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400084 Cluj-Napoca, Romania
* Correspondence: aliakgul@siirt.edu.tr (A.A.); monica.bota@ubbcluj.ro (M.-F.B.)

Abstract: This study develops a fractional model using the Caputo–Fabrizio derivative with order α

for platelet-poor plasma arising in a blood coagulation system. The existence of solutions ensures that
there are solutions to the considered system of equations. Approximate solutions to the recommended
model are presented by selecting different numbers of fractional orders and initial conditions (ICs).
For each case, graphs of solutions are supplied through different dimensions.
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1. Introduction

Many investigations were conducted on the blood coagulation problem. For exam-
ple, a numerical investigation of this problem can be seen in [1]. In another work, the
conditions of the microvessel occlusion of this problem were reported. A study related
to the intrinsic pathway of coagulation and arterial thrombosis is found in [2]. Numeri-
cal simulations of the blood coagulation model using the Atangana–Baleanu–Caputo
derivative were performed in [3]. Reaction–diffusion waves of blood coagulation was
reported in [4]. Moreover, traveling wave solutions in the mathematical model of blood
coagulation were found in [5]. The initiation of reaction–diffusion waves of blood
coagulation is found in [6]. Blood coagulation is one of the most studied processes in
biomedical modeling. This model takes into account patient-specific parameters.

A mathematical model is the explanation of a problem by employing mathematical
theories and ideas. Mathematical models are utilized in several branches, such as biology,
chemistry, and even art. A model may serve to describe a system, investigate the influences
of various elements, and present prognostications about function. Many investigations
have been performed in different fields of science.

In recent decades, scientists have devoted specific attention to model different phe-
nomena by using mathematical concepts and tools to analyze the dynamics of intricate
problems [7,8]. There are some classical and advanced mathematical instruments that
support them to create the behaviors of such problems regarding mathematical patterns.
Most such models have been formed using classical mathematical functions, but researchers
are now interested to use modern fractional functions to form the models of such different
processes. For example, the mathematical modelling of tumor growth can be found in [9,10].
Such a model for chemovirotherapy that describes the effect of infusion scheme can be seen
in [11].

Symmetry 2022, 14, 1128. https://doi.org/10.3390/sym14061128 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14061128
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-9013-291X
https://orcid.org/0000-0001-9832-1424
https://orcid.org/0000-0002-8304-1574
https://orcid.org/0000-0002-5513-0801
https://doi.org/10.3390/sym14061128
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14061128?type=check_update&version=1


Symmetry 2022, 14, 1128 2 of 10

Moreover, details of the mathematical model of aortic aneurysm formation are
in [12]. More investigations are found in [13–23]. There are some well-known fractional
operators to use for modelling phenomena, and the Caputo–Fabrizio fractional operator
is one of them. Many investigations involved that operator, such as [24–29]. In this study,
we use the Caputo–Fabrizio fractional operator to model platelet-poor plasma arising in a
blood coagulation system [30]:

dP
dt

= −(k5U(t) + k6T(t) + k7T2(t) + k8T3(t))P(t),

dT
dt

= (k5U(t) + k6T(t) + k7T2(t) + k8T3(t))P(t)− k9T(t), (1)

dU
dt

= (k1 + k2T(t) + k3T2(t))(U0(t)−U(t))− k4U3(t).

Constant k1 in Equation (1) describes the initiation step. In the above system, P is
prothrombin, which is a plasma protein that is turned into thrombin in the closeness of
thromboplastin issued with platelets at the locality of damage.

Thrombin T: identified as coagulation constituent II, it is a serine protease that acts
as a physiological function in organizing hemostasis and saving blood coagulation. Once
switched from prothrombin, thrombin turns fibrinogen into fibrin that, when mixed with
platelets from the blood, produces a clot. Thrombin then transforms protein fibrinogen
into unsolved fibrin, thereby assisting in blood clotting. Activated factor X or U: a clotting
protein or clotting factor. These factors are specific proteins that are necessary for proper
clotting, the manner by which blood clusters together to fill the place of an injury to hinder
bleeding. This procedure demands a set of responses to eventually produce a clot to fill an
injury. Details are provided in [30].

Definition 1. The Caputo-Fabrizio fractional derivative for function u(t) of order α is in the
following form [31]:

CFDα
t (u(t)) =

(2− α)M(α)

2(1− α)

∫ t

0
exp(

−α

1− α
(t− z))u′(z)dz, 0 < α ≤ 1, (2)

CF`α
t (u(t)) = (1− α)u(t) + α

∫ t

0
u(z)dz, (3)

Definition 2. The Caputo–Fabrizio (CF) fractional integral is in the form of the following
relation [31]:

CFIα
t (u(t)) =

2(1− α)

(2− α)M(α)
u′(t) +

(2− α)M(α)

2(1− α)

∫ t

0
u′(z)dz, 0 < α ≤ 1. (4)

Definition 3. The solution of the fractional differential equation in the form of CFDα
t (u(t)) = f (t)

is as follows [31]:

u(t) = u(0) +
2(1− α)

(2− α)M(α)
(u(t)− u(0)) +

2α

(2− α)M(α)

∫ t

0
u(z)dz. (5)

Now, we use the above relations to create the fractional model of (1) by changing the
classical derivative with a fractional one as follows:

CF
0 Dα

t P(t) = −(k5U(t) + k6T(t) + k7T2(t) + k8T3(t))P(t),
CF
0 Dα

t T(t) = (k5U(t) + k6T(t) + k7T2(t) + k8T3(t))P(t)− k9T(t), (6)
CF
0 Dα

t U(t) = (k1 + k2T(t) + k3T2(t))(U0(t)−U(t))− k4U3(t).
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Initial conditions (ICs): P(0) = P0, T(0) = T0, and U(0) = U0. This research is
organized as follows. In Section 2, the existence of the resolutions is provided. Then, in
Section 3, aspects of the numerical technique utilized to acquire the solutions of the offered
model are provided. We present the results and discussion of the current study in Section 4.
Lastly, the conclusion of this fractional research is in Section 5.

2. Existence and Uniqueness Results

We supposed the next fractional model to be operating the Caputo–Fabrizio derivative:
CFDα

0 P(t) = −(k5U(t) + k6T(t) + k7T2(t) + k8T3(t))P(t),
CFDα

0 T(t) = (k5U(t) + k6T(t) + k7T2(t) + k8T3(t))P(t)− k9T(t),
CFDα

0 U(t) = (k1 + k2T(t) + k3T2(t))(U0(t)−U(t))− k4U3(t),
(7)

with P(0) = P̆0 , T(0) = T̆0 and U(0) = Ŭ0. To examine the existence of resolutions for
the above fractional model, we employed the Picard–Lindelof procedure. We transformed
Model (6) into a fractional integral problem.

In fact, we exerted the fractional CF-integral operator stated by Losada and Nieto [32]
on both sides of the differential Equation (6); by considering (P(0), T(0), U(0)) = (P̆0, T̆0, Ŭ0),
we have:

P(t) =P̆0 +
2(1− α)

(2− α)M(α)

(
−(k5U(t) + k6T(t) + k7T2(t) + k8T3(t))P(t)

)
+

2α

(2− α)M(α)

∫ t

0

[
−(k5U(z) + k6T(z) + k7T2(z) + k8T3(z))P(z)

]
dz,

T(t) =T̆0 +
2(1− α)

(2− α)M(α)

(
(k5U(t) + k6T(t) + k7T2(t) + k8T3(t))P(t)− k9T(t)

)
+ (8)

2α

(2− α)M(α)

∫ t

0

[
(k5U(z) + k6T(z) + k7T2(z) + k8T3(z))P(z)− k9T(z)

]
dz,

U(t) =Ŭ0 +
2(1− α)

(2− α)M(α)

(
(k1 + k2T(t) + k3T2(t))(U0(t)−U(t))− k4U3(t)

)
+

2α

(2− α)M(α)

∫ t

0

[
(k1 + k2T(z) + k3T2(z))(U0(t)−U(zz))− k4U3(z)

]
dz.

Now, considering (8), we used the Picard method by (n = 0, 1, 2, · · · ):

P0(t) = T̆0, T0(t) = T̆0, U0(t) = Ŭ0, (9)

and:

Pn+1(t) =
2(1− α)

(2− α)M(α)

(
−(k5U(t) + k6T(t) + k7T2(t) + k8T3(t))P(t)

)
+

2α

(2− α)M(α)

∫ t

0

[
−(k5U(z) + k6T(z) + k7T2(z) + k8T3(z))P(z)

]
dz,

Tn+1(t) =
2(1− α)

(2− α)M(α)

(
(k5U(t) + k6T(t) + k7T2(t) + k8T3(t))P(t)− k9T(t)

)
+ (10)

2α

(2− α)M(α)

∫ t

0

[
(k5U(z) + k6T(z) + k7T2(z) + k8T3(z))P(z)− k9T(z)

]
dz,

Un+1(t) =
2(1− α)

(2− α)M(α)

(
(k1 + k2T(t) + k3T2(t))(U0(t)−U(t))− k4U3(t)

)
+

2α

(2− α)M(α)

∫ t

0

[
(k1 + k2T(z) + k3T2(z))(U0(z)−U(z))− k4U3(z)

]
dz.
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Taking into account the ideas presented by Li and Zeng in [33], we consider that one
can gain the analytic solutions of the system (6) by considering the limit from both sides of
(10) whenever n wills to infinity, so the solutions are gained in the following form:

lim
n→∞

Pn(t) = P(t),

lim
n→∞

Tn(t) = T(t),

lim
n→∞

Un(t) = U(t),
(11)

Now, we obtain an existing scale and the uniqueness of the results using the Pi-
card–Lindelof technique. So, we set the next relations:

Ξ1(t, P) := −(k5U(t) + k6T(t) + k7T2(t) + k8T3(t))P(t),
Ξ2(t, T) := (k5U(t) + k6T(t) + k7T2(t) + k8T3(t))P(t)− k9T(t),
Ξ3(t, U) := (k1 + k2T(t) + k3T2(t))(U0(t)−U(t))− k4U3(t),

(12)

where Ξ1(t, S), Ξ2(t, L) and Ξ3(t, R) are contractions with respect to P, T and U for the first,
second, and third functions.

In addition, we present:
Ia,b1 := [t− a, t + a]× [P− b1, P + b1] = A× B1,
Ia,b2 := [t− a, t + a]× [T − b2, T + b2] = A× B2,
Ia,b3 := [t− a, t + a]× [U − b3, U + b3] = A× B3,

(13)

Take Ξ∗1 = sup(t,P)∈Ia,b1
‖Ξ1(t, P(t))‖, Ξ∗2 = sup(t,T)∈Ia,b2

‖Ξ2(t, T(t))‖ and

Ξ∗3 = sup(t,U)∈Ia,b3
‖Ξ3(t, U(t))‖.

To apply the Picard technique, let us consider (C[t− a, t + a],R) to be the space of
the real continuous functions defined on A = [t− a, t + a] and a uniform norm defined
as follows:

‖D‖∞ = sup
t∈[t−a,t+a]=A

|D(t)|.

It is easy to check that the pair ((C[t− a, t + a],R), ‖D‖∞) it is a complete metric space.
Then, we must to put in evidence the symmetry of norm ‖D‖∞, which is an essential
condition in order to prove the existence of a fixed point.

Now, we fix
Q : (C[t− a, t + a],R)→ (C[t− a, t + a],R),

as

Q(D(t)) = D0(t) +
2(1− α)

(2− α)M(α)
G(t,D(t)) + 2α

(2− α)M(α)

∫ t

0
G(z,D(z))dz, (14)

with 
D(t) = {P(t), T(t), U(t)},
D0(t) = {P̆0, T̆0, Ŭ0},
G(t,D(t)) = {Ξ1(t, P(t)), Ξ2(t, T(t)), Ξ3(t, U(t))}.

(15)

All resolution functions were assumed to be limited through a time interval, i.e.,

‖D‖∞ ≤ max{b1, b2, b3} = b. (16)

Furthermore, suppose Ξ∗ = max{Ξ∗1 , Ξ∗2 , Ξ∗3}, and there is a constant t0 by t ≤ t0.
Hence, we obtain
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‖QD(t)−D0(t)‖ = ‖
2(1− α)

(2− α)M(ϑ)
G(t,D(t))

+
2α

(2− α)M(α)

∫ t

0
G(z,D(z))dz‖

≤ 2(1− α)

(2− α)M(α)
‖G(t,D(t))‖

+
2α

(2− α)M(α)

∫ t

0
‖G(z,D(z))‖dz

≤
[

2(1− α)

(2− α)M(α)
+

2αt0

(2− α)M(α)

]
Υ∗

= µ∗Υ∗ ≤ b,

which we suppose µ∗ < b
Ξ∗ , and µ∗ = 2(1−α)

(2−α)M(α)
+ 2αt0

(2−α)M(α)
.

Lastly, we aim to demonstrate that the Picard operator Q is a contraction. To ac-
complish this purpose, as Υ1, Υ2 and Υ3 are contractions, for D1,D2 ∈ (C[t− a, t + a],R),
we have:

‖G(t,D1(t))− G(t,D2(t))‖ ≤ λ∗‖D1(t)−D2(t)‖, (17)

where λ∗ < 1 be a contraction constant.
The Picard operator Q is applied as delivered in (14) using Inequality (17) and

the following relation:

‖QD1 −QD2‖ = sup
t∈A
|D1(t)−D2(t)|,

yields:

‖Q(D1(t))−Q(D2(t))‖ =
∥∥∥ 2(1− α)

(2− α)M(α)
[G(t,D1(t))− G(t,D2(t))]+

2α

(2− α)M(α)

∫ t

0
[G(z,D1(z))− G(z,D2(z))]dz

∥∥∥
≤ 2(1− α)

(2− α)M(α)
‖G(t,D1(t))− G(t,D2(t))‖+

2α

(2− α)M(α)

∫ t

0
‖G(z,D1(z))− G(z,D2(z))‖dz

≤ 2(1− α)λ∗

(2− α)M(α)
‖D1(t)−D2(t)‖

+
2αλ∗

(2− α)M(α)

∫ t

0
‖D1(z)−D2(z)‖dz

≤
[

2(1− α)

(2− α)M(α)
+

2αt0

(2− α)M(α)

]
λ∗‖D1(t)−D2(t)‖

= µ∗λ∗‖D1(t)−D2(t)‖.

So, this results in

‖QD1 −QD2‖∞ ≤ µ∗λ∗‖D1 −D2‖∞,

which means that Q is a contraction with µ∗λ∗ < 1 since λ∗ < 1. Consequently, by
applying the Banach contraction principle, we ascertain that fractional System (6) of the
blood coagulation model possesses a unique solution.
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3. Quadratic Numerical Algorithm

In this section, we use a quadratic numerical approach in order to obtain the approx-
imate solutions of System (6). We turned our Fractional Model (6) into its corresponded
integral equation. Next, we used a numerical algorithm based on the trapezoidal ruler to
achieve the numerical solutions of the acquired integral equation.

Then, we consider:{ CF
0 Dα

t Ξ(t) = Φ(Ξ(t)), 0 ≤ t ≤ Tf < ∞,
Ξ(0) = Ξ0,

(18)

where Ξ(t) = (A(t), B(t), C(t)), Φ counted as a vector function:

Φ(Ξ(t)) =

 −(k5U(t) + k6T(t) + k7T2(t) + k8T3(t))P(t),
(k5U(t) + k6T(t) + k7T2(t) + k8T3(t))P(t)− k9T(t),
(k1 + k2T(t) + k3T2(t))(U0(t)−U(t))− k4U3(t),

 (19)

which fulfils the Lipschitz condition:

‖Φ(Ξ1(t))−Φ(Ξ2(t))‖ ≤ L‖Ξ1(t)− Ξ2(t)‖, L > 0, (20)

and Ξ0 = (P(0), T(0), U(0)) comprises the ICs. Performing Equation (2) on Equation (18),
we obtain:

Ξ(t) = Ξ0 +
CF
0 `α

t Φ(Ξ(t)), 0 ≤ t ≤ T < ∞, (21)

We define 0 = t0 < t1 < · · · < tS = Tf on [0, Tf ] via h =
Tf

S
= ts+1 + ts, where S > 0

is an integer, and ts = sh, s = 0, 1, 2, · · · , S− 1.
We use:

Φ(Ξ(τ))|[tk ,tk+1]
≈ tk+1 − τ

tk+1 − tk
Φ(Ξk) +

τ − tk
tk+1 − tk

Φ(Ξk+1), 0 ≤ k ≤ s. (22)

We have:

CF
0 `α

t Φ(Ξ(ts+1)) = (1− α)Φ(Ξ(ts+1)) + α
∫ ts+1

0
Φ(Ξ(τ))dτ. (23)

Replacing Equation (22) into Equation (23) results in

Ξs+1 = Ξ0 + (1− α)Φ(Ξs+1) + αh
s+1

∑
k=0

as+1,kΦ(Ξk), s = 0, 1, · · · , S− 1, (24)

where coefficient as+1,k is in the following form:
as+1,0 =

1
2

,

as+1,k = 1, k = 1, 2, · · · , s.

as+1,s+1 =
1
2

,

(25)

4. Numerical Examples

Now, we use the stated numerical method as provided in the previous section to
obtain the approximate solutions of the platelet-poor plasma system as recommended in the
current investigation under the fractional Caputo–Fabrizio operator. All simulations were
plotted in MATLAB version 2021. We solves the model for various numbers of fractional
order α.

The following parameters were used in the studied model: k1 = 1.5, k2 = 1.5, k3 =
0.5, k4 = 0.5, k5 = 0.5, k6 = 0.5, k7 = 0.5, k8 = 0.5 and k9 = 0.5. Approximate solutions of
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the considered model under fractional orders of 0.75, 0.85, 0.95, and 1 with ICs given as
P(0) = 1500, T(0) = 500 and U(0) = 300 are provided in Figure 1.

Figure 1. Plot of solutions for different values of α with ICs P(0) = 1500, T(0) = 500 and U(0) = 300.

In Figure 1, the line graph illustrates the changing trends in the amounts of prothrom-
bin, thrombin, and the activated factor. According to the graph, the numerical simulation of
prothrombin P(t) experienced a sharp decrease and fell to a low point of approximately 100
in the 25th minute, and then increased moderately throughout the time frame of 200 min.
The rate of decline was different for each fractional order. A fairly similar pattern over the
200 min under various values of the fractional orders was seen. A similar trend was seen
for U(t) with an initial value of 300, which experienced a sudden decrease, reaching its
minimal amount in 25 min; after that, it showed a gradual increase reaching the maximal
value in 200 min.

In contrast, T(t) showed a different pattern. The provided graph shows that T(t) with
an initial value of 600 began with a sharp increase, reaching its peak around 1300. After
that, it began to fall for the rest of he frame time of 200 min. It is clear that the rate of
increase depended on the values of the fractional orders.

Figure 2 shows the approximate solutions of the problem under different ICs of
P(0) = 700, T(0) = 2100 and U(0) = 500. In this case, similar behaviors were seen for
U(t) and P(t).
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Figure 2. Plot of solutions α with ICs P(0) = 700, T(0) = 2100 and U(0) = 500.

5. Conclusions

In this work, the fractional modelling of a blood coagulation system was investigated
for the first time by applying a fractional derivative of the frame Caputo–Fabrizio operator,
and the existence of solutions was given. A numerical method to obtain approximate
solutions was also derived. Moreover, numerical solutions of the proposed model are
presented through some graphical representations. These figures contain simulations of
the problem for different values of fractional orders. We provided solutions by separately
choosing two ICs. Behaviors of the offered model were obvious during the selection of
various values of orders and initial conditions.
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