for every element in the vector fListeners.

Composite

Composite:
CH.ifa.draw.standard.CompositeFigure,

Component:
CH.ifa.draw.framework.Figure

TP

Composite:
• One-to-many association to its superclass: The class Compos-

iteFigure extends the class AbstractFigure, which, in turn, im-
plements the class Figure. Additionally, the class Compos-
iteFigure is associated with the class Figure using the vector
named fFigures.

• Delegation with loop to its superclass by an overriding method:
The method draw() of the class CompositeFigure overrides a
method of the class Figure. Additionally, this method delegates
to the method draw() in the class Figure with a loop.

Symmetry 2022, 14, 1491 39 of 43

Design Patterns

Instance Details
Detected Instance Instance Type The Reason of Detection

Strategy (State)

Context:
CH.ifa.draw.applet.DrawApplet

Strategy:
CH.ifa.draw.framework.Drawing

TP

Strategy:
• Interface: The class is an interface.
• One-to-one association from another class: The class DrawAp-

plet is associated with the class Drawing using the field named
fDrawing.

• Called method from an associated class: The class DrawApplet
calls the release() method of the class Drawing for the field
fDrawing.

Context:
CH.ifa.draw.standard.DragTracker

Strategy:
CH.ifa.draw.framework.Figure

FP
These classes satisfy the features used to identify the
Strategy design pattern without meeting the goal of the pattern.

Decorator
Decorator: CH.ifa.draw.standard.DecoratorFigure,

Component:
CH.ifa.draw.framework.Figure

TP

Decorator:
• One-to-one association to its superclass: The class DecoratorFig-

ure extends the class AbstractFigure, which, in turn, implements
the class Figure. Additionally, the class DecoratorFigure is asso-
ciated with the class Figure using the field named fComponent.

• Method call to associated superclass by an overriding method:
The class DecoratorFigure calls the connectionInsets() method
of the class Figure for the field fComponent by a method that
overrides the same called method.

Factory Method (Abstract
Factory)

Concrete Product:
CH.ifa.draw.framework.Connector,

Concrete Creator:
CH.ifa.draw.standard.AbstractFigure

TP

Concrete Creator:
• Subclass: AbstractFigure implements Figure
• Returns a new instance of another class by an overriding method:

The method connectorAt() of the class AbstractFigure overrides
a method of the class Figure and returns a new instance of the
class Connector.

Concrete Product: CH.ifa.draw.framework.Locator
Concrete Creator:

CH.ifa.draw.contrib.PolygonFigure
FP

These classes satisfy the features used to identify the Factory
Method design pattern without meeting the goal of the pattern.

Symmetry 2022, 14, 1491 40 of 43

References
1. Gamma, E.; Helm, R.; Johnson, R.E.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley:

Boston, MA, USA, 1995.
2. Xiong, R.; Li, B. Accurate design pattern detection based on idiomatic implementation matching in Java language context. In

Proceedings of the IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER), Hangzhou,
China, 24–27 February 2019.

3. Ampatzoglouaba, A. A methodology to assess the impact of design patterns on software quality. Inf. Softw. Technol. 2012,
54, 331–346. [CrossRef]

4. Shilintsev, D.; Dlamini, G. A study: Design patterns detection approaches and impact on software quality. In Proceedings of the
International Conference on Frontiers in Software Engineering, Innopolis, Russia, 17–18 June 2021.

5. Jaafar, F.; Guéhéneuc, Y.-G.; Hamel, S.; Khomh, F.; Zulkernine, M. Evaluating the impact of design pattern and anti-pattern
dependencies on changes and faults. Empir. Softw. Eng. 2016, 21, 896–931. [CrossRef]

6. Hussain, S.; Keung, J.; Khan, A.A. Software design patterns classification and selection. Appl. Soft. Comput. 2017, 58, 225–244.
[CrossRef]

7. Lucia, A.D.; Deufemia, V.; Gravino, C.; Risi, M. Detecting the behavior of design patterns through model checking and dynamic
analysis. ACM Trans. Softw. Eng. Methodol. 2018, 26, 1–41. [CrossRef]

8. Niere, J.; Schafer, W.; Wadsack, J.P.; Wendehals, L.; Welsh, J. Towards pattern-based design recovery. In Proceedings of the 24th
International Conference on Software Engineering, Orlando, FL, USA, 19–25 May 2002.

9. Mayvan, B.B.; Rasoolzadegan, A. Design pattern detection based on the graph theory. Knowl.-Based Syst. 2017, 120, 211–225.
[CrossRef]

10. Al-Obeidallah, M.G.; Petridis, M.; Kapetanakis, S. A survey on design pattern detection approaches. Int. J. Softw. Eng. 2016,
7, 41–59.

11. Rasool, G.; Streitfdert, D. A survey on design pattern recovery techniques. Int. J. Comput. Sci. Issues 2011, 8, 251–260.
12. Shahbazi, Z.; Rasoolzadegan, A.; Purfallah, Z.; Horestani, S.J. A new method for detecting various variants of GoF design patterns

using conceptual signatures. Softw. Qual. J. 2021. [CrossRef]
13. Tsantalis, N.; Chatzigeorgiou, A.; Stephanides, G.; Halkidis, S.T. Design pattern detection using similarity scoring. IEEE Trans.

Softw. Eng. 2006, 32, 896–909. [CrossRef]
14. Sahoo, S.K. Social object—A software design pattern. In Proceedings of the IEEE 2nd International Conference on Software

Engineering and Service Science, Beijing, China, 15–17 July 2011.
15. Bayley, I.; Zhu, H. Formal specification of the variants and behavioral features of design patterns. J. Syst. Softw. 2010, 83, 209–221.

[CrossRef]
16. Gao, C. Application of design patterns to control system of digital photofinishing. In Proceedings of the Third International

Symposium on Intelligent Information Technology Application, Nanchang, China, 21–22 November 2009.
17. Stencel, K.; Węgrzynowicz, P. Detection of diverse design pattern variants. In Proceedings of the 15th Asia-Pacific Software

Engineering Conference, Beijing, China, 3–5 December 2008.
18. Rasool, G.; Akhtar, H. Towards a catalog of design patterns variants. In Proceedings of the International Conference on Frontiers

of Information Technology (FIT), Islamabad, Pakistan, 16–18 December 2019.
19. Yarahmadi, H.; Hasheminejad, S.M.H. Design pattern detection approaches: A systematic review of the literature. Artif. Intell.

Rev. 2020, 53, 5789–5846. [CrossRef]
20. Dwivedi, A.K.; Tirkey, A.; Rath, S.K. Applying learning-based methods for recognizing design patterns. Innov. Syst. Softw. Eng.

2019, 15, 87–100. [CrossRef]
21. Zein, S.; Rimawi, D. A static analysis of android source code for design patterns usage. Int. J. Adv. Trends Comput. Sci. Eng. 2020,

9, 2178–2186.
22. Liu, W.; Zhang, C.; Wang, F.; Yang, Y. Combining network analysis with structural matching for design pattern detection. In

Proceedings of the Evaluation and Assessment in Software Engineering (EASE ‘20), Trondheim, Norway, 15–17 April 2020.
23. Guimaraes, E.; Cai, Y. Understanding software systems through interactive pattern detection. In Proceedings of the IEEE

International Conference on Software Architecture Companion (ICSA-C), Salvador, Brazil, 2–6 November 2020.
24. Xiong, R.; Lo, D.; Li, B. Distinguishing similar design pattern instances through temporal behavior analysis. In Proceedings of the

IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER), London, ON, Canada, 18–21
February 2020.

25. Oruc, M.; Akal, F.; Sever, H. Detecting design patterns in object-oriented design models by using a graph mining approach. In
Proceedings of the 4th International Conference in Software Engineering Research and Innovation (CONISOFT), Puebla, Mexico,
27–29 April 2016.

26. Dong, J.; Sun, Y.; Zhao, Y. Design pattern detection by template matching. In Proceedings of the ACM Symposium on Applied
Computing, Fortaleza, Ceara, Brazil, 16–20 March 2008.

27. Yu, D.; Ge, J.; Wu, W. Detection of design pattern instances based on graph isomorphism. In Proceedings of the IEEE 4th
International Conference on Software Engineering and Service Science, Beijing, China, 23–25 May 2013.

28. Singh, J.; Gupta, M. Design pattern detection using Dpdetect algorithm. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 2278–3075.

http://doi.org/10.1016/j.infsof.2011.10.006
http://doi.org/10.1007/s10664-015-9361-0
http://doi.org/10.1016/j.asoc.2017.04.043
http://doi.org/10.1145/3176643
http://doi.org/10.1016/j.knosys.2017.01.007
http://doi.org/10.1007/s11219-021-09576-9
http://doi.org/10.1109/TSE.2006.112
http://doi.org/10.1016/j.jss.2009.09.039
http://doi.org/10.1007/s10462-020-09834-5
http://doi.org/10.1007/s11334-019-00329-3

Symmetry 2022, 14, 1491 41 of 43

29. Pande, A.; Pant, V.; Gupta, M.; Mishra, A. Design patterns discovery in source code: Novel technique using substring match.
TEM J. 2021, 10, 1166–1174. [CrossRef]

30. Huang, H.Y.; Zhang, S.S.; Cao, J.; Duan, Y.H. A practical pattern recovery approach based on both structural and behavioral
analysis. J. Syst. Softw. 2005, 75, 69–87. [CrossRef]

31. Yu, D.; Zhang, Y.; Chen, Z. A comprehensive approach to the recovery of design pattern instances based on sub-patterns and
method signatures. J. Syst. Softw. 2015, 103, 1–16. [CrossRef]

32. Bernardi, M.L.; Cimitile, M.; Lucca, G.D. Design pattern detection using a DSL-driven graph matching approach. J. Softw.-Evol.
Process 2014, 26, 1233–1266. [CrossRef]

33. Singh, J.; Chowdhuri, S.R.; Bethany, G.; Gupta, M. Detecting design patterns: A hybrid approach based on graph matching and
static analysis. Inf. Technol. Manag. 2021. [CrossRef]

34. Liu, C. A general framework to detect design patterns by combining static and dynamic analysis techniques. Int. J. Softw. Eng.
Knowl. Eng. 2021, 31, 21–54. [CrossRef]

35. Rasool, G.; Mäder, P. A customizable approach to design pattern recognition based on feature types. Arab. J. Sci. Eng. 2014, 39,
8851–8873. [CrossRef]

36. Mohamed, K.A.; Kamel, A. Reverse engineering state and strategy design patterns using static code analysis. Int. J. Adv. Comput.
Sci. Appl. 2018, 9, 568–576.

37. Martino, B.D.; Esposito, A. A rule-based procedure for automatic recognition of design patterns in UML diagrams. Softw.-Pract.
Exp. 2016, 46, 983–1007. [CrossRef]

38. Alnusair, A.; Zhao, T.; Yan, G. Rule-based detection of design patterns in program code. Int. J. Softw. Tools Technol. Transf. 2014,
16, 315–334. [CrossRef]

39. Thongrak, M.; Vatanawood, W. Detection of design pattern in class diagram using ontology. In Proceedings of the International
Computer Science and Engineering Conference (ICSEC), Khon Kaen, Thailand, 30 July–1 August 2014.

40. Ren, W.; Zhao, W. An observer design-pattern detection technique. In Proceedings of the IEEE International Conference on
Computer Science and Automation Engineering (CSAE), Zhangjiajie, China, 25–27 May 2012.

41. Vokác, M. An efficient tool for recovering Design Patterns from C++ Code. J. Object Technol. 2006, 5, 139–157. [CrossRef]
42. Lucia, A.D.; Deufemia, V.; Gravino, C.; Risi, M. Design pattern recovery through visual language parsing and source code analysis.

J. Syst. Softw. 2009, 82, 1177–1193. [CrossRef]
43. Lucia, A.D.; Deufemia, V.; Gravino, C.; Risi, M. An Eclipse plug-in for the detection of design pattern instances through static

and dynamic analysis. In Proceedings of the IEEE International Conference on Software Maintenance, Timisoara, Romania,
12–18 September 2010.

44. Costagliola, G.; Lucia, A.D.; Deufemia, V.; Gravino, C.; Risi, M. Design pattern recovery by visual language parsing. In
Proceedings of the Ninth European Conference on Software Maintenance and Reengineering, Manchester, UK, 23 March 2005.

45. Lucia, A.D.; Deufemia, V.; Gravino, C.; Risi, M. Behavioral pattern identification through visual language parsing and code
instrumentation. In Proceedings of the 13th European Conference on Software Maintenance and Reengineering, Kaiserslautern,
Germany, 24–27 March 2009.

46. Hayashi, S.; Katada, J.; Sakamoto, R.; Kobayashi, T.; Saeki, M. Design pattern detection by using meta patterns. IEICE Transactions
on Information and Systems 2008, E91.D, 933–944. [CrossRef]

47. Wuyts, R. Declarative reasoning about the structure of object-oriented systems. In Proceedings of the Technology of Object-
Oriented Languages, Santa Barbara, CA, USA, 3–7 August 1998.

48. Kramer, C.; Prechelt, L. Design recovery by automated search for structural design patterns in object-oriented software. In
Proceedings of the 4th Working Conference on Reverse Engineering (WCRE ’96), Monterey, CA, USA, 8–10 November 1996.

49. Albin-Amiot, H.; Cointe, P.; Guéhéneuc, Y.-G.; Jussien, N. Instantiating and detecting design patterns: Putting bits and pieces
together. In Proceedings of the 16th Annual International Conference on Automated Software Engineering, San Diego, CA, USA,
26–29 November 2001.

50. Guéhéneuc, Y.-G.; Antoniol, G. DeMIMA: A multilayered approach for design pattern identification. IEEE Trans. Softw. Eng. 2008,
34, 667–684. [CrossRef]

51. Guéhéneuc, Y.-G.; Albin-Amiot, H. Using design patterns and constraints to automate the detection and correction of inter-class
design defects. In Proceedings of the 39th International Conference and Exhibition on Technology of Object-Oriented Languages
and Systems (TOOLS 39), Santa Barbara, CA, USA, 29 July–3 August 2001.

52. Zhu, H.; Bayley, I.; Shan, L.; Amphlett, R. Tool support for design pattern recognition at model level. In Proceedings of the 33rd
Annual IEEE International Computer Software and Applications Conference, Seattle, WA, USA, 20–24 July 2009.

53. Wierda, A.; Dortmans, E.; Somers, L. Pattern detection in object-oriented source code. In Proceedings of the International
Conference on Software and Data Technologies, Barcelona, Spain, 22–25 July 2007.

54. Mens, K.; Tourwé, T. Delving source code with formal concept analysis. Comput. Lang. Syst. Struct. 2005, 31, 183–197. [CrossRef]
55. Blewitt, A.; Bundy, A.; Stark, I. Automatic verification of design patterns in Java. In Proceedings of the 20th IEEE/ACM

International Conference on Automated software engineering, New York, NY, USA, 7–11 November 2005.
56. Issaoui, I.; Bouassida, N.; Ben-Abdallah, H. Using metric-based filtering to improve design pattern detection approaches. Innov.

Syst. Softw. Eng. 2014, 11, 39–53. [CrossRef]

http://doi.org/10.18421/TEM103-21
http://doi.org/10.1016/j.jss.2003.11.018
http://doi.org/10.1016/j.jss.2015.01.019
http://doi.org/10.1002/smr.1674
http://doi.org/10.1007/s10799-021-00339-3
http://doi.org/10.1142/S0218194021400027
http://doi.org/10.1007/s13369-014-1449-0
http://doi.org/10.1002/spe.2336
http://doi.org/10.1007/s10009-013-0292-z
http://doi.org/10.5381/jot.2006.5.1.a6
http://doi.org/10.1016/j.jss.2009.02.012
http://doi.org/10.1093/ietisy/e91-d.4.933
http://doi.org/10.1109/TSE.2008.48
http://doi.org/10.1016/j.cl.2004.11.004
http://doi.org/10.1007/s11334-014-0241-3

Symmetry 2022, 14, 1491 42 of 43

57. Guéhéneuc, Y.-G.; Guyomarc’h, J.-Y.; Sahraoui, H. Improving design-pattern identification: A new approach and an exploratory
study. Softw. Qual. J. 2010, 18, 145–174. [CrossRef]

58. Kim, H.; Boldyreff, C. A method to recover design patterns using software product metrics. In Proceedings of the International
Conference on Software Reuse (ICSR), Vienna, Austria, 27–29 June 2000.

59. Antoniol, G.; Fiutem, R.; Cristoforetti, L. Using metrics to identify design patterns in object-oriented software. In Proceedings of
the Fifth International Software Metrics Symposium Metrics, Bethesda, MD, USA, 20–21 March 1998.

60. Antoniol, G.; Casazza, G.; Penta, M.D.; Fiutem, R. Object oriented design patterns recovery. J. Syst. Softw. 2001, 59, 181–196.
[CrossRef]

61. Guéhéneuc, Y.-G.; Sahraoui, H.; Zaidi, F. Fingerprinting design patterns. In Proceedings of the 11th Working Conference on
Reverse Engineering, Delft, The Netherlands, 8–12 November 2004.

62. Nazar, N.; Aleti, A.; Zheng, Y. Feature-based software design pattern detection. J. Syst. Softw. 2021, 185, 111179. [CrossRef]
63. Huang, X.-L.; Ma, X.; Hu, F. Editorial: Machine Learning and Intelligent Communications. Mob. Netw. Appl. 2018, 23, 68–70.

[CrossRef]
64. Dwivedi, A.K.; Tirkey, A.; Rath, S.K. Software design pattern mining using classification-based techniques. Front. Comput. Sci.

2018, 12, 908–922. [CrossRef]
65. Detten, M.V.; Becker, S. Combining clustering and pattern detection for the reengineering of component-based software systems.

In Proceedings of the Joint ACM SIGSOFT Conference—QoSA and ACM SIGSOFT Symposium—ISARCS on Quality of Software
Architectures—QoSA and Architecting Critical Systems—ISARCS, New York, NY, USA, 20–24 June 2011.

66. Uchiyama, S.; Washizaki, H.; Fukazawa, Y.; Kubo, A. Design pattern detection using software metrics and machine learning. In
Proceedings of the Fifth International Workshop on Software Quality and Maintainability (SQM2011), Oldenburg, Germany, 1–4
March 2011.

67. Uchiyama, S.; Kubo, A.; Washizaki, H.; Fukazawa, Y. Detecting design patterns in object-oriented program source code by using
metrics and machine learning. J. Softw. Eng. Appl. 2014, 7, 983–998. [CrossRef]

68. Gupta, M.; Singh, S. Comparative analysis of software design patterns-based design metrics using machine learning algorithms.
Int. J. Comput. Eng. Technol. 2018, 9, 32–41.

69. Dwivedi, A.K.; Tirkey, A.; Rath, S.K. Applying software metrics for the mining of design pattern. In Proceedings of the IEEE
Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON), Varanasi, India,
9–11 December 2016.

70. Dwivedi, A.K.; Rath, S.K.; Satapathy, S.M. Neural network-based patterns detection in object-oriented program. In Proceedings
of the 9th Annual Information Technology, Electromechanical Engineering and Microelectronics Conference (IEMECON), Jaipur,
India, 13–15 March 2019.

71. Dwivedi, A.K.; Rath, S.K.; Satapathy, S.M. Applying neural network to determine patterns in open-source software. In Proceedings
of the IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India, 29–31 March 2019.

72. Paakki, J.; Karhinen, A.; Gustafsson, J.; Nenonen, L.; Verkamo, A.I. Software metrics by architectural pattern mining. In
Proceedings of the International Conference on Software: Theory and Practice (16th IFIP World Computer Congress), Beijing,
China, 21–24 August 2000.

73. Chihada, A.; Jalili, S.; Hasheminejad, S.M.H.; Zangooei, M.H. Source code and design conformance, design pattern detection
from source code by classification approach. Appl. Soft Comput. 2015, 26, 357–367. [CrossRef]

74. Chaturvedi, A.; Gupta, M.; Gupta, S.K. Design pattern detection using genetic algorithm for sub-graph isomorphism to enhance
software reusability. Int. J. Comput. Appl. 2016, 135, 33–36. [CrossRef]

75. Chaturvedi, S.; Chaturvedi, A.; Tiwari, A.; Agarwal, S. Design pattern detection using machine learning techniques. In
Proceedings of the 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future
Directions) (ICRITO), Noida, India, 29–31 August 2018.

76. Gupta, M. Design pattern mining using greedy algorithm for multi-labelled graphs. Int. J. Inf. Commun. Technol. 2011, 3, 314–323.
[CrossRef]

77. Fontana, F.A.; Zanoni, M. A tool for design pattern detection and software architecture reconstruction. Inf. Sci. 2011, 181,
1306–1324. [CrossRef]

78. Arcelli, F.; Christina, L. Enhancing Software Evolution through Design Pattern Detection. In Proceedings of the Third International
IEEE Workshop on Software Evolvability, Paris, France, 1 October 2007.

79. Tonella, P.; Antoniol, G. Object oriented design pattern inference. In Proceedings of the IEEE International Conference on Software
Maintenance, Oxford, UK, 30 August–3 September 1999.

80. Lebon, M.; Tzerpos, V. Fine-grained design pattern detection. In Proceedings of the IEEE 36th Annual Computer Software and
Applications Conference, Izmir, Turkey, 16–20 July 2012.

81. Dietrich, J.; Elgar, C. A formal description of design patterns using OWL. In Proceedings of the Australian Software Engineering
Conference, Brisbane, QLD, Australia, 29 March–1 April 2005.

82. Elaasar, M.; Briand, L.C.; Labiche, Y. A metamodeling approach to pattern specification. In Proceedings of the 9th International
Conference on Model Driven Engineering Languages and Systems (MODELS 2006), Genoa, Italy, 1–6 October 2006.

83. Dietrich, J.; Elgar, C. An ontology-based representation of software design patterns. In Design Pattern Formalization Techniques; IGI
Global: Hershey, PA, USA, 2007; pp. 258–279.

http://doi.org/10.1007/s11219-009-9082-y
http://doi.org/10.1016/S0164-1212(01)00061-9
http://doi.org/10.1016/j.jss.2021.111179
http://doi.org/10.1007/s11036-017-0962-2
http://doi.org/10.1007/s11704-017-6424-y
http://doi.org/10.4236/jsea.2014.712086
http://doi.org/10.1016/j.asoc.2014.10.027
http://doi.org/10.5120/ijca2016908334
http://doi.org/10.1504/IJICT.2011.043627
http://doi.org/10.1016/j.ins.2010.12.002

Symmetry 2022, 14, 1491 43 of 43

84. Blewitt, A. Spine: Language for pattern verification. In Design Pattern Formalization Techniques; IGI Global: Hershey, PA, USA,
2007; pp. 109–122.

85. Chidamber, S.R.; Kemerer, C.F. A metrics suite for object-oriented design. IEEE Trans. Softw. Eng. 1994, 20, 476–493. [CrossRef]
86. Hernandez, J.; Kubo, A.; Washizaki, H.; Yoshiaki, F. Selection of metrics for predicting the appropriate application of design

patterns. In Proceedings of the 2nd Asian Conference on Pattern Languages of Programs, Tokyo, Japan, 5–8 October 2011.
87. Derezińska, A. Metrics in software development and evolution with design patterns. In Proceedings of the Computer Science

On-line Conference (CSOC2018), Vsetin, Czech Republic, 25–28 April 2018.
88. Mayvan, B.B.; Rasoolzadegan, A.; Ebrahimi, A.M. A new benchmark for evaluating pattern mining methods based on the

automatic generation of testbeds. Inf. Softw. Technol. 2019, 109, 60–79. [CrossRef]
89. Vokac, M. Defect frequency and design patterns: An empirical study of industrial code. IEEE Trans. Softw. Eng. 2004, 30, 904–917.

[CrossRef]
90. Pettersson, N.; Löwe, W.; Nivre, J. Evaluation of accuracy in design pattern occurrence detection. IEEE Trans. Softw. Eng. 2010,

26, 575–590. [CrossRef]

http://doi.org/10.1109/32.295895
http://doi.org/10.1016/j.infsof.2019.01.007
http://doi.org/10.1109/TSE.2004.99
http://doi.org/10.1109/TSE.2009.92

	Introduction
	Related Work
	Detection Approaches
	Variant Detection
	Concluding Remarks

	Ex-DPDFE
	The First Phase: Feature-Based Design Pattern Definition
	The First Step: Improving the Signatures of the Design Patterns
	The Second Step: Feature Extraction

	The Second Phase: Design Pattern Detection
	Implementation Cost

	Software Implementation
	The Software System of Ex-DPDFE
	Computational Complexity

	Evaluation and Discussion
	Research Questions
	Case Studies
	Method Selection
	Metrics
	Results
	RQ1: What Is the Accuracy of Ex-DPDFE in Detecting Design Patterns?
	RQ2: Can Ex-DPDFE Detect More Design Pattern Variants than Some Other Existing Methods?
	RQ3: How Do Design Pattern Variants Affect the Accuracy of Detection Methods?

	Threats to Validity
	Conclusions and Future Work
	Appendix A
	Appendix B
	Appendix C
	References

