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Abstract: The Liu process is a fuzzy process whose membership function is a symmetric function
on an expected value. The object of this paper was a fuzzy differential equation driven by Liu
process. Since the existing fuzzy Euler solving methods (explicit Euler scheme, semi-implicit Euler
scheme, and implicit Euler scheme) have the same convergence, to compare them, we presented four
stabilities, i.e., asymptotical stability, mean square stability, exponential stability, and A stability. By
choosing special fuzzy differential equation as a test equation, we deduced that mean square stability
is equivalent to exponential stability. Furthermore, an explicit fuzzy Euler scheme and semi-implicit
fuzzy Euler scheme showed asymptotical stability and mean square stability, while an explicit fuzzy
Euler scheme failed to meet A stability but that an implicit fuzzy Euler scheme is A stable, and
whether semi-implicit fuzzy Euler scheme is A stable depends on the values of α and λ.

Keywords: credibility; fuzzy differential equations; Liu process; Euler methods; stability

1. Introduction

To characterize the evolution of fuzzy events, the fuzzy differential equation (FDE)
was established. The FDE studied by experts is the fuzzification of the classical differential
equation. The essence is generally divided into three cases: (1) converting the coefficients
into fuzzy numbers; (2) replacing the initial or boundary values with fuzzy numbers;
and (3) the forcing term is a fuzzy-valued function. Therefore, the form of FDE is either
one of three cases or a combination thereof. In this context, based on fuzzy set theory, a
wealth of results have been achieved. The involving differential is defined according to
different fuzzy derivatives, as the representative is the generalized differential and the
generalized Hukuhara derivative. On the premise of the Hukuhara derivative, by using
linear transformations, Ngo [1] obtained the expression for the exact solution of linear
second-order FDE; Zhang and Sun [2] put forward some definitions of the stability of FDE
under second-order Hukuhara derivatives by means of Lyapunov function. Related to
solving FDE, Khastan et al. [3,4] obtained new fuzzy approximation methods by fuzzy
transform; Allahviranloo et al. [5] raised an Euler scheme on the basis of Taylor expansion;
and spline collocation methods for systems of fuzzy fractional differential equations were
deduced by Alijani et al. [6]. As for FDE under the concept of a generalized differential,
Nematollah et al. [7] obtained an analytical solution and numerical solution via the
differential transformation method; Chehlabi [8] obtained the continuity and existence
conditions of the solution function; the relation between solutions of first-order linear
FDE was developed by Khastan and Rodrguez-Lpez [9]; Mosleh and Otadi [10] presented
a method to approximate linear FDE. In terms of other fuzzy derivations, we refer the
interested reader to [11].

Because a lot of practical problems are self-dual in nature, the possibility measure is
not the best tool to characterize fuzzy events. Just under this setting, Liu and Liu [12] set
up a credibility measure, provided with self-duality, which created a new branch of fuzzy
mathematics. When the fuzzy event is time-varying, Liu [13] described a special dynamic
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fuzzy phenomenon as a Liu process. Dai [14] contended that Liu process is consistent with
reflection principle. Similar to the classical mathematical analysis, Liu [13] presented the
a Liu differential, Liu integral and geometric Liu process. Along this line, You et al. [15]
extended the Liu process, Liu differential and Liu integral to a multi-dimensional situation.
Thereafter, a new FDE driven by Liu process was given via Liu [13] in 2008. Compared
with FDE mentioned above, the fuzziness of this kind of equation is more widespread,
and its most striking difference is that the driving term is a fuzzy process. In addition,
in order to establish an FDE model for complicated practical problems, Zhu [16] gave a
multi-dimensional FDE driven by Liu process. With regard to the new FDE, many scholars
have carried out studies, for example, Zhu [16] raised some concepts and theorems of
stability for FDE driven by Liu process. In contrast with the results of Zhu as for FDE,
You and Hao [17] defined stability in credibility and stability in the mean was provided by
You and Hao [18], and the conditions for stability in credibility and stability in the mean
were given. In fact, there are few FDE that can be solved analytically, and thus scholars
focused on the consideration of a numerical solution. Based on the Taylor expansion of
homogeneous FDE, the Euler method originated from You and Hao [19]. Furthermore,
Cheng and You [20] put forward four new numerical schemes. In the sense of applications,
Liu [13] set up the stock model of Liu process, which is of great service to deal with the
problem in fuzzy finance. Zhu [21] and Qin et al. [22] applied FDE to fuzzy optimization
control and production planning problems, respectively.

Although scholars are exploring different numerical methods of FDE, there is no
criterion to judge whether these methods are effective. Considering the explicit fuzzy
Euler scheme, the semi-implicit fuzzy Euler scheme and implicit fuzzy Euler scheme have
the same convergence; to compare them, we concentrated on the stability of fuzzy Euler
methods. The contributions of this paper are: (1) four concepts of stability are defined for
numerical solution; (2) four stable properties of the three fuzzy Euler schemes are obtained;
(3) by numerical experiments, the images of stable regions are depicted.

The article is arranged as follows. The preparatory knowledge laid in Section 2 is an
essential cornerstone for the study of this paper. In Section 3, we mainly prove mean square
the (MS) stability of the equation, enumerate three fuzzy Euler methods used in this paper,
and propose four kinds of stability for the numerical solution. In Section 4, each Euler
scheme is substituted into the test equation to obtain a numerical solution. Furthermore, we
discuss the four stable properties one by one for these numerical solutions. In Section 5, the
visual stable region image is obtained by numerical experiment. Under the same stability
conditions, different numerical methods can be compared by observing the images. Finally,
we briefly conclude the results in Section 6.

2. Preliminaries

To make it easier to comprehend this paper, we will briefly introduce the knowledge
involved. We use Θ to represent a nonempty set, and P to represent the power set of Θ.
A ∈ P is called a fuzzy event. Credibility measure Cr is a set function satisfying:

(1) Cr{Θ} = 1;
(2) Cr{A} ≤ Cr{B}, whenever A ⊂ B;
(3) Cr{A}+ Cr{Ac} = 1, for any A ∈ P ;
(4) Cr{⋃i Ai} = supi Cr{Ai} for any collection Ai in P with supi Cr{Ai} < 0.5.

The triplet (Θ,P , Cr) is called a credibility space [23]. A fuzzy variable is a function
ζ(θ), θ ∈ Θ (abbreviated as ζ), whose effect is to project credibility space (Θ,P , Cr) to a
real set R. Provided that there exists an index set T, then a function which can convert
T × (Θ,P , Cr) into a set of real numbers, is called a fuzzy process, indicated by X(t, θ),
where t ∈ T, θ ∈ Θ. Particularly, X(t, θ) represents a fuzzy variable if t is set. Correspond-
ingly, if θ is fixed, then X(t, θ) refers to the sample trajectory of a fuzzy process. We say that
X(t, θ) is a continuous sample if the sample trajectory of X(t, θ) is a continuous function of
t. For simplification, we write Xt instead of X(t, θ).
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In order to describe a fuzzy variable, we give the definitions of expected value, vari-
ance, and k-th moment, which will be used in the discussion of stabilities.

Definition 1 (Liu [12]). Suppose that ζ is a fuzzy variable, then the expected value of ζ is expressed
as E[ζ] =

∫ +∞
0 Cr{ζ ≥ r}dr−

∫ 0
−∞ Cr{ζ ≤ r}dr, where at least one of the two integrals is finite.

The variance of ζ is defined as Var[ζ] = E[(ζ − E[ζ])2] and E[ζk] is called the k-th moment
of ζ, where k is a positive number.

Since the research object in this paper is FDE driven by Liu process, the definition of
the Liu process and its Lipschitz continuity, and the FDE driven by Liu process are listed.

Definition 2 (Liu [13]). A fuzzy process Ct is called a Liu process if the following conditions hold.
(i) C0 = 0; (ii) Ct not only has independent increments but also stationary increments; (iii) the
increment in Ct is a normally distributed fuzzy variable with expected value et and variance σ2t2.

It is noteworthy that Ct is a standard Liu process if e = 0 and σ = 1. Note that the
membership function of a Liu process is a symmetric function about et, which is useful in
the calculation related to credibility or expected value.

Theorem 1 (Dai [14]). If Cr{θ} > 0 with regard to any given θ ∈ Θ, then the path of the
Liu process denoted by Ct(θ) possesses Lipschitz continuous property, which reads |Ct − Cl | ≤
K(θ)|t− l|, where K(θ) means Lipschitz constant.

Definition 3 (Fuzzy differential equation, Liu [13]). Provided that Ct refers to a standard Liu
process, and p, q are fixed functions. The following equation

dXt = p(t, Xt)dt + q(t, Xt)dCt (1)

is known as FDE driven by Liu process, where Xt is a fuzzy process.

Note that it is a special case of fuzzy differential equation, where the driven process is
a Liu process.

3. Stability of Numerical Methods

The stability of numerical solutions is to study the solution’s properties under small
disturbances. It is an important branch of numerical solutions. In this section, four
definitions of stability for numerical solutions of fuzzy differential equation are given.

3.1. Stability in Mean-Square for FDE

Consider the following FED:

dXt = p(Xt)dt + q(Xt)dCt, t ∈ [0, T], Xt0 = X0, (2)

where p and q are given functions with a continuous derivative, Ct is a standard Liu
process, whose stationary increment is expressed as ∆Ct = Ct+h − Ct, t, t + h ∈ [0, T]. If
the step-size h is sufficiently small, then E[∆Ct] = 0, Var[(∆Ct)2] = E[(∆Ct)2] = h2.

Definition 4. If there is always lim|X0−Y0|→0 E[ |Xt −Yt|2 ] = 0, then (1) is stable in MS, where
t ≥ 0, Xt, and Yt are the solutions of (1) when the initial values are X0 and Y0, respectively.

Theorem 2. Suppose that (1) has a unique solution, and if the coefficient satisfies the strong
Lipschitz condition

|p(t, x)− p(t, y)|+ |q(t, x)− q(t, y)| ≤ L(t)|x− y|,

then (1) is stable in MS, where t ≥ 0, L(t) is an integrable function defined on [0,+∞).
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Proof. Suppose Xt and Yt are solutions of (1) corresponding to two different initial values
X0 and Y0, then for any θ ∈ Θ, it follows from Theorem 1 that

d|Xt −Yt|2 = 2|Xt −Yt|d|Xt −Yt| = 2|Xt −Yt||(p(t, Xt)− p(t, Yt))dt + (q(t, Xt)− q(t, Yt))dCt|
≤ 2|Xt −Yt|[L(t)|Xt −Yt|dt + L(t)K(θ)|Xt −Yt|dt]

≤ 2L(t)(1 + K(θ))|Xt −Yt|2dt,

integrating on both sides of the above formula, we have |Xt −Yt|2 ≤ 2|X0 −Y0|2exp((1 +
K(θ))

∫ t
t0

Lsds), then

lim
|X0−Y0|→0

E[|Xt −Yt|2 ] ≤ 2 lim
|X0−Y0|→0

E[|X0 −Y0|2 exp((1 + K(θ))
∫ t

t0

Lsds)]

= 2(1 + K(θ)) lim
|X0−Y0|→0

E[|X0 −Y0|2 exp(
∫ t

t0

Lsds)] = 0.

Thus, (1) is stable in MS. The proof is completed.

Generally speaking, the stability of the system itself is the stability of the trivial solution
Xt ≡ 0. In order to study stability easily, two kinds of linear test equations with complex
numbers λ, µ and σ are given by

dXt = λXtdt + µXtdCt, (3)

dXt = λXtdt + σdCt. (4)

The analytic solution of Equation (3) is Xt = X0exp(λt + µCt).

Definition 5. The solution Xt of Equation (3) is p stable, if for any sufficiently small |X0|, we have
limt→∞ E[|Xt|p ] = 0. When p = 1, it is called asymptotically stable, i.e.,

Cr{ lim
t→∞

E[ |Xt | ] = 0} = 1⇔ <{λ} < 0,

where <(λ) means the real part of λ. When p = 2, it is said to be stable in MS, i.e.,
limt→∞ E[ |Xt |2 ] = 0⇔ Equation (3) is stable in MS.

3.2. The Concept of Numerical Stability

Stability is a significant basis for judging whether an algorithm is applicable. Based
on three commonly used Euler methods, the stability of numerical solutions is studied in
this paper. Then, four concepts of stability and three Euler schemes are introduced in this
subsection.

Euler methods: The discussion of Euler methods is divided into three types:

(i) Explicit fuzzy Euler scheme (refer to [19])

X̃tn+1 = X̃tn + hp(X̃tn) + q(X̃tn)∆Ctn .

(ii) Semi-implicit fuzzy Euler scheme (see [20], also called θ-method in classical differ-
ential equation)

X̃tn+1 = X̃tn + h[αp(X̃tn+1) + (1− α)p(X̃tn)] + q(X̃tn)∆Ctn , α ∈ [0, 1].

(iii) Implicit fuzzy Euler scheme (mentioned in [20])

X̃tn+1 = X̃tn + hp(X̃tn+1) + q(X̃tn+1)∆Ctn .

In order to facilitate discussion, the iterative formula obtained by Euler methods for
Equation (3) iterated in one step is recorded as X̃tn+1 = H(h, λ, µ, ∆Ctn)X̃tn . To make the
formula simple, let r = λh, s = µh, ∆Ctn = ξh. Naturally H(h, λ, µ, ∆Ctn) can be recorded
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as H(r, s), where ξ is a normal fuzzy variable and ξ ∼ N(0, 1). We have calculated the k-th
(k = 1, · · · , 4) moments of ξ to get E[ξ] = 0, E[ξ2] = 1, E[ξ3] = 0, E[ξ4] ≈ 7.

Then, four numerical stabilities are proposed in this paper.

Definition 6. Let H1(r, s) = E[H(h, λ, µ, ∆Ctn) ]. We shall call H1(r, s) the stable function of the
numerical scheme. If |H1(r, s)| < 1, then the numerical scheme is called asymptotically stable, and the
region of asymptotical stability of the numerical scheme is expressed as DAS = {(r, s) | |H1(r, s) | < 1}.

Definition 7. Let H2(r, s) = E[H2(h, λ, µ, ∆Ctn) ]. Then, H2(r, s) is called the MS stable func-
tion of the numerical scheme. The numerical scheme is said to be stable in MS if |H2(r, s)| < 1. The
domain of MS stability of the numerical scheme is recorded as DMS = {(r, s) | |H2(r, s) | < 1}.

Definition 8. For a given step-size h, a numerical method is used to solve FDE, which then
yields the discrete solution {X̃tn}∞

n=0. If there are two positive constants p and Q such that
E[ |X̃tn |2 ] ≤ QE[ |X0| 2] e−pnh, ∀n ≥ 0, then the numerical method is exponentially stable in the
sense of mean square.

Applying a one-step numerical method to (4), we obtain X̃tn+1 = F(λh)X̃tn + Ztn ,
where Ztn is a fuzzy variable that is independent of X̃tn , and the domain of absolute
stability for the numerical method is DA = {(λ, h)|<(λ) < 0 and |F(λh)| < 1}.

Definition 9. If the domain of absolute stability for the numerical scheme contains the entire left
half plane, i.e., <(λ) < 0⇒ |F(λh)| < 1, then the numerical scheme is said to be A stable.

4. Conditions of Stability and Stability Region of Euler Methods

According to the concepts of asymptotical stability, MS stability, exponential stabil-
ity, and A stability proposed in the previous section, we apply the three Euler schemes
mentioned above to the test equations, and obtain different results, respectively.

4.1. Asymptotical Stability

Theorem 3. With regard to (3), semi-implicit fuzzy Euler scheme is asymptotically stable if and
only if |1 + r

1−αr | < 1, α ∈ [0, 1].

Proof. Applying the recurrence formula of the semi-implicit fuzzy Euler scheme to the test
Equation (3), we have

X̃tn+1 =
1 + (1− α)r + sξ

1− αr
X̃tn . (5)

Denote the asymptotical stable function of semi-implicit fuzzy Euler scheme as Hse
1 (r, s).

Since E[ξ] = 0, according to Definition 6, Hse
1 (r, s) = E[H(r, s)] = E[ 1+(1−α)r+sξ

1−αr ] =
1 + r

1−αr . Thus, the result is easy to obtain.

Note that for (3), the region of asymptotical stability of the semi-implicit fuzzy Euler
scheme is DAS = {(r, s) | |1 + r

1−αr | < 1}.
Denote the asymptotically stable function of the explicit fuzzy Euler method as

Hex
1 (r, s). Since the explicit fuzzy Euler method is a special case of semi-implicit fuzzy Euler

scheme, here we only give the stable function Hex
1 (r, s) = 1 + r.

Remark 1.

(1) Applying the implicit fuzzy Euler scheme to (3), we obtain the iterative form X̃tn+1 =

H(r, s)X̃tn = 1
1−r−sξ X̃tn . The difficulty is that H(r, s) may approach infinity whenever the

value of the normal fuzzy variable ξ is in the neighborhood of (1− r)/s. In this case, the
implicit Euler scheme is instable for any λ, µ and h. Hence, the value of ξ will also affect
the asymptotical stability and MS stability of implicit fuzzy Euler scheme. However, in all
other cases, the asymptotically stable function of the implicit fuzzy Euler method expressed
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by Him
1 (r, s) = 1

1−r and the region of the implicit fuzzy Euler method coincides with that of
the semi-implicit fuzzy Euler scheme when α = 1. As a result, the implicit method has the
best stability properties.

(2) Under the condition that the value of the normal fuzzy variable ξ is in the neighborhood of
(1− r)/s, if we increase α, i.e., going towards implicitness, the stability is improving but the
fully implicit scheme is unstable again. This reveals that the implicit scheme is not a special
case of the semi-implicit one, because the latter one handles the last term fully explicit.

(3) The original Dahlquist test equation in the not-fuzzy case is a special case of the FDE studied
here (µ = 0) and for that, the implicit method has extremely good stability properties.

4.2. MS Stability

Theorem 4. For (3), the semi-implicit fuzzy Euler scheme is stable in MS if and only if

| 1 + (1− α)2r2 + s2 + 2(1− α)r
(1− αr)2 | < 1, α ∈ [0, 1].

Proof. Denote the MS stable function of the semi-implicit fuzzy Euler scheme as Hse
2 (r, s).

Since E[ξ] = 0, E[ξ2] = 1, according to Definition 7, we have

Hse
2 (r, s) = E[H2(r, s)] =E[

1 + 2r− 2αr + r2 + α2r2 − 2αr2 + s2ξ2 + 2sξ + 2(1− α)rsξ

(1− αr)2 ]

=
1 + 2r− 2αr + r2 + α2r2 − 2αr2 + s2

(1− αr)2 .

Thus, the result is easy to obtain.

Note that for (3), the region of MS stability of the semi-implicit fuzzy Euler scheme is

Dse
MS = {(r, s) | |1 + 2r− 2αr + r2 + α2r2 − 2αr2 + s2

(1− αr)2 | < 1}.

Denote the asymptotically stable function of the explicit fuzzy Euler method as
Hex

2 (r, s). Since the explicit fuzzy Euler method is a special case of the semi-implicit
fuzzy Euler scheme, here we only focus on the stable function Hex

2 (r, s) = (1 + r)2 + s2.

Remark 2. For the same reason in Remark 1, if the value of the normal fuzzy variable ξ is in the
neighborhood of (1− r)/s, the implicit Euler scheme is unstable for any λ, µ and h. Otherwise, the
MS stable function of the implicit fuzzy Euler method expressed by Him

2 (r, s) = 1
(1−r)2+s2 , and the

implicit method has the best stability properties.

Theorem 5. In the mean square sense, the semi-implicit fuzzy Euler method is absolutely unstable

under the condition of 0 ≤ α ≤ 1
2 , r ≤ 2

2α− 1
.

Proof. Let Hse
2 (r, s) ≥ 1, i.e., (1− 2α)r2 + 2r + s2 ≥ 0. It is equivalent to (1− 2α)r2 + 2r ≥ 0.

Therefore, the establishment of the formula should meet the conditions 0 ≤ α ≤ 1
2 and

r ≤ 2
2α− 1

. The proof is completed.

4.3. Exponential Stability

Theorem 6. For (3), fuzzy Euler methods are exponentially stable if and only if |H2(r, s)| < 1,
where H2(r, s) means an MS stable function.



Symmetry 2022, 14, 1279 7 of 13

Proof. Similar to the proof of Theorem 4, E[|X̃tn+1 |2] = |H2(r, s)|E[|X̃tn |2]. Replacing
H2(r, s) with H2 and repeating the recurrence of the above formula, we have

E[|X̃tn |2] = |H2|n |E[|X0|2] = [eln |H2| ]n E[|X0|2]. (6)

Firstly, there is the proof of sufficiency. If |H2(r, s)| < 1, take p = − 1
h ln |H2|, then for

∀Q ∈ N+, we have

QE[ |X0| 2] e−pnh = Qe
−nh(−

1
h

ln |H2|)
E[ |X0| 2] = Q|H2|n E[ |X0| 2], ∀n ≥ 0.

Consequently,

E[ |X̃n| 2] = |H2|n E[ |X0| 2] ≤ Q|H2|n E[ |X0| 2] = QE[ |X0| 2] e−pnh, ∀n ≥ 0.

Secondly, there is the proof of necessity. If numerical methods are exponentially stable,
according to Definition 8, E[ |X̃tn |2 ] ≤ QE[ |X0| 2] e−pnh, ∀n ≥ 0, and utilizing (6), we have
[eln |H2| ]n ≤ Q e−pnh. Take n = ln Q

ph + 1 for ∀n ≥ 0, then

|H2|n = [eln |H2| ]n ≤ Qe
−ph[

ln Q
ph

+1]
= Qe− ln Q−ph = e−ph < 1.

Hence |H2(r, s)| < 1. The theorem is proven.

Theorem 7. For (3), the exponential stability of the numerical method is equivalent to its
MS stability.

Proof. By Theorem 6, we can easily draw the conclusion.

4.4. A Stability

Theorem 8. With respect to (4), the explicit fuzzy Euler scheme is not A stable but the implicit
fuzzy Euler scheme is A stable. Furthermore, the semi-implicit fuzzy Euler scheme is A stable if the
parameter α satisfies 1/2 ≤ α ≤ 1 and <(λ) < 0, while semi-implicit fuzzy Euler scheme is not A
stable if the parameter α satisfies 0 ≤ α < 1/2.

Proof. Let λ = a + ib in this proof.

(i) Applying the explicit fuzzy Euler scheme to (4), we yield X̃tn+1 = (1 + λh)X̃tn +

σ∆Ctn , that is F(λh) = 1 + λh. Let |F(λh)| < 1,, i.e., (1 + ah)2 + (bh)2 < 1. It is
easy to see that the absolute stable region of the method is the interior of a circle
with −1 + 0i as its center and 1 as the radius, so the explicit fuzzy Euler scheme is
not A stable from Definition 9.

(ii) Applying the implicit fuzzy Euler scheme to (4), we similarly gain X̃tn+1 = (1−
λh)−1X̃tn + σ∆Ctn , that is F(λh) = (1 + λh)−1. Let |F(λh)| < 1, i.e., (1− ah)2 +
(bh)2 > 1. It suffices to show that the absolute stable region of the method is the
exterior of a circle with 1 + 0i as its center and 1 as the radius, so the implicit fuzzy
Euler scheme is A stable.

(iii) Applying the semi-implicit fuzzy Euler scheme to (4), we have

X̃tn+1 = (1− αλh)−1[1 + (1− α)λh]X̃tn + σ∆Ctn , α ∈ [0, 1],

that is F(λh) = (1− αλh)−1[1 + (1− α)λh]. Let |F(λh)| < 1,, i.e.,

(1− 2α)(a2 + b2)h + 2a < 0. (7)

We then discuss this in two cases.

Case 1: 1
2 ≤ α ≤ 1. The semi-implicit fuzzy Euler scheme is A stable only if <(λ) = a < 0.
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Case 2: 0 ≤ α < 1
2 . We find that (7) can be written as (B + ah)2 + (bh)2 < B2, where B =

(1− 2α)−1.

It is obvious that the absolute stable region of the method is the interior of a circle with
−B + 0i as its center and B as the radius, so the semi-implicit fuzzy Euler scheme is not
A stable.

5. Numerical Experiment

By numerical experiments, this section discusses the effect of α in a semi-implicit fuzzy
Euler scheme on MS stability, and compares the effects of three fuzzy Euler schemes in
terms of asymptotical stability and MS stability.

5.1. The Effect of α on MS Stability in Semi-Implicit Fuzzy Euler Scheme

The following fuzzy differential equation is used as the experimental equation:

dXt = −50Xtdt + 25XtdCt, Xt0 = X0 = 1, t ∈ [0, 10]. (8)

Select λ = −50, µ = 25, which satisfy Theorem 2; thus Equation (8) is stable in MS.

Applying the semi-implicit Euler scheme, take α =
1
4

,
2
5

,
3
7

,
4
5

, respectively. According
to Theorem 4, the corresponding MS stability regions are depicted in Figure 1 by using
Matlab software.

Figure 1. The region of MS stability of semi-implicit fuzzy Euler scheme.

It is observed from Figure 1 that when α = 1
4 , the semi-implicit fuzzy Euler scheme

is not MS stable. In addition, when r = −5 <
1

2α− 1
= −4, according to Theorem 6, the

semi-implicit fuzzy Euler scheme is absolutely unstable, thus Theorem 4 is verified; when
α = 2

5 , the semi-implicit fuzzy Euler scheme is not MS stable; when α = 3
7 , the semi-implicit

Euler scheme is MS stable; when α =
4
5

, the semi-implicit fuzzy Euler scheme is MS stable.
In short, the region of MS stability of the semi-implicit fuzzy Euler scheme is larger with
the bigger value of α.

5.2. Stability of Three Fuzzy Euler Scheme

In this subsection, the MS stability and asymptotical stability of the fuzzy Euler
methods are verified by numerical experiments.

(1) Asymptotical stability

Take the test equation as follows

dXt = (−10 + 10i)Xtdt + 7XtdCt, Xt0 = X0 = 1, t ∈ [0, 10]. (9)
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Since the region of the implicit fuzzy Euler method coincides with that of the semi-implicit
fuzzy Euler scheme when α = 1, we only use the explicit fuzzy Euler schemes and the
semi-implicit fuzzy Euler scheme to iterate, and take α in the semi-implicit fuzzy Euler
scheme to be 0.3, 0.5, 1, respectively. It follows from Section 4.1 that there is no s involved
in the asymptotical stable functions Hse

1 (r, s), Hex
1 (r, s), and we divide r into the real part

< and imaginary part =. Then, the stable region of the explicit fuzzy Euler method is
Dex

AS = {(<,=) | (1 +<)2 +=2 < 1}. Similarly, we can deduce the stable region expressed
by < and = of the semi-implicit fuzzy Euler method based on Theorem 3. Then, the
patterns of the region of asymptotical stability are given in Figures 2–4. The stable region
of the explicit fuzzy Euler method is the interior of the circle in Figure 2, the stable region
of the semi-implicit fuzzy Euler method is the intersection of the left half plane and the
exterior of the circles in Figure 3 and the right figure in Figure 4, and the stable region of
the semi-implicit fuzzy Euler method is the left half plane in the left figure in Figure 4.

Figure 2. The region of asymptotical stability of explicit fuzzy Euler scheme.

Figure 3. The region of asymptotical stability of semi-implicit fuzzy Euler scheme.
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Figure 4. The region of asymptotical stability of semi-implicit fuzzy Euler scheme.

We find that when α = 0.3, the stable region of the semi-implicit fuzzy Euler scheme is
larger than that of the explicit fuzzy Euler scheme; then, the stability is stronger. Therefore,
for (9), the asymptotical stability of the semi-implicit fuzzy Euler scheme is better than
that of the explicit fuzzy Euler scheme. Integrating Figure 1, we conclude that the implicit
method has the best stability properties except for the case of the value of normal fuzzy
variable ξ is in the neighborhood of (1− r)/s.

(2) MS stability

Continuing to use (8) as the test equation, three fuzzy Euler schemes are used to
iterate, according to Section 4.2, their MS stable regions are shown in Figures 5–7 by Matlab
software. Since Him

2 (r, s) = 1
(1−r)2+s2 , we have the stable region of the implicit fuzzy Euler

scheme as Dim
MS = {(r, s) | (1− r)2 + s2 > 1}. Therefore, the stable region of the implicit

fuzzy Euler scheme is the exterior of the circle in Figure 7, while the stable region of the
explicit fuzzy Euler scheme and the semi-implicit fuzzy Euler scheme are the interior of the
circle in Figures 5 and 6.

Figure 5. The region of MS stability of explicit fuzzy Euler scheme.
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Figure 6. The region of MS stability of semi-implicit fuzzy Euler scheme.

Figure 7. The region of MS stability of implicit fuzzy Euler scheme.

We find that when α = 4
9 , the stable region of the semi-implicit fuzzy Euler scheme

is larger than the explicit fuzzy Euler scheme, and the stable region of the implicit fuzzy
Euler scheme is the biggest. Therefore, for (8), the MS stability of the semi-implicit fuzzy
Euler scheme is better than that of the explicit fuzzy Euler scheme, and the implicit method
has the best stability properties except in the case in which the value of the normal fuzzy
variable ξ is in the neighborhood of (1− r)/s.

6. Conclusions

In this paper, we gave definitions of asymptotical stability, MS stability, exponential sta-
bility and A stability, and obtained that MS stability and exponential stability are equivalent.
The stability properties of fuzzy Euler methods were studied via the linear test equations.
The comparison of the stabilities of three fuzzy Euler methods are listed in Table 1.
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Table 1. Stabilities of three fuzzy Euler methods.

Stabilities Asymptotical Stability MS Stability A StabilityExponential Stability

explicit fuzzy Euler scheme stable stable stable
semi-implicit fuzzy Euler scheme more stable more stable more stable

implicit fuzzy Euler scheme 1 best stable best stable best stable
implicit fuzzy Euler scheme 2 unstable unstable unstable

Note that, in Table 1, the implicit fuzzy Euler scheme 1 expresses the implicit fuzzy
Euler scheme where ξ is out of the neighborhood of (1− r)/s and the implicit fuzzy Euler
scheme 2 expresses the implicit fuzzy Euler scheme where ξ is in the neighborhood of
(1− r)/s.
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