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Abstract: In this manuscript, the Cauchy problem of the modified Helmholtz equation is researched.
This inverse problem is a serious ill-posed problem. The classical Landweber iterative regularization
method is designed to find the regularized solution of this inverse problem. The error estimations
between the exact solution and the regularization solution are all obtained under the a priori and
the a posteriori regularization parameter selection rule. The Landweber iterative regularization
method can also be applied to solve the Cauchy problem of the modified Helmholtz equation on the
spherically symmetric and cylindrically symmetric regions.

Keywords: modified Helmholtz equation; ill-posed problem; error estimation; Landweber iterative
method

MSC: 35R25; 47A52; 35R30

1. Introduction

The modified Helmholtz equation Au(x,y) — k*u(x,y) = f(x,y) also named the
Yukawa equation was first proposed in [1]. It has a very important application in practical
problems, such as in the Debye-Huckel theory, the linear Poisson—-Boltzmann equation
and implicit marching schemes for the heat equation. In nuclear physics, the free-space
Green’s function is usually obtained by solving the Yukawa potential equation. In physics,
chemistry and biology, when Coulomb forces are damped by screening effects, the Green’s
function is also known as the screened Coulomb potential. For the boundary value of the
modified Helmholtz equation, there are many applied fields, especially in microstretch
elastic materials [2] and in the thermoelastodynamics of microstretch bodies [3,4]. In the
past few years, there have been many studies on this inverse problem of the modified
Helmholtz equation. If the right term of the modified Helmholtz equation is unknown,
we need additional data to identify the right term, which is called the inverse problem
of identifying the unknown source. Information about the unknown source identifica-
tion can be found in [5-8]. On the other hand, in practical problems we often use the
Cauchy data on some boundaries of the modified Helmholtz equation to determine the
field inside the object or the function value that is not easy to measure on other boundaries.
For example, in the nondestructive testing of conductive materials, we cannot directly
measure the potential inside the material, but we can invert the potential and boundary
shape inside the object by measuring the potential #(x, y) and normal derivative % on
the surface of the material. This is called the inverse problem of the Cauchy problem of
the modified Helmholtz equation. The Cauchy problems associated with the modified
Helmholtz equation have been studied by using different numerical methods, such as
the Landweber method with the boundary element method and the conjugate gradient
method [9], the method of fundamental solutions (MFS) [10,11], the iteration regularization
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method [12], Tikhonov type regularization [13], Quasi-reversibility and truncation meth-
ods [14-16], the Fourier truncation method [17], a mollification regularization method [18]
and so on. However, beyond these references, there is only one Cauchy data reference. For
other Cauchy data, there are few results for the modified Helmholtz equation. Therefore,
in this paper, the Cauchy problem of the modified Helmholtz equation is studied as follows:

Au(x,y) —K*u(x,y) =0, x€(0,1),y €R,
u(0,y) = ¢1(y), YER, ¢))
ux(0,y) = ¢2(v), yER

We will use the Cauchy data ¢4 (x) and ¢ (x) to solve the solution u(x,y) for 0 < x < 1.

The measurable Cauchy data are ¢ (y) and #5(y) which satisfy

lp1(:) = 1) <6 @

and
l95() = p2()l <6, ®)
where 6 > 0 represents the measurement error level.
Due to the linear property, we can divide (1) into two Cauchy problems:

Af(x,y) =K f(x,y) =0, x€(0,1),y€R,

f0,y) = ¢1(y), VER, )
fx(0,y) =0, YER,

and
Ag(x,y) —k*g(x,y) =0, x€(0,1),y €R,
g(0,y) =0, YER, )
8x(0,y) = ¢2(y), yER

Because u = f + g, we only need to research (4) and (5), respectively. Problems (4)
and (5) are both ill-posed problems, and the Landweber iterative regularization method is
applied to solve them. The Landweber iterative regularization method can also be applied
to solve the Cauchy problem of the modified Helmholtz equation on the spherically sym-
metric and cylindrically symmetric regions.

This article is organized as follows. Section 2 gives some necessary knowledge.
Section 3 constructs the regularization methods, and the a priori and the a posteriori
error estimates between the regularization and the exact solutions are given, respectively,
by choosing appropriate regularization parameters. Section 4 gives a simple conclusion.

2. Auxiliary Results

Using the method of Fourier transform, the Fourier transform of the exact solutions
of (4) and (5) can be formulated as follows

f(x,w) = cosh(Vw? + K2x) ¢1 (w), (6)

3, w) = sinh(vw? + k2x) 4
ViR
Using the method of inverse Fourier transform, we obtain the exact solutions of (4),
(5) as follows

(w). @)

fla) = o [ [eosh(va + Ry ()] i, ®)

+ | sinh(v/ 2 k2 .
s0oy) = 5= | [Sl &wf—j,;z x)qu(w)]ewydw- ©)

—0o0
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Now, we suppose that the solutions of (4) and (5) satisfy the a priori bound as follows:

<
e Eq, (10)

1£(1,@)lli2ry = |[cosh(Vew? + ) g ()

sinh(vw? + k?)
Vw? + k?

< E,. (11)
L2(R)

181, @)l 12(r) = P2(w)

Lemmal. For0<h<1,0<a<1, andn > 1, the following inequalities hold:
1-m"n<m+1)" (12)

Proof. Denote p(h ) (1 —h)"h; then o' (h) = — ( — )"V 4 (1 — k)™, Setting o (h) =
Note that p(0) = p(1) = 0, p(h) has a unique maximum value at

0, we haveh = n+1
h= +1 Therefore,
1
h) = h< ——.
pl) = (1= )" < ——

Therefore, we can obtain
1-hm"r*<[1-m"n*<(n+1)"*

O

Lemma2. Whena > 0,sin(a) = “£, sin(ax) = & and cosh(a) = “4H, we obtain
the following inequalities:
1. % < cosh(a) < e%;
2 sinh(zxx) < e, sinh(tx) <

er;

5 e e,

Proof. The proof is simple, we omit it. [

3. Landweber Iterative Regularization Method

From (8) and (9), when w — o0, cosh(vVw? + k2x) and % ‘ﬂzkzx) grow exponen-

tially and approach infinity. At this time, the noise level of the actual measurement data
will increase exponentially, resulting in a significant change in the direct resolution. In
other words, there is a big gap between the actual situation and the exact solution sought.
Therefore, problems (4), (5) are ill-posed. If we want to restore the stability of solutions,
we need to use the regularization method. In this manuscript, the Landweber iterative
regularization method is applied to obtain the regularization solutions for (4) and (5). The
Landweber iterative regularization method is applied to solve a lot of the ill-posed problem,
as one can see in [19-24].
Due to (6), we obtain

1 A

cosh(vVw? + kzx)f(x’w) =

We define the operator K: f — ¢1, and if it is a multiplication operator, then (6) can be
rewritten as the following operator equation:

Rf = ¢1. (14)

(13)

. . o Dx 1 . ST
Owing to the kernel function K = K* = o (VT ) K is a self-adjoint operator. The

Landweber regularization method is used to find the regularization solution of Kf = ¢;.
We replace the operator equation f(x,w) = (I —aK*K)f(x,w) + aK* ¢1 (w) with the opera-
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tor equation Kf (x, w) = ¢ (w), and obtain the following iterative format:

P, w) =0, f"(x,w) = (I - aR*R) /" (x,w) + ak* ¢ (w),

where a is the relaxation factor and satisfies 0 < a < W'

We set the operator R,,: L2(Q)) — L?(Q) as follows:

m—1 o2 \m
A A 1—-(1—-akK
Ry =) u—aWKVKﬁ:——L?E—lﬂmzlgﬁm (15)
n=0

Then the Landweber iterative solution with the measurable data q?l‘s (w)is

m—1

f™(x,w) = Rug1®(w) = a Y (I—akR*R)"K*¢° (w). (16)
n=0

The following equation can be obtained by induction

10 (x,w) = cosh(Vw? + k2x)[1 — (1 —

) g1’ (w),0 < x <1 (17)

a
cosh?v/ w? + k2x

Using the Fourier inverse transform, we can obtain the Landweber iterative regular-
ization solution of problem (4) as follows

10 (x,y) = % /jroo cosh(vw? + k2x)[1— (1 — +)"’](PAlé(w)e"“’yalw,O <x <1 (18)

cosh?v/w? + kK2x

We define the operator H: § — ¢,, and if it is a multiplication operator, then (7) can
be rewritten as the following operator equation:

HE = ¢2. (19)
Owing to the kernel function H = H* = S V(\‘/"i;riszﬂ, H is a self-adjoint operator.
We set the operator Hy,: L2(Q)) — L*(Q) as follows:
K= Sk T\ MLy 1_(1_bH2)m
Hy, =) (I-bH*H)'H* = ———— m=1,2,3., (20)
n=0 H
where b is the relaxation factor and satisfies 0 < b < W Then
§"0(x,w) = Hup lefmw VIH* ¢’ (w). (21)

Using the same method, we also obtain the Landweber iterative regularization solution
of problem (5) as follows

#1151, c0) — sinh(vw? + k2x) Vw? + k?
S Vw? +k? sinh(vw? + k2x)

Using the Fourier inverse transform, we can obtain the Landweber iterative regular-
ization solution:

2™ @2 (w),0 < x < 1. (22)

[1—[1—b

| e snh(VT TR VTR o s
W =g [T e L Yy T @0 < <1 @)

Now, under the a priori and the a posteriori rules, we are going to present the error
estimations for problems (4) and (5).
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3.1. The A Priori Error Estimate for Problem (4)

Theorem 1. Let f(x,y) in (8) be the exact solution of problem (4). Let f™(x,y) in (18) be the
regularization solution of problem (4). Suppose (2) and (10) hold. If we choose m = [6(x)] as the
reqularization parameter,

o)) = (2L, )

then as 0 < x < 1, we obtain the following error estimate:

LF" (2, y) = fxy)ll < CLEFO'Y, (25)
here [0(x)] is the largest integer less than or equal to 6(x), and C; = (\/a + (1*?")12%Y ).

Proof. Using the Parseval formula and the triangle inequality, we know

LF™ (e y) = Feap)ll = 17 (@) = Flx,w)|| < 17 (x,w) = F7 (e )|+ (1" (x,w) = f(x, ).

£ (x, @) = 7" (x, )| = || cosh(Vew? +k2x)[1 = (1 -

1" (2, w) = f(x, w)|| =

< su

<

Now, we first compute

a my A 0
- w
coshzx/w2+k2x) 91" ()

— cosh(VeZ )1 = (1= — )"l (@)
91 (@) = gr (o)

< su cosh\/mx 1-— 1—#
welz:)z| ( L= cosh?v/w? + I2x
)"]lo

< sup | cosh(vV w? 4+ k2x)[1 — (1 — S
weﬁ | ( = cosh?v/ w? + k2x

< sup | cosh(v/ w? + k2x \/1— 1—— % s,
wello{‘ ( ) ( coshzx/wz—i—kzx) ‘

Applying Bernoulli’s inequality, we obtain

am

< .
I= cosh?v/ w? + k2x

m

1-(1- - )
cosh?v/w? + k?x

Thus, we obtain X X
177 (x, ) = f™(x, )| < v/ams. (26)

Now, we compute
cosh(v w? + k2x)[1 — 1—— % yM@ (w)—cosh Vw? +k2x)¢1(w
” ( )[ ( COSh2\/mx) ](Pl( ) ( )(P1< )”

— cosh w2—|—k2x 1_;"1,\ w
| = cosh(Va? 1) (1~ o)1 @)

F(1,w)
cosh(vVw? + k2x)(1 — a m 1,
| ( ) cosh?v/ w? + kzx) cosh(Vw? + k?) |
cosh(vVw? + k2x .
p SOV + ) P @)l
wer cosh(vVw? +k?2)
su |cosh(\/cu2 + k2x) 1 a
we?e cosh(vVw? + k2) cosh?v/ w? + k2x

Using Lemma 2, we obtain

—
—_

a
cosh?v/w? + k?x

)" |Eq.

Fm 7 W2 +k2(x—1) (1 _ a m
1773, ) = 5,00 < supe” (- B
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Let & = VW2 +k2, A(x) = e*"D(1 — ge=2)" Taking A'(ag) = 0, we obtain

g = % In w Therefore

a[(2m —1)x +1],x 1—x m
< = x[1l-——-
< [a[(Zm—l)x—i-l]]%
1—x
1—x,1-x 1 1—x
< 2 2
= a )? (m—l-l)
Thus, we obtain
Am N 1—x,1-x 1 1-x
177 (x,0) — flx, @)l < () F () FEy @)
Combining (26) with (27), we obtain
1—x 1=« 1 —x
.o - < v Vi
177 () = flw)l < Vams + (<) 5 () W Ey
< VaE{s' T + (1;’()157*15{51—*
< (Va+ (=5 =B,

a

Note: The above consideration is only the error estimate when 0 < x < 1 and does not
consider the error estimate when the end point is x = 1. At this time, the error estimate in Theorem
1 only shows that it is bounded rather than convergent. If we want to obtain the error estimates of
the exact solution and the reqularization solution at x = 1, stronger a priori assumptions must be
introduced. In order to give the error estimation at x = 1, we give the following priori bound:

1f (L)l = e cosh(Vew? + )1 (w) | < Es, 28)
where || f(1,w) || gy is Sobolev space HP-norm, and p = 0 is the Ly-norm. [

Theorem 2. Let f"™°(x,y) in (18) be the regularization solution of problem (4) at x = 1, and the
prior condition (28) holds for p > 0. If we choose m = [0] as the regularization parameter,

_ (Es\ T
9_(5) , (29)

when x = 1, we have the following error estimate:

p

1
1™ (Ly) = F(Ly)|l < CoE5 7677, (30)

where (0] is the largest integer less than or equal to 6, C; = /a + (%)%_

Proof. Using the Parseval formula, the triangle inequality, (6) and (17), we obtain

L™ (L y) = FAy = 1771 w) = fL )l < /™ (1 w) = (L) |+ /(1 w) = (1)l

Now, we first compute || f™°(1,w) — f"(1,w)||.
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£ (1) = f(1,0) | = lleosh(Ve? TR = (1= — o) "0 (@)
— cosh(\/am) 1-(1- m)m]ﬁﬁl(ww
< sup | cosh(v/? + K1~ (1 - ) e @) = @)l
< S}g){ \ cosh(\/m)[l -—(1- m)mﬂé
< Zlga{’cosh(\/m)\/l (- m)mld

Applying Bernoulli’s inequality, we obtain

am

a m
< .
cosh?v/ w? + k2) I= cosh?v/ w? + k2

n1-(01-

Thus, we obtain
1™ (1, @) = f"(1L,w)|| < amé. (31)

Now, we compute

1/"(L,w) = f(1,w)|| = || cosh(v/w? +k2)[1 — (1 - m)mkﬁl (w) = cosh(Vw? + k)¢ (w)]|
= || = cosh(vw? +k2)(1 — m)mﬁﬁl(w)ﬂ

a Vw22 pN w2 +k2 P
:H(l—m)me YOO f (1, w)|
a _ 24 ]2 2142 p
e Ay e A R
we
(G P —

weER cosh?v/ w? + k2
< sup |(1 —ae™ 2 “’2+k2)me_” Vewtk? |Es.
w€ER

Leta = vV? + K2, B(a) = (1 — ae™2)me=P*, Let B (a}) = 0, then a} = } In “27H2),

14
o B _ Ip 28m+ap " _gln(Zam-HvP) . 2m m 2am+ap _r < 2am—|—ap _r
Blaf) = (1—ae ™ yme 2T = (L E (SR < (R R
Therefore,
N A N 2am~+ap._p 12 _
||fm(1/w)—f(1/w)||SB(%)EzS(TP) "By < () E(m+1)72Es
Thus,
A A a._p _P
1" (1, w) = F(L@)|| < ()5 (m+1)"2Es. (32)
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3.2. The A Posteriori Error Estimate for Problem (4)

This section will give an estimate of the convergence error under the a posteriori
parameter selection rule. Let T > 1 be a fixed constant, and stop the algorithm when
m = m(J) € Ny appears for the first time:

|RF™ (x,w) — ¢1°(w)]| <16, 0< x <1, (33)
where || ¢4 || > 74.

Lemma 3. Let B(m) = |Kf(x,w) — ¢1(w)||, then the following conclusion holds:

L im0 B(m) = [[¢1(w)]];

2. limyq00 B(m) =0;

3. B(m)is a continuous function;

4. Forany m € (0,+00), B(m) is a strictly monotonically decreasing function.

Proof.

a

cosh?(vVw? + k2x)

B(m) = [RF"™ (w) = ¢1°(w) = (1~ )P (@) (34)

O

Obviously, B(m) satisfies the above four conditions, and the proof of Lemma 3
is completed.

Lemma 4. For any x € (0,1), the regularization parameter m = m(0) satisfies:

22x El 2x
< — [ — .
"= ((1—1)5) (35)
Proof. According to (16),
1—(1—ak®)"
Rugr(w) = ) )

Then
N . . Ao\
|RRngi1 (@) = pr ()| = | (1= aR?) "1 ().

Since |1 —aK?| < 1, |[KR,,_1 — I|| < 1. Due to (33), we know
IRF™ (2, w) = g1 ()] < 16 < [|[RF"D () = ¢1° ().

Then we can get
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IRRy-1¢1(w) — ¢1(w) || = [[KRy-1¢1 (w) — KRyy—1¢1° (w)
+ KRy 161° (@) — ¢1°(w) + ¢1° (@) — g1 ()|
= [RRu-161 (@) = 617(0) + (RRys = 1) (1(00) — g1’ “ >) H
> HKRm—lﬁﬁl‘s(w) - 451(W)H - H(KRHH —1) ( )) H
> 10— |KRy_1 — I||6 > (T —1)0.

Thus,
[KRm-1¢1(w) — ¢1(w)[| = (T —1)é. (36)

In addition,

KR y—1¢1(w) — ¢1(w)||

(1- aKz)”‘_l f,0)

=\?<1—aKZ>M‘1¢1<w>\\:\

m—1
(1 - cosh2 w2+k )
< sup

weR cosh( w? + k2 )

2 (l e2V 202+k2x )

<su ‘ ‘E
e 4 s 1
= sup ‘C ‘El,
weR

m—1
z(p#)
where C(w) = CAVATRTEH . Let « = vw?+k?, then C(w) can be rewritten as

g\/w2 +k2

m—1
C(a) = 2¢7* (1 - BZ%) . If o} satisfies C'(a3) = 0, then a} = - In[2ax(m — 1) +a].

m—1 L
C(a3) = 2[2ax(m — 1) +a]*2‘17 [%} < 2[2ax(m —1) + a]lex < 2(%> I

Therefore,

1
. . 1\ _1
IRR-11(0) = 1 o) < IC3) Er < 2( o ) T FE @)
Combining (36) with (37), we obtain
1\
2() m2E; > (T —1)d.
ax

Thus,

x 2x
m<22( i ) (38)

“ax \(t—1)¢
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1" (x, ) = f(x, )2

Theorem 3. Let u"°(x, y) be the reqularization solution of problem (4). Assume (2) and (10) hold.
The regularization parameter is chosen by (31). Then as any 0 < x < 1, we can obtain the following
error estimate:

1™ (x,y) = f(x,y)|| < C3E{8' ™, (39)
where C3 = (T%l) x4 (272 —I—Z)Tx is a constant.

Proof. Using the Parseval formula, the triangle inequality, (26) and Lemma 4, we obtain

1/ () = F )l = 17 (x,w) = f(x,0)|
<" (x,w) = f" (@) |+ (17 (x, w) = fx, @) |
< Vams + ||f"(x, w) = f(x,w)]

X
< (25) w1 e ~

Thus,

175 = el < (27 ) ¥ 2B 4 I w) - fal. @0

According to the Hélder inequality, we obtain

1—ak?)" .
(K)(Pl(w)

2

= (1—aK2)mcosh< 2+ k2x

>L
/
8
®
=
A\r»
8
S
_|_
=
\_/
N— —
R

) (91
g ”flw»

N (1—11K) COth( w? + k2
/+°° [(1 - aKZ)mCOSh(mx) (¢1
—oo coshx<\/m)

<177 (- ok) "0 ) T H[/f (f,w) e

<[ ((1-a2)" (gr() — 1) + i’ (@)) ) ladw] o

- -/ ()™ ((m(w) — 1)+ ') o] T

<) (1 fm( i )||2+||( ~ak) gt @P] B
<2 Igi(w) - )I|2+H(1— el B

<27 (84 TZ(SZ) T

= (22 +2) g0
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Then,
1-x
1f"(x,w) = f(x,w)l < (202 +2) T 8'EF. (41)
Combining (40) with (41), we obtain

2 \" 5t
||fm,5(x’y) —f(x,y)H < <(T—1> X_% + (21’2 + 2) 2 )Ei‘(sl—x. (42)
Note: Theorem 3 only considers the error estimate in the interval but does not consider the
error estimate when x = 1 at the end point, so it can only show that it is bounded rather than

convergent. The error estimate when x = 1 is given below. [

Lemma 5. Assume (2) and the prior condition (28) hold. If we take the solution of Equation (33)
as a regularization parameter when x = 1, then the regularization parameter m satisfies:

ne (M) ((rz—Eiw)PL' @

and R, =ay =)' (I— aKSKO)kKS, then

Proof. Let KO = KSW
1RoRY, 11 (@) = g1 () | > [RoRY, 117 (@) — g1 (@) = [|(RoRS, 1 — 1) (g1(@) — () ) |
> 16 — ||KoR%_; —I||6 > (T —1)6.

m—1

Therefore,
IRoRY, 1¢1(w) — ¢1(w)| > (T —1)6. (44)

On the other hand, we compute

HKOR%A@(W) - qsl(w)H = H (1 - aKg)m—lqil(w)H

e e e e

m—1
I R— )
< sup < cosh (Vw2+k2) e_p,/w2+kz Es
weR cosh(\/w2 + kz)

= sup|D(w)|Es.
w€ER
-1
If we take &« = v w? + k?, then D(w) can be rewritten as D(«) = 2(1 - i)m e~ (P,

e2u
Let D’ ([XZ) = 0; then [xz = %hl w'

_pt+l

X 2a(m —1) m—1 —pf Ly 2ol a(ptd) 2am—1)+a(p+1)\~ =
= <
P6D) =2 g 1y a7 =2 b i1
2

_pi 2
<o\ F _ (pHINIT e
- p+1 - a
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Then,

2
P N N « + 1\ P pit
1RoRS,_ 1 (w) — g1 (@) < D(a})Ex gz(pa ) m T Es,
Combining (44) with (45), we obtain

pjl)ﬁm_%ﬂb—é.

(t—1)6 < 2(

Therefore we obtain
2E 3 2

p )(m)””-

O

Theorem 4. Let u™%(x,y) in (18) be the regularization solution of problem (4) at x

(45)

(46)

(47)

= 1L

Assume (2) and the a priori condition (28) hold for p > 0. If we take the solution of Equation (31)

as a regularization parameter at x = 1, there is the following error estimate:

1

1F™(1y) — F(Ly)ll < Cao?TEST,

1
where Cy = (p + 1)% ()7 + (212 +2)2 5T is a non- negative and non-zero constant.

Proof. Due to the triangle inequality, the Parseval equation and Lemma 5, we know

11, y) = FA I = 17" 1 w) — f(1, @)l
<"1, w) = f (L w) |+ 11 w) = f(1,w)l
< Vamé +||f" (1, w) = f(1,w)]|

1 2 7T L p# im R
P+ = SPEST +[/"(1,w) — f(1,w)]|.

According to the Holder inequality, we obtain

O (=) T
= [ (1-ak3) P 1 (o) [P (1~ k) cont (Ve T ) £, 0 e
= </:O (1-ak)™ g1 (w)Fdw) P
* </:j (1-ak3) ™ cost? (Ver +12) | f(1,w )\ dw)%
. | fLw)| dw)ﬁ

(48)
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Therefore,
17" (1,w) — (L w)]| < (24202 57 P, (49)
Thus,
17" (0y) — FL )] < CooPTEL™.
where Cy = (p+1)2 (%) P + (2% + 2)% is a constant. [J

3.3. The a Priori Error Estimate for Problem (5)

Theorem 5. Take gm"5 (x,y) in (23) as the reqularization solution of problem (5). Then, (3) and
the a priori condition (11) are established. If we choose m = [0(x)] as the regularization parameter,

[6(x)] = (%)2’2 (50)

then, for any 0 < x < 1, we obtain the error estimate as follows:

g™ (x,y) — g(x,y)Il < CsE36" 7, (51)

where [0(x)] is the largest integer less than or equal to 8(x), and Cs = /b + ﬁ(ﬁ)% is
a constant.

Proof. Due to the triangle inequality and the Parseval equation, we obtain

18" (x,y) = (x| = 18" (x, @) = §(x, )| < 1" (x, ) = §" (x, )| + 187 (x, ) — §(x, )|

Now, we first compute the first term of the right hand. Using the Bernoulli’s inequality,

we obtain
. X 1—(1—-bH?)" R
187 (x,0) - & (o) = -2 () — ()|
1—(1—vE2)"
< sup ( = ) 0 < Vbmbé.
wER H

Therefore,

18" (x, w) — §" (x,w)|| < Vbms. (52)
For (7), let x = 1, we can obtain:

sinh(\/w2 + k2>
¢(1,w) = Do (w). 53
Using (53), we have
—(1-bA2)" p - bh?)"
17 () - gl = | O gy - A2V,
1 b(w?+k)  \"

_ H - sinhz(\/wZJrkzx) vV +k2 A(l w)”

- gk % sinh\/w2+k2g ’

s - b(wz +k2) " y sinh(\/w2 +k2x) :

B werl)i sin h? <\/ w? + k2x> sinh(\/ w? + kz) :

= sup|F(w)|Ez,

weR



Symmetry 2022, 14, 1209

14 of 22

. Let & = Vw? + k?; therefore, F(w)

where F(w): = (1 _ b(w2+k2) )msinh(mx)

sinhz(\/w2+k2x) sinh(Vw?+k2)
can be rewritten as J(«). Using Lemma 1, we obtain

(4 ba? " sin h(ax)

](04) = (1 sinhz(lxx)> Sil’lh(ﬂc)
(- ba? " ba? = sin h?(ax) = sinh(ax)
B sinh?(ax) sin h?(ax) ba? sinh(a)

x—=1
_lx ba? * sinh(ax)
<(m+1) = -
= ) (sinhz(zxx)> sinh(a)

1-x
B _1x [sinh®(ax) | ¥ sinh(ax)
= (m+1)"2 ( ba? > sinh(a)

B i (sinh(ax)T (1) T
= (m+1) sinh(a) (btxz)

2 1\ = C1x
S 1 —372]( (bk2> (m + 1) 2x

Thus, we obtain

R

1-x

. . 2 1\ = _lx
18" () = 80l < 1z () (m+ D) FEn 64

Combining (52) with (54) and (50), we obtain

1-x

s 2 1\ % i
157 ) = g < Vims 12 () * (m 1) s

bk
1-x
_ 2 1\ %
< Vo' xE§+1—e2k<bk2) IR
2 1 1« 1—
= <\/B+1_62k(bk2) ZX>E§5 *.

Note: The above consideration is only the error estimate when 0 < x < 1 and does not
consider the error estimate when the end point is x = 1. At this time, the error estimate in Theorem 5
only shows that it is bounded rather than convergent. Because we want to obtain the error estimates
of the exact solution and the reqular solution at x = 1, stronger a priori assumptions must be
introduced as follows:

parie sinh(Vw? +k2)

where ||$(1,w)||gr is the Sobolev space HP-norm, and p = 0 is the Ly-norm.
Now, we give the error estimate between the regularization solution and the exact
w?+k2

solution for x = 1. Let Ay = Sinh (Va2 1K2) O

18(1, )| pr = < Ey, (55)

Theorem 6. Let g (x,y) in (18) be the reqularization solution of problem (5) at x = 1. Suppose (3)
and the priori condition (55) hold for p > 0. Choosing m = (0] as the reqularization parameter,

(BT
= (5) , (56)
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when x = 1, we have the following error estimates:

A p
18" (1,y) — g(Ly)|| < CeE, 76T+, (57)

14
2

where [0] is the largest integer less than or equal to @ , Cg = \/b + (%) .

Proof. Using the Parseval formula and the triangle inequality, we obtain

18" (L y) = gL y)ll = 18" (L, w) = §(L @)l < [§™° (L, w) = §" (L, W)l + I§" (L, w) — &(L, w)]l.

Using the Bernoulli’s inequality, we obtain

1—-(1-ba3)"

18" (1,0) = g"(Lw)] = | (¢ (@) = @a()) |

Hy
1—(1-bAH)"
< sup M )
weR Hy
< Vbmd.
Therefore,
18™°(1,w) — §"(1,w)|| < Vbmd. (58)
1-(1-bm3)" G2 (w) —(1-pm3)"
AT 1, —$(1, — _ 0 A _ A _ ,\70 R
18" (1) — 801, )] o galw) - P g )
| —bE)"
- HO 4’2((‘1)
m Vo2 L2
_ 1_ b(wzJsz) SIHh( W +k )(Pz(w)ep\/mep\/m
sinhz(\/oﬂ +k2) Vw? + k2
m
< sup|[1- b(w2 +k2) o PV TR E,
weR sinh2<\/w2 —|—k2)
m
_ —pVw 2
=0 (1 i) b
= sup |B(«)|Es.
w€ER

Take B(a) = (1 - ez%)me_i"" and let B'(af) = 0. Then ] = 1In W.

" 2bm-+b m -4
1_ b e*%h‘($) _ 2m 2bm+bp\ 2
eln 2bmp+bp 2m + p p

(2m5) < () Fme

Therefore, we obtain

B(a7)

IN

18" (L w) — $(1,w)| < (f,) (m+1)7%. (59)
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Combining (58) with (59) and (56), we obtain

L b\ "2 & »
< \/EE4+;"51+‘U () E3+p51+;’7
p
A
= <\/E+ (Z)Z)E;*Palfv

O

3.4. The a Posteriori Error Estimate for Problem (5)

This section will give an estimate of the convergence error under the a posteriori
parameter selection rule. Let T > 1 be a fixed constant and stop the algorithm when
m = m(J) € Ny appears for the first time:

|HG"™ (x,w) — ¢2°(w)] <15, 0< x <1, (60)

where ||§3 || > 74.

Lemma 6. Let y(m) = ||[H$"™°(x,w) — ¢2°(w)|; then the following conclusion holds:

L im0 y(m) = [[g2(w);

2 limy;— oo ’)/(Wl) =0;

3. y(m)is a continuous function;

4. Forany m € (0,+00), y(m) is a strictly monotonically decreasing function.

Proof.
N » 11— (1-bH?) | X
y(m) = VA (5, ) — (@) = | gos() — gt
A\
= |(1-0) 2w
m
b(w?+k?
Sy Pe—Cah Ly ¢2°(w)|).
sin h? (\/ w? + k2>
Therefore,

2 2 "
fr(m)—H (1— : bl +5) ) 92’ (w)|- (61)

h? (Vo + 1)

Obviously, y(m) satisfies the above four conditions. [

Lemma 7. For any x € (0,1), the regularization parameter m = m(J) which is chosen by (60)

satisfies:
22x2(x—1) E, 2x
R (2s) 62

Proof. According to (20),
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Since [1 —af?| <1, [|HHy1 —I|| < 1. |[AHu 162° (@) — ¢2° ()| = [HE™ (x,w) —
2’ (w)[| < 16 < ||[HHy162° () — §2°(w) -
Then we can obtain
|HHy 162(w) = ¢2(w)|| = |HHy-1$2(w) — HHy 162° (w)
+ HHy 192’ (0) = ¢2° (W) + $2° (w) — ()|
= ||AH162° (@) = 22 (@) + (AHu 1 = 1) ($2(w0) = ¢2° (@) ) |
> | AHy 1 02° (@) = @a(e)| = || (AHw1 = 1) ($2(0) = 27 (@) )|
> 16— ||[HH,yy—q — I||6 > (T —1)6.

Thus, we obtain
|BHy162(@) = 2(@)]| > (x—1)0. (63)

In addition,

I -12(w) = )] = | (1 62)" ot

N N -
= (1 bH2> rnh( ﬁ;2+k2>g(1’aﬂ‘

(e b(w? +k?) l Vw? + k2 §(1,w)
sinh2< w2+k2) sinh(\/m)g ’

m—1
b(w? +k?) Vw? + k2

< sup’ - ’Ez

weR  sinh? (\/w2+k ) 51nh<\/w2+k2)
= sup |J(«)|Ez.

wER

2
Take J(a) = (1 — smf“;‘(m) )m_lsinﬁ(a)’ and & = Vw? + k2.

Using Lemma 1, we obtain
-1
ba? " «
x)=1|1- -
J@) ( sinhz(zxx)> sinh(a)

ba? " ba?
B (1 - sinhz(ocx)> (sinhz(ocx)>

2 T 2x
_1 ba «
<m x -
(sin h? (ax) > sinh(«a)
L sinh(ax )% «
sinh(a) (baz)%

=

ba? Ty
sin h?(ax) sinh(a)

|HHy 1 ¢2(w) — §a(w)|| < m™ % — = a= %k, (64)
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Combining (63) with (64), we obtain

22x}2(x—1) ( E, >2x
. 65
T b1 —e )P \(t-1)3 (©)

Now, under the a posteriori regularization choice rule, we give the error estimation
between the regularization solution ¢"(x, y) and the exact solution g(x,y). O

Theorem 7. Let g (x,y) be the reqularization solution of problem (5). Suppose (3) and the a
priori condition (11) hold. If we take the solution of Equation (60) as a reqularization parameter,
then for any 0 < x < 1, we can obtain the following error estimate:

18" (x,y) — g(x,y)|| < C7E36' 7, (66)

1—x
2

Zxkx—l
ZUI’I@I’E C7 = m + (2T2 + 2)

is a constant.

Proof. Using the Parseval formula, the triangle inequality and (58), we obtain

18 (x, y) — g (x, )| = 11§ (x, w) = §(x, w)|
< 18" (x,w) = 8" (x, )| + 18" (x, w) —
< Voms +|1§" (v, w) — §(x,w).

(x, )|

0%

According to the Holder inequality, Lemma 2 and (45), we obtain

18" (x, @) = §(x, @)

(1—bAa2)"
H

(1-bA%)"

A 2

P (w

2

,,,smh(\/wzi+k2 ) . VaZ 112 . g
(1 B bHZ) V2 £ 12 " (sinh(w‘/w2 T kz) g(l,W))
2

>)\/w2+k2x o1 (w >} [8(1, @) ¥ dew

2 1-x
+oo sinh(vw? 4 k2x = Joo x
< / (1-0r2)" ( Va2 1127 ol (w) | dw U &1, w)* dw}
—oo sinh* (\/ w? + k2 Bl

IN

+oo N
L. _(1_ ) sink (V£

m m

(1%2)?(@( )~ () P+ (1 - Hz)w(w)uzy’ﬁsgx
1 (p2(w) — 9 )u2+|\( _sz> @] B

[
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Thus,
1-x
8" (x @) = g(x, )| < (202 +2) T &' ES. (67)
Combining (62) and (67), we obtain

187 (x,) — gy < Voo + 8" (x,@) — §(x, )|

< Voms + (272 +2)PTX51*XE§
2! 2 1_Tx xsl—x
= ((1e—2k)"(r1)x+<ZT +2) T B3t

Note: Theorem 7 only considers the error estimate in the interval x € (0,1) but does not
consider the error estimate when x = 1 at the end point. As a result, it can only show that it is
bounded rather than convergent. The error estimate when x = 1 is given below. [

Lemma 8. Suppose (3) and the priori condition (55) hold for p > 0. If we take the solution

of Equation (45) as a regularization parameter at x = 1, then the regularization parameter
m = m(0) satisfies:
2
1 E P
m< — [4 ]” . (68)
ki (t—1)6

Proof. Let Hy = Hj = T V(“’z(j\/%kz) and H), = by H (I - bI:I(’)‘I:IO)kI:IS‘.

| AoHy, 1 92(w) — ¢2(w)|| > | HoH), 162 () = 62 ()| = [|(AoHp -1 — 1) (92(w) = 62 () )|
> 16— |HgHY | —I||6 > (T —1)0.

Therefore,
[HoHp, 1¢2(w) — ¢a(w)]| > (T —1)6. (69)

On the other hand, using Lemma 1 we obtain

RN 0 . R AD m—1 .
|AoHy, 1 42(@) = g2(w)l| = [ (1=bAZ) " ()]

= (1 — bH%)mil Ve TR e—pWM sinh<\/w2 T kZ)ep\/a;2+k2

sinh(\/cu2 +k2) w? + k2
m—1
<sup|[1- b(a)z + kz) Vw? + k2 e_p./w2+k2 E,
wER sin h? (\/ w? + kz) sinh(\/ w? + k2>
= sup|L(w)|Ey,
wWER

_ ) "' Jome e _JTR
where L(w) = (1 - sinhZ(\/w2+k2)> Sinh(\/w2+k2)e . Leta = vVw? +k?, then

L(w) can be rewritten as M(x) = (1 — _ae

1
sinhz(a)) snh@€ 7" Then, using Lemma 1

we obtain
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ba? " o _pe
M(DC) :<1 - sinhz(lx)> Sil’lh((x)e

_ ba? e ba? £ ba? - o —pa
B (1 - sinhz(zx)> (sinhz(oc)> <sinh2(1x)> Sinh(lx)e

p+1

_pa [sinh?(0)\ * o« _
< 2 pa
= < ba? sinh(oc)e
:m_p;r1 sinh? (a)a"Pb~ Iy eTPY < m~ ge”"’oc Pp— I e P
<m k Pp- p+1
Thus,
_ptt o _pil
|HoHy, 1¢2(w) — ga(w)|| <m™ 2 k™ Pb™ 2 Ey. (70)
Combining (69) with (70), we obtain
(t—1)5<m Tk P "TE, (71)
Therefore, we obtain
2
1 [ E4 ]pﬂ
m< —— | —2 |, (72)
ak% (t—1)5

O

Theorem 8. Let ¢ (x,y) in (23) be the reqularization solution of problem (5). Suppose (3) and
the a priori condition (55) hold. If we take the solution of Equation (45) as a regqularization parameter
at x =1, there is the following error estimate:

4
+1

18" (1,y) — g(1, y>||<csE”“5 , (73)

1 r
1 2o\ g
where Cg = (ﬁ) At (271(—;’2) 2P0 s q constant.

Proof. Due to the triangle inequality, the Parseval equation and Lemma 8, we obtain
18" (L y) =Lyl = 18" (1, w) - §(L,w)|

< g™ (1L,w) = §"(Lw)| + 18" (1, w) - §(1, )|
<Vbms+ 18" (1, w) — (1, w)||

L\ o
<=y 1@ - g0l

T—1

o

According to the Holder inequality, Lemma 2 and (45), we obtain



Symmetry 2022, 14, 1209 21 of 22

AN T 2
19 (L) — (1) = ’ U2 )| = (1 - v88) g1

2

m

H‘E

= |1 - em) " (1 ) T g1, ) T g1, w0) P

Cw | sinh? (Vw? + k2 "
- (1—bH(2)) ﬁpl|§02(w)|”+1 (1—bH2) " Sm(\/izij_)kz)rﬂ)

/N
—_
|
(~y
=
o
N—
~~
-
N
—
SN—
A
\_/
B
/N
—_
|
=~y
&
v
‘S)
NS,
B
SN—
T~
~—
-~
+
a
»‘I
S
3
o
™
L]
i
o

Therefore,

lg".w) - gl < (FE2) T s 7

Thus,
p
18" (1,y) — g(Ly)|| < CsdPTES™,

_1

p
2 .
where Cg = (m) AR (23(72*2) *P*1 ig a constant. [

4. Conclusions

In this paper, the Cauchy problem of the modified Helmholtz equation is studied. The
exact solution of the problem is obtained by Fourier transform, and the ill-posed problem
is solved by the Landweber iterative regularization method. Finally, given the appropriate
a priori bound, the corresponding error estimates are obtained under the a priori and the a
posteriori regularization parameter selection rules, respectively.
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