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Abstract: A six dimensional manifold of symmetric signature (3, 3) is proposed as a space structure
for building combined theory of gravity and electromagnetism. Special metric tensor is proposed,
yielding the space which combines the properties of Riemann, Weyl and Finsler spaces. Geodesic
line equations are constructed where coefficients can be divided into depending on the metric
tensor (relating to the gravitational interaction) and depending on the vector field (relating to the
electromagnetic interaction). If there is no gravity, the geodesics turn into the equations of charge
motion in the electromagnetic field. Furthermore, symmetric six-dimensional electrodynamics can be
reduced to traditional four-dimensional Maxwell system, where two additional time dimensions are
compactified. A purely geometrical interpretation of the concept of electromagnetic field and point
electric charge is proposed.
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1. Introduction

The question of combining the theories of gravitation and electromagnetism has in-
terested many researchers. Approaches to unification of these theories were proposed
by Einstein [1], Eddington [2], Weyl [3], Cartan [4] and others. These works use the four-
dimensional signature manifold (1, 3), which is the space we observe in ordinary life, with
one temporal and three spatial coordinates. However, these unifying theories have funda-
mental shortcomings that forced researchers to introduce additional dimensions. So the
five-dimensional Kaluza–Klein model combining gravitation and electromagnetism [5,6]
appeared, as well as its various generalizations, such as supersymmetric models [7,8],
supergravity theory proposed by Friedman, Nieuwenhuizen and Ferrara [9], Deser and
Zumino [10], and others [11].

In these models, some compact manifold B is added to the four-dimensional space-
time manifold M as a component of the direct product. The resulting manifold M ⊗ B
represents an extended space on the basis of which unified theories of gauge fields are
constructed. The gauge fields are induced by symmetry groups B. It should be noted that
the number of additional dimensions introduced by the B manifold can be quite large. For
example, the minimum number of B dimensions required to construct a gauge theory of
superunification based on the structural group SU(3)⊗ SU(2)⊗U(1) is 7 [12].

The relation to the geometrical nature of the complementary dimensions of superspace
is ambiguous. The simplest way to formulate a distinction between the basic dimensions
of manifold M and the additional dimensions B is in terms of the bundle theory [13].
If the manifold M ⊗ B is identified with the bundle, M is regarded as its base and B
as a typical layer, then the pair (M, B) defines a trivial vector bundle over the base M.
The typical layer B may not be directly related to the geometric structure of the base M,
so the additional dimensions of the layer B do not necessarily have a direct geometric
interpretation associated with the geometric nature of the basic dimensions. This greatly
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complicates the task of creating a unified and purely geometric field theory of interactions.
To the best of our knowledge no sufficiently convincing geometrical constructions have
been proposed so far.

In this paper an attempt is made to develop the foundations of a unified theory of
gravitation and electromagnetism based on the space-time with symmetric signature (i.e.,
equal number of spatial and temporal dimensions), which extends usual space of signature
(1, 3). The concept can be summarized as follows:

1. unified geometrical theory of physical fields of matter is a theory of bundles, in which
the base of the bundle is a space-time manifold;

2. structural groups of the bundle induce gauge fields;
3. geometrical structure of the bundle base is chosen so that the structural groups are

the symmetry groups of the base;
4. gauge fields are connections of structural groups functionally related to real physical

fields.

The smallest extension of the usual space to symmetric signature is obtained by adding
two temporal dimensions, resulting in the signature of (3, 3). It turns out that such space is
sufficient for constructing the unified theory according to statements above.

Structure of the work is as follows. A space combining elements of the structures of
Riemann, Weyl and Finsler spaces is introduced for a uniform description of gravitational
and electromagnetic interactions. A definition of the geodesic in this space is given, and
it is shown that when moving along the geodesic, the space remains homogeneous and
isotropic. The system of geodesic equations taking into account the presence of gravitational
and electromagnetic fields is derived. It is shown that in the framework of the considered
formalism the interaction of an electromagnetic field with a current (A− J interaction) is
possible only in spaces of dimension greater than four. If a gravitational field is absent,
the geodesic equations take the form of the Lorentz equation describing the motion of a
unit charge in the electromagnetic field. On this basis, the equations of electrodynamics in
the pseudo-Euclidean signature space (3, 3) are constructed and the notions of charge and
current densities, which have a purely geometric nature, are introduced. The connection
between the six-dimensional and traditional systems of Maxwell’s equations is outlined.
It is established that the class of admissible currents is determined by a group of local
eigenmovements of the metric of the introduced space.

2. Basic Definitions

The basis of the proposed geometric model of gravitational and electromagnetic fields
is the notion of a metric dynamic six-dimensional space-time of signature (3, 3). Here
“dynamic” means the metric tensor depends on the local velocity. Such a space partially
exhibits the properties of Weyl [3] and Finsler [14,15] spaces.

The Weyl space is defined by a family of conformally equivalent metrics λ(x), g(x),
where λ(x) is an arbitrary positive function, and g(x) is the field of the metric tensor
on the manifold. This type of space was used by Weyl to construct a unified theory
of gravitational and electromagnetic fields. The main drawback of this theory is the
requirement of inhomogeneity of physical space, i.e., the absence of a unified scale at
different points in space, which is not confirmed by observations available at the moment.

Finsler geometry is the geometry of metric spaces with internal local anisotropy [15,16].
The Finsler metric tensor depends not only on the points of the basic manifold, as it is
the case in Riemannian space, but also on the values of local velocities at these points, i.e.,
it has the form gij(x, ẋ). Accordingly, the physical fields in Finsler space, in addition to
space-time coordinates, turn out to depend on local velocities. The disadvantage of using
Finsler space for constructing a unified field theory is the requirement of local anisotropy.
Note that to date there are no convincing indications of local anisotropy of physical space-
time. Moreover, the use of Finsler geometry in field theories of Kaluza–Klein type [5] is
characterized by a large variety of possible structures and by the resulting problem of
identification of new elements of structure with physical observables.
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3. Rwf-Spaces

The spaces combining properties of Riemann, Weyl and Finsler spaces, where a unified
theory of gravitational and electromagnetic interactions can be described in a unified way,
are introduced as follows. Let Mn be an n-dimensional connected manifold and TMn be
a tangent bundle over the base of Mn. Let gij(x, y), (x, y) ∈ U ⊗ Tx Mn, where Tx Mn is a
tangent layer over the point x ∈ U. If the relation holds

gij(x, y) = λ(x, y)gij(x) , (1)

where λ(x, y) is a positive function of two variables, then the tensor gij(x, y) will be called
a generalized metric tensor at a given point x for a given vector y. Thus, the generalized
metric is not only a function of a point in space, but also of the direction vector given at
that point.

Definition 1. Riemann–Weil–Finsler space (RWF-space) is the manifold Mn in which the metric
tensor field of the form (1) twice continuously differentiable by the arguments x, y, twice covariant,
symmetric and nondegenerate is defined.

A differential bilinear form can be introduced in RWF-space

ds2 = gij(x, ẋ)dxidxj , (2)

where ẋi = dxi/ds, xi(s) is an arbitrary continuously differentiable line in some local region
of space.

In spaces with affine connectivity, a line xi(s) is geodesic if its velocity vector is parallel
along itself, i.e., the condition ∇ẋ ẋ = 0. In coordinate form

∇ẋ(ẋ)j = ẍj + Γj
ki ẋ

k ẋi = 0 , (3)

where ∇ẋ(ẋ)j is the covariant derivative along the vector ẋ, Γj
ki is the connectivity, which

depends on two arguments x and ẋ in general case. In order to ensure homogeneity and
isotropy of space when moving along geodesics, one restriction should be added to the
definition of geodesics.

Definition 2. The geodesic xi(s) will be called geodesic in RWF-space (RWF-geodesic) if the
condition takes place at each point of the line

λ(x(s), ẋ(s)) = 1 , (4)

where λ(x, y) is some positive continuous function for both arguments.

From the definition of RWF-geodesic it follows that on any such curve x(s) the
relation holds

gij(x(s), ẋ(s)) = gij(x(s)) . (5)

This means that scale remains unchanged and there is no local anisotropy of space for
parallel movement along the RWF-geodesic.

Let us now turn to the question of the specific form of representation of the function
λ(x, ẋ). Let λ(x(s), ẋ(s)) be an arbitrary function continuous in both arguments in some
neighborhood U of point x(s0), where x(s) is an arbitrary continuously differentiable
function in the this neighborhood.

Lemma 1. It is always possible to find a continuous vector field Ak(x) in the tangent bundle TU
over the base U such that

λ(x(s), ẋ(s)) = exp
(

Ak(x(s), ẋ(s))ẋk(s)
)

. (6)
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Proof. Let the local coordinate system in the neighborhood of the point x(s0) ∈ U be
chosen such that at this point the vector ẋ(s0) ∈ Tx(s0)

U has only one non-zero component,
for example, ẋ1(s0). Then put, by definition

A1(x(s0), ẋ(s0)) =
ln λ(x(s0), ẋ(s0))

ẋ1(s0)
. (7)

The remaining components of the vector Ai(x, ẋ) at the point x(s0) are chosen arbitrarily.
Then at the point x(s0) the relation holds

λ(x(s0), ẋ(s0)) = exp
(

Ak(x(s0), ẋ(s0))ẋk(s0)
)

. (8)

Because of the continuity of λ(x, ẋ) with respect to both arguments and the continuity
of ẋk(s0), the relation (8) can be extended in a continuous way to some neighborhood
of x(s0).

Further we restrict ourselves to consider a particular case of Ak independent of ẋ.
As follows from the construction, the choice of the vector field A(x) turns out to be

ambiguous. If the line x(s) is RWF-geodesic, then according to (6) the vector field A(x(s))
is orthogonal to the velocity vector field ẋ(s) at each point of x(s).

4. Equations of RWF-Geodesics

To find the RWF-geodesic we will use the Lagrangian formalism. We choose the
bilinear quadratic form L = gij(x, ẋ)ẋi ẋj as the Lagrangian L. According to the formula (2),
L = 1. By virtue of the relation (6)

gij(x, ẋ) = exp(Ak ẋk)gij(x) , (9)

and according to (4) and (6) on the geodesic line x(s) the following holds

Ak(x(s))ẋk(s) = 0 . (10)

The geodesic equations are given by the system of Euler-Lagrange differential equations

∂L
∂xk −

d
ds

∂L
∂ẋk = 0 , k = 1, n . (11)

By virtue of the condition (10) we have

∂L
∂xk =

1
2

gij,k(x)ẋi ẋj + Al,k(x)ẋl ,

d
ds

∂L
∂ẋk = gij,k(x)ẋj ẋj + gik ẍi + Ak,l(x)ẋl ,

(12)

where gij,k = ∂gij/∂xk, Ak,l = ∂Ak/∂xl . Substituting these relations into the Euler-Lagrange
equations, we finally obtain a system of second-order differential equations for geodesics

ẍp +
1
2

gpk(gik,j + gjk,i − gij,k)ẋi ẋj + (Ak,l − Al,k)gpk ẋl gij ẋi ẋj = 0 , p = 1, n . (13)

Introducing standard notations

Γp
ij(x) =

1
2

gpk(x)
(

gik,j(x) + gjk,i(x)− gij,k(x)
)

, Fij(x) = Aj,i(x)− Ai,j(x) , (14)

equations of geodesic (13) in RWF-space can be represented in the form

ẍp + Γp
ij ẋ

i ẋj + Flk ẋl gpkgij ẋi ẋj = 0 , (15)
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or in the form
ẍp + Γp

ij ẋ
i ẋj + gpkgl j ẋl Fki ẋi ẋj = 0 , (16)

The second term in (15) and (16) at Γp
ij depends only on x but not on ẋ and corresponds to

Riemann geometry. These two representations lead to different geometric structures. By
introducing a generalized connectivity symmetric by indices i, j

Γ̂p
ij = Γp

ij + Flk ẋl gpkgij (17)

and with anti-symmetric connectivity

ˆ̂Γp
ij = Γp

ij + gpkgl j ẋl Fik , (18)

Equations (15) and (16) can be represented in short form

ẍp + Γ̂p
ij ẋ

i ẋj = 0 , (19)

ẍp + ˆ̂Γp
ij ẋ

i ẋj = 0 , (20)

where the first term in the right-hand sides of (17) and (18) is responsible for gravitation,
and the second is for electromagnetism.

Further in this paper we treat electromagnetic aspect of (19) and (20). In Section 6 we
assume zero gravitation to ease calculations and than reduce to Maxwell equations, which
are derived without gravity considerations at all. We plan to present gravitation aspect in
the next article.

5. Equations of Electrodynamics in Six-Dimensional RWF-Space

Using the vector field Ak(x) included in the definition of RWF-metrics, we derive the
basic equations of six-dimensional electrodynamics and introduce the concepts of charge
density and current, which are purely geometric in nature.

From the real vector field Ak(x) included in the definition of RWF-metrics, one can
always construct the field of the bivalent antisymmetric tensor Fij = Aj,i − Ai,j, i, j = 1, 6,
representing the rotor of the vector field Ak. The operation of taking the gradient of this
tensor gives the identical zero by virtue of the Bianchi identity

Fij,k + Fki,j + Fjk,i ≡ 0 , i, j, k = 1, 6 . (21)

The identity (21) is valid for spaces of arbitrary dimension and signature. It is not related
to the type of the space metric and remains covariant with respect to any nondegenerate
coordinate transformations. Note also that the vector field Ak giving rise to this identity
can be chosen arbitrarily. Another covariant relation, which can be constructed using the
antisymmetric tensor Fij, has the form

DiFij = 0 , j = 1, 6 , (22)

where Di is the covariant derivative of the parameter xi. Clearly, if the identity (22) holds
in any coordinate system, it holds in any other system as well. However, unlike the
identity (21), the system of equations (22) depends on the type of space-time metric. Let us
partition the system of equations (22) into two subsystems

D1F1j + · · ·+ D4F4j = −D5F5j − D6F6j , j = 1, 4 , (23)

D1F15 + · · ·+ D4F45 = −D6F65 ,

D1F16 + · · ·+ D4F46 = −D5F56 .
(24)
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The system (23) remains covariant with respect to any coordinate transformations
from the group GL(4,R) while the system (24) is covariant with respect to transformations
from the group GL(2,R). Let us introduce the notation

J j

c
= −D5F5j − D6F6j , j = 1, 4 . (25)

From the definition it follows that this object is a four-component contravariant vector field
in a four-dimensional submanifold of six-dimensional RWF-space.

Definition 3. A four-dimensional current density vector is the vector field J j(x), j = 1, 4 in the
four-dimensional submanifold of six-dimensional RWF-space.

Definition 4. Charge density is the value ρ(x) = J4(x)/c.

These definitions are a tribute to the established tradition, since current density and
charge density are closely related to the well-known phenomenological concepts of electric
current density and electric charge density. These very notions are used further, although
it would be more consistent to operate only with the components of the six-dimensional
electromagnetic tensor Fij.

So, the relation (23), according to (25), can be represented as

DiFij =
J j

c
, j = 1, 4 . (26)

Due to the covariance of the Equation (26) with respect to any transformations from the
group GL(4,R), they are valid for any continuous currents. These equations are a general-
ization of the Maxwell equations of four-dimensional electrodynamics in Minkowski space

∂Fij

∂xi =
J j

c
, j = 1, 4 . (27)

Before we proceed to analyze the properties of the equations of six-dimensional
electrodynamics, it is necessary to make sure that they are closely related to Maxwell’s
electrodynamic equations.

6. The Model of a Resting Electric Charge in Six-Dimensional Electrodynamics and Its
Connection with the Analogous Model of Maxwell’s Electrodynamics

So far all conclusions have been valid for the case of the presence of both fields:
gravitational and electromagnetic. Maxwell electrodynamic equations do not involve
gravity. In order to show the connection of six-dimensional theory with traditional four-
dimensional Maxwell equations we now resort to the case of absence of gravity.

Geodesics of the form (19) correspond to spaces with symmetric affine connectivity,
while geodesics with asymmetric connectivity of the form (20) correspond to spaces with
Cartan type torsion. Note that the connectivity (17) and (18) depend on local velocities
in addition to their dependence on space-time coordinates. Further we will consider the
simpler case of (19).

Equations for geodesics (15) and (16) are valid for spaces of arbitrary dimension
and signature. Equation (15) describes geodesics in the presence of gravitational and
electromagnetic fields simultaneously. If there is no gravitational field (i.e., Γp

ij = 0), the
Equation (15) after simple transformations takes the form

ẍl + Fpl ẋp = 0 .

The resulting relation is nothing but the Lorentz equation describing the motion of
a charged particle with a unit charge in the electromagnetic field defined by the tensor
Fpl . Thus, the vector field A(x), appearing in the definition of the space metric, from a
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physical point of view can be interpreted as the field of the vector potential in classical
electrodynamics, and the antisymmetric covariant tensor Fik is seen as the electromagnetic
tensor. However, if we limit ourselves to considering only the four-dimensional signature
space (1, 3), the condition (10) arising in the definition of the geodesic does not allow us
to build a theory of the interaction of the electromagnetic field with the electric charge
(the so-called A − J interaction). In addition, the very notion of electric charge within
four-dimensional space-time cannot be given a clear mathematical definition.

To eliminate the difficulties arising in the four-dimensional model of electromagnetism,
we have chosen a six-dimensional RWF-space with the signature (3, 3) as a candidate for
the role of real physical space-time.

In six-dimensional RWF-space on the vector field components Ak, k = 5, 6 in the
three-dimensional time subspace we impose some conditions that allow us to derive the
system of three-dimensional Maxwell equations. Let us give a geometrical interpretation of
the notion of the electric charge distribution density.

In six-dimensional electrodynamics there are two systems of general covariant
Equations (21) and (22). The system of Equation (21) consists of twenty relations, the
system (22) has six relations. Maxwell’s classical electrodynamics in three-dimensional
Euclidean space is traditionally represented as two pairs of equations

divE = ρ , rotH − 1
c

∂E
∂t

=
j
c

, (28)

divH = 0 , rotE− 1
c

∂H
∂t

= 0 , (29)

where H = (H1, H2, H3), E = (E1, E2, E3) are three-dimensional vectors of magnetic and
electric field density respectively, ρ is an electric charge density, j = (j1, j2, j3) is a three-
dimensional vector of electric charge density.

In order to obtain the system of three-dimensional Maxwell Equations (28) and (29)
from the six-dimensional system of Equations (21) and (22) in the case of a resting point elec-
tric charge, we should impose some conditions on the covector field A(x). Let (x1, . . . , x6)
be the pseudo-Euclidean coordinate system in the tangent layer Tx over the point x ∈ M6,
and the coordinates of the point itself are zero. Hereafter, the coordinates x1, x2, x3 will be
called “spatial”, and x4, x5, x6 will be referred to as “temporal”. In the coordinate plane
(x5, x6) of the tangent bundle Tx we set a one-parameter rotation group at an angle ω

c x4

around the origin (coinciding with the tangent point x). Then

x5(x4) = x5(0) cos
(ω

c
x4
)
− x6(0) sin

(ω

c
x4
)

,

x6(x4) = x5(0) sin
(ω

c
x4
)
+ x6(0) cos

(ω

c
x4
)

.
(30)

Integral curves x5(x4), x6(x4), given by the relations (30), generate a vector veloc-
ity field, which in the plane (x5, x6) is

(
−ω

c x6, ω
c x5). Assume by definition to satisfy

Maxwell’s equations:

(A5, A6) =

−A
x6√

x2
5 + x2

6

δ(x1, x2, x3), A
x5√

x2
5 + x2

6

δ(x1, x2, x3)

 , (31)

where A2 = A2
5 + A2

6, x2
5 + x2

6 = r2
0 = const.

Thus, in the plane of the tangent splitting Tx there is a circulation of the vector field A
along the circle of constant radius r0. By virtue of the construction, A5 and A6 are nonzero
in the area of definition of the function δ(x1, x2, x3) δ(x2

5 + x2
6 − r2

0). Regarding the other
components of the vector field A, suppose by definition that they depend only on the
coordinates x1, . . . , x4, that is Ai = Ai(x1, . . . , x4), i = 1, 4.
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Let us introduce the following notations:

Ei = Fi4 = A4,i − Ai,4 , i = 1, 6 ,

H1 = F23 = A3,2 − A2,3 , H2 = F31 = A1,3 − A3,1 ,

H3 = F12 = A2,1 − A1,2 , H4 = F56 = A6,5 − A5,6 .

From the definition of the components A5, A6 directly follows that

E5 = −A5,4 =
ω

c
A

x5√
x2

5 + x2
6

δ(x1, x2, x3) ,

E6 = −A6,4 =
ω

c
A

x6√
x2

5 + x2
6

δ(x1, x2, x3) ,

H4 =
A√

x2
5 + x2

6

δ(x1, x2, x3)

for x2
5 + x2

6 = r2
0. The remaining components of the antisymmetric tensor Fij are identically

zero. Thus, Fij can be represented in the form

Fij =



0 H3 −H2 E1 0 0
−H3 0 H1 E2 0 0
H2 −H1 0 E3 0 0
−E1 −E2 −E3 0 −E5 −E6

0 0 0 E5 0 −H4
0 0 0 E6 H4 0

 . (32)

Four relations from the system of Equation (21) take the following form for the indices
i, j ∈ 1, . . . , 4:

F12,3 + F23,1 + F31,2 = 0 , F12,4 + F24,1 + F41,2 = 0 ,

F13,4 + F34,1 + F41,3 = 0 , F23,4 + F34,2 + F42,3 = 0 .

These relations represent the second pair of Maxwell Equation (29). Apart from (29),
the system (21) contains C3

6 − 4 = 16 additional equations, which are identically zero-
turned. Let us show this by the example of one of them: F15,2 + F21,5 + F52,1 = 0. As the
tensor Fij is defined by (32), the components F15, F25 are identically equal to zero, and F21

is by definition independent of x5, hence, the left part of the equation is zero. The same
can be shown for the other fifteen equations. Thus, one can conclude that the system of
Equation (21) in six-dimensional space-time in the framework of the electromagnetic field
model with a two-dimensional vector field component A(x) circulating along the circle in
the time subspace is equivalent to the second pair of Maxwell equations.

In order to derive the first pair of Maxwell equations from the system of Equation (22),
it is necessary to exclude the effects associated with the presence of the gravitational
field and external charges. This is achieved if the pseudo-Riemannian metric, which is
a component of the metric of the RWF-space, degenerates into the flat metric of the six-
dimensional pseudo-Euclidean signature space (3, 3). In this case the antisymmetric tensor
Fνµ = giνgµjFij takes the form

Fνµ =



0 H3 −H2 −E1 0 0
−H3 0 H1 −E2 0 0
H2 −H1 0 −E3 0 0
E1 E2 E3 0 −E5 −E6
0 0 0 E5 0 −H4
0 0 0 E6 H4 0

 , (33)
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and the system of Equation (22) degenerates into

∂Fνµ

∂xν
= 0 , µ = 1, 6 . (34)

In the framework of the considered model, with the circulating vector field component
A(x) in the time subspace, the system (34) is represented by six equations in the following
expanded form:

∂Fν1

∂xν
= −H3,2 + H2,3 + E1,4 = 0 ,

∂Fν2

∂xν
= H3,1 − H1,3 + E2,4 = 0 ,

∂Fν3

∂xν
= −H2,1 + H1,2 + E3,4 = 0 ,

∂Fν4

∂xν
= E1,1 + E2,2 + E3,3 − E5,5 − E6,6 = 0 ,

∂Fν5

∂xν
= −E5,4 + H4,6 = 0 ,

∂Fν6

∂xν
= −E6,4 + H4,5 = 0 .

(35)

The first three equations of (35) represent the second Maxwell equation in (28) in the
absence of currents. The fourth equation from (35) can be written as

divE = E5,5 + E6,6 , (36)

where the right-hand side represents the density of a point electric charge placed at the
origin. The Equation (36) is nothing but the first Maxwell equation of the system (28).
However, the Equation (36) is more informative because it gives a geometric interpretation
of the density of the point electric charge.

Let us now proceed to consider the last two equations of the system (35), which are not
part of the system of Maxwell’s Equations (28) and (29). These equations are responsible for
the relationship between the components of the electromagnetic tensor Fij in time subspace.
By virtue of the definition of E5, E6, H4 we have

−E5,4 + H4,6 =

(
ω2 A

c2
(

x2
5 + x2

6
)1/2 x6 − A(

x2
5 + x2

6
)3/2 x6

)
δ(x1, x2, x3) ,

−E6,4 + H4,5 =

(
ω2 A

c2
(

x2
5 + x2

6
)1/2 x5 − A(

x2
5 + x2

6
)3/2 x5

)
δ(x1, x2, x3) ,

It follows that the last two equations of the system (35) are equivalent to each other
and reduce to a simple algebraic relation

ω2r2
0 = c2 . (37)

From (37) it follows that the linear velocity of the vector field circulation in two-
dimensional time subspace is equal to the speed of light. This statement is the basis for
understanding why the photons, carriers of electromagnetic field, move in space at the
speed of light.

We also suppose that additional temporal dimensions are localized to the scale of
elementary particle size, i.e., time span of below τ = 10−20 s. This may explain the
difference in conservation laws of strong and weak interactions. Strong interaction has
typical time below τ and occurs in symmetrical (3, 3) space, thus it obeys more laws to
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keep symmetry. Weak interaction has times above τ and occurs in less symmetric usual
(1, 3) space, thus it violates some laws, which are no longer supported by symmetry [17].

7. The Derivation of Maxwell’s Equations in the Case of Uniformly and Rectilinearly
Flowing Currents

The equations of six-dimensional electrodynamics were derived only for the case of
a resting electric charge. Now let us derive them for a rather wide class of currents. Let
us show that these currents are related to the elements of local groups of proper motions
of the Minkowski metric of four-dimensional space and only for this class of currents the
equations of electrodynamics adequately describe electromagnetic processes.

In order to obtain Maxwell equations containing currents, let us first consider one
particular example of constructing Maxwell equations with uniformly and linearly flow-
ing currents.

To obtain such equations, it is sufficient to move from the coordinate system (x1, . . . , x6),
relative to which the charge is at rest, to some other system (x1′, . . . , x6′), relative to which
the charge is moving in a straight line with constant speed. This can be done by pseudo-
orthogonal rotation. Physically, this means that the transition is made to an inertial frame
of reference moving uniformly and linearly relative to the original frame of reference, for
example, along the axis x′1. The Lorentz transformations carrying out such transition are

x1 = γ
(

x1′ + βx4′
)

, x2 = x2′ , x3 = x3′ ,

x4 = γ
(

x4′ + βx1′
)

, x5 = x5′ , x6 = x6′ ,

where β = v/c and γ =
(
1− β2)−1/2 is the relativistic multiplier. The electromagnetic

tensor Fij, defined by the relation (32), transforms into the tensor

Fi′ j′ =
∂xi

∂xi′
∂xj

∂xj′ Fij (38)

according to the tensor transformation law. Considering that

∂x1

∂x1′ = γ ,
∂x1

∂x4′ = γβ ,
∂x4

∂x1′ = γβ ,
∂x4

∂x4′ = γ ,

we obtain the following representation for the tensor Fi′ j′ :

Fi′ j′ =



0 γ(H3 + βE2) −γ(H2 − βE3) E1 −γβE5 −γβE6
−γ(H3 + βE2) 0 H1 γ(E2 + βH3) 0 0
γ(H2 − βE3) −H1 0 γ(E3 − βH2) 0 0
−E1 −γ(E2 + βH3) −γ(E3 − βH2) 0 −γE5 −γE6
γβE5 0 0 γE5 0 −H4
γβE6 0 0 γE6 H4 0

. (39)

As can be seen from (39), the transformed tensor Fi′ j′ contains two additional non-zero
components F1′5′ and F1′6′ as compared to the tensor of the form (32). Let

H1′ = H1 , H2′ = γ(H2 − βE3) , H3′ = γ(H3 + βE2) , H4′ = H4 ,

E1′ = E1 , E2′ = γ(E2 + βH3) , E3′ = γ(E3 − βH2) , E5′ = γE5 , E6′ = γE6 .

Since the pseudo-orthogonal transformation of the pseudo-Euclidean metric remains
invariant, we obtain the following representation for the contravariant tensor Fi′ j′ :
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Fi′ j′ =



0 H3′ −H2′ −E1′ βE5′ βE6′

−H3′ 0 H1′ −E2′ 0 0
H2′ −H1′ 0 −E3′ 0 0
E1′ E2′ E3′ 0 −E5′ −E6′

−βE5′ 0 0 E5′ 0 −H4′

−βE6′ 0 0 E6′ −H4′ 0

 . (40)

It follows that the system of equations Fi′ j′

,i′ = 0, j′ = 1′, 2′, 3′ is equivalent to
the equation

rotH′ − 1
c

∂E′

∂t′
− βρ′ = 0 , (41)

where H′ = (H1′ , H2′ , H3′), E′ = (E1′ , E2′ , E3′), ρ′ = E5′5′ + E6′ ,6′ = γ(E5,5 + E6,6) = γρ is
charge density in the primed coordinate system. The value J′ = vρ′ is the current density
in the primed coordinate system. Then from (41) we have

rotH′ =
1
c

∂E′

∂t′
+

J′

c
. (42)

The last relation is the Maxwell equation in the case of a uniform and linear current J′.
The equation Fi′4′

,i′ = 0 is written as

divE′ = ρ′ . (43)

There are two more equations Fi′5′
,i′ = 0, Fi′6′

,i′ = 0, which provide important additional
information about the mechanism of electric charge formation, but they are not of direct
interest for the purposes stated in this paper. The considered example shows that each
proper linear transform from Lorentz group, which is a linear group of eigenmovements of
the Minkowski metric, is assigned to a certain linear current from the class of all linearly and
uniformly flowing currents. This class of currents is invariant under transformations from
the Lorentz group. The question arises whether there are any other groups of coordinate
transformations representing groups of eigenmovements of the pseudo-Euclidean metric,
acting not on the whole space as it is in the case of the Lorentz group, but only locally on
certain classes of trajectories.

8. Groups of Local Eigenmovements of the Minkowski Metric and Admissible Classes
of Currents

Let a local transformation of coordinate differentials is set in some neighborhood of a
fixed point of n-dimensional pseudo-Euclidean space with coordinates x1, . . . , xn as:

dxi =
∂xi

∂xj′ dxj′ .

Then the pseudo-Euclidean metric ηij in the new coordinate system in the neighborhood of
a given point takes the form

gi′ j′ =
∂xk

∂xi′
∂xl

∂xj′ ηkl .

Definition 5. The local transformation of coordinate differentials in the neighborhood of a given
point that leaves the pseudo-Euclidean metric invariant will be called local eigenmotion of the
pseudo-Euclidean metric.

All possible local transformations of coordinates in the neighborhood of a given
point form a group of local eigenmovements of the pseudo-Euclidean metric. Due to the
nonlinear nature of the transformations, they may, in general, be non-integrable. Moreover,
the question arises about the existence of such groups of nonlinear local motions in principle.
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Leaving this question aside for the time being, let us pass to establishment of connection
between elements of groups of local motions and admissible classes of currents satisfying
Maxwell’s equation.

Let a pseudo-Euclidean coordinate system x1, . . . , x6 and some local system x1′ , . . . , x6′

are set in the neighborhood of some point of six-dimensional pseudo-Euclidean space. Let
the nondegenerate Jacobi matrix |∂xi/∂xj′ | exist, and let the system x1, . . . , x6 contain tensor
Fij of form (32). Setting such a tensor (38) in the framework of Maxwell’s four-dimensional
electrodynamics means that there are no currents in the system. Let’s pass to the local
primed coordinate system. The components of the electromagnetic tensor in the primed
coordinate system take the form

Fk′ l′ =

(
−H3

∂x2

∂xk′ + H2
∂x3

∂xk′ − E1
∂x4

∂xk′

)
∂x1

∂xl′

+

(
H3

∂x1

∂xk′ − H1
∂x3

∂xk′ − E2
∂x4

∂xk′

)
∂x2

∂xl′

+

(
−H2

∂x1

∂xk′ + H1
∂x2

∂xk′ − E3
∂x4

∂xk′

)
∂x3

∂xl′

+Ei
∂xi

∂xk′
∂x4

∂xl′

+

(
H4

∂x6

∂xk′ − E5
∂x4

∂xk′

)
∂x5

∂xl′

+

(
−H4

∂x5

∂xk′ − E6
∂x4

∂xk′

)
∂x6

∂xl′ , k′, l′ = 1′, 6′ .

(44)

As above, let us introduce the standard notations

H1′ = F2′3′ , H2′ = F3′1′ , H3′ = F1′2′ , H4′ = F6′5′ , Ei′ = Fi′4′ , i′ = 1′, 6′ .

We require that the local coordinate transformation is a local movement of the pseudo-
Euclidean metric of six-dimensional space, or more precisely, it would be an element of the
group of local eigenmovements of the metric of the four-dimensional Minkowski subspace.
Such a group coincides with the group of local proper transformations of coordinate
differentials x1′ , . . . , x4′ , that is

dxj′ =
∂xj′

∂xi dxi , j′ = 1′, 4′ , i = 1, 4 ,

dx5′ = dx5 , dx6′ = dx6 .
(45)

Let us now proceed to the derivation of the first pair of Maxwell Equations (42) and (43).
The contravariant tensor Fi′ j′ in the local primed coordinate system will have the form

Fi′ j′ =



0 H3′ −H2′ −E1′ E5′π1′ E6′π1′

−H3′ 0 H1′ −E2′ E5′π2′ E6′π2′

H2′ −H1′ 0 −E3′ E5′π3′ E6′π3′

E1′ E2′ E3′ 0 −E5′ −E6′

−E5′π1′ −E5′π2′ −E5′π3′ E5′ 0 −H4′

−E6′π1′ −E6′π2′ −E6′π3′ E6′ H4′ 0

 , (46)

where H4′ = H4 and

πm′ =
∂x4

∂xm′

(
∂x4

∂x4′

)−1

.
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The system of equations Fi′ j′

,i′ = 0, j′ = 1′, 6′ in the primed local coordinate system can
be represented in the form

rotH′ − 1
c

∂E′

∂t′
− J′

c
= 0 ,

divE′ = ρ′ ,
∂

∂x1′ (E5′π1′) +
∂

∂x2′ (E5′π2′) +
∂

∂x3′ (E5′π3′)−
∂E5′

∂x4′ +
∂H4′

∂x6′ = 0 ,

∂

∂x1′ (E6′π1′) +
∂

∂x2′ (E6′π2′) +
∂

∂x3′ (E6′π3′)−
∂E6′

∂x4′ −
∂H4′

∂x5′ = 0 ,

(47)

where ρ′ = E5′ ,5′ + E6′ ,6′ , J′ = ρ′v, v/c = (−π1′ ,−π2′ ,−π3′).
The last two equations of the system (47) are equivalent to the following

∂

∂x1′

(
E5

∂x4

∂x1′

)
+

∂

∂x2′

(
E5

∂x4

∂x2′

)
+

∂

∂x3′

(
E5

∂x4

∂x3′

)
− ∂

∂x4′

(
E5

∂x4

∂x4′

)
+

∂H4′

∂x6′ = 0 ,

∂

∂x1′

(
E6

∂x4

∂x1′

)
+

∂

∂x2′

(
E6

∂x4

∂x2′

)
+

∂

∂x3′

(
E6

∂x4

∂x3′

)
− ∂

∂x4′

(
E6

∂x4

∂x4′

)
− ∂H4′

∂x5′ = 0 .
(48)

Taking into account that
∂

∂xk′ =
∂xi

∂xk′
∂

∂xi ,

and also the independence of the components E5, E6 from the variables x1, x2, x3, we can
transform the system (48) to the form

D
∂E5

∂x4 +
∂H4

∂x6 = 0 ,

D
∂E6

∂x4 −
∂H4

∂x5 = 0 ,

D =

(
∂x4

∂x1′

)2

+

(
∂x4

∂x2′

)2

+

(
∂x4

∂x3′

)2

−
(

∂x4

∂x4′

)2

.

(49)

Since the transition from the coordinate system x1, . . . , x4 to the system x1′ , . . . , x4′ is
performed using a local pseudo-orthogonal transformation, the condition D = 1 must be
satisfied. It follows that the system (49) is equivalent to the system

− ∂E5

∂x4 +
∂H4

∂x6 = 0 ,
∂E6

∂x4 +
∂H4

∂x5 = 0 . (50)

These two equations provide important additional information about the relationship
between the components of the electromagnetic tensor Fi′ j′ , but they are not of direct
interest for the purposes stated in this paper, and therefore will not be considered here.

Thus, the system of Equation (47) of six-dimensional electrodynamics in the consid-
ered model is invariant under any local pseudo-orthogonal coordinate transformations
x1, . . . , x4 and equivalent to the first pair of Maxwell equations and additional system
of two Equation (50). Note that the three-dimensional current vector J′ included in the
first Maxwell equation of the system (47) is completely determined by a kind of local
pseudo-orthogonal transformation, according to the formula

J′

c
= ρ′(π1′ , π2′ , π3′) = ρ′

(
∂x4

∂x1′

(
∂x4

∂x4′

)−1

,
∂x4

∂x2′

(
∂x4

∂x4′

)−1

,
∂x4

∂x3′

(
∂x4

∂x4′

)−1)
. (51)

Thus, each admissible current included in the first Equation (47) is defined by some element
of the group of local eigenmovements of the Minkowski metric according to (51). All of the
above can be formulated as the following result.
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Theorem 1. Maxwell’s equations are invariant with respect to any local eigenmovements of the
Minkowski metric. The class of admissible currents satisfying Maxwell’s equations is completely
determined by the group of local eigenmovements of the Minkowski metric.

It follows from the theorem that the wider the group of local eigenmovements of the
Minkowski metric, the larger the class of admissible currents satisfying Maxwell’s equation,
and the wider is the field of application of Maxwell’s electrodynamics. Indeed, if the group
of local eigenmovements were limited to Lorentz transformations only, then Maxwell’s
equations would be strictly valid only in the case of uniformly and linearly flowing currents.
This fact was pointed out at the time by Pauli [18]. The question about the existence of
groups of local eigenmovements of the Minkowski metric, different from the Lorentz group,
remains open.

9. An Example of a Nonlinear Group of Local Eigenmovements of a Minkowski Metric

An arbitrary eigenrotation of three-dimensional pseudo-Euclidean space R3
1,2, that

is an arbitrary orthogonal or pseudo-orthogonal transformation leaving the origin of
coordinates immobile, can be decomposed into three rotations in the planes {x1, x2},
{x1, x4}, {x2, x4} and one rotation in space itself R3

1,2 = {x1, x2, x3}, which is not reduced
to any of the previous ones. The first rotation transforms the spatial coordinates x1, x2

and corresponds to the usual spatial rotations. The second and third rotations act in
pseudo-Euclidean planes and correspond to the Lorentz proper transforms. Let us pass to
consideration of the fourth rotation in R3

1,2. The sought rotation should leave invariant the
differential quadratic form (

dx4
)2
−
(

dx1
)2
−
(

dx2
)2

(52)

or an equivalent form written in polar coordinates(
dx4
)2
− dr2 − r2dϕ2 , (53)

where x1 = r cos ϕ, x2 = r sin ϕ.
Let the coordinate differentials x4, ϕ of a point with coordinates (x4, r, ϕ) undergo a

transformation aω : (dx4, dϕ)→ (dx4′ , dϕ′) of the form

dx4 =
dx4′ + r2ω

c dϕ′√
1−

( rω
c
)2

, dϕ =
dϕ′ + ω

c dx4′√
1−

( rω
c
)2

, (54)

where ω is the angular velocity of rotation of a circle of radius r in the plane {x1, x2}with re-
spect to the origin, |ω| = x/r. It is easy to see that the coordinate transformation (54), which
leaves the invariant form (53), is an element of the sought group of local eigenmovements of
the Minkowski metric. If we return to the pseudo-Euclidean coordinate system (x4, x1, x2),
the transformations (54) will be equivalent to the following nonlinear transformations
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dx4 = γdx4′ − γ
ω

c
x2′dx1′ + γ

ω

c
x1′dx2′ ,

dx1 = −γβ sin ϕdx4′ +
ω

v
Adx1′ +

ω

v
Bdx2′ ,

dx2 = γβ cos ϕdx4′ +
ω

v
Cdx1′ +

ω

v
Ddx2′ ,

ϕ = γ

 arccos x1′√
(x1′)2 + (x2′)2

+
ω

c
x4′

 , v = rω ,

A = x1′ cos ϕ + γx2′ sin ϕ , B = x2′ cos ϕ− γx1′ sin ϕ ,

C = x1′ sin ϕ + γx2′ cos ϕ , D = x2′ sin ϕ− γx1′ cos ϕ .

(55)

The transformations (55) leave the differential quadratic form (52) invariant and
therefore are local eigenmovements of the Minkowski metric.

10. Conclusions

A space with a metric tensor of a special kind depending on the coordinates and
local velocities (RWF-space) is introduced. Setting the tensor induces some corresponding
field in this space. Geodesic lines are defined by second-order differential equations, the
coefficients in which can be divided into those depending on the metric tensor (relating
to the gravitational interaction) and those depending on the vector field (relating to the
electromagnetic interaction). If there is no gravity, the geodesic equations turn into the
equations describing the charge motion in the electromagnetic field.

For the RWF-space with symmetric signature (3, 3) and without gravity a six-dimensional
model of electrodynamics is constructed and Maxwell’s electrodynamics equations for a cer-
tain class of currents are derived. Within the framework of this model, a purely geometrical
interpretation of the concept of electromagnetic field and point electric charge was proposed.
The first concept owes its emergence to the type of RWF-space metric. The appearance of
the point electric charge is associated with the circulation of the vector potential around
a dedicated time axis in the three-dimensional time subspace. Thus, the electric charge
formation occurs in the unobservable three-dimensional temporal region of six-dimensional
space-time, and its existence is manifested in those effects which are observed in the real
three-dimensional physical subspace. Additional temporal dimensions in the considered
model turn out to be compactified. Because of symmetry in six-dimensional electrodynam-
ics, it would be more correct to abandon the concept of electric charge and operate only with
components of the electromagnetic tensor Fij in six-dimensional space-time. Traditionally,
Maxwell’s equations in the four-dimensional theory of electromagnetism are interpreted as
relationships between the spatial distribution of the charge density and the electromagnetic
field density, i.e., between phenomenological objects without a clear mathematical defini-
tion. In six-dimensional electrodynamics, this interpretation changes to a more rigorous
and consistent understanding of the equations of electromagnetism as equations linking
the different components of the electromagnetic tensor Fij in six-dimensional space.

The proposed six-dimensional model of classical electrodynamics, apparently, may
help to take a new look at the renormalization problem in quantum electrodynamics. As is
known [19], the permutation functions and Green’s functions have singularities on the light
cone of four-dimensional space-time. In six-dimensional electrodynamics due to taking
into account the mechanism of electric charge formation the light cone is replaced by a one-
band hyperboloid, which should lead to a revision of the calculation technique. Probably,
occurrence of meaningless expressions at calculations within traditional four-dimensional
quantum electrodynamics is connected exactly with wrong choice of dimensionality and
structure of real physical space-time.

It is shown that the Maxwell equations are invariant with respect to the group of
local eigenmovements of the Minkowski metric, which is wider than the Lorentz group.
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A mutually unambiguous relation has been established between the admissible currents
included in the Maxwell equations and the local eigenmovements of the Minkowski metric.
An attempt to extend these results to arbitrary currents leads to a change in the form of
Maxwell’s equations. This means that the Maxwell equations turn out to be valid not for
arbitrary currents, as it is accepted at present, but only for a certain class of currents defined
by the maximum local group of eigenmovements of the Minkowski metric.
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