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Abstract: In this work, we present a new hierarchical decomposition aimed at the decorrelation of a
cubical tensor of size 2n, based on the 3D Frequency-Ordered Hierarchical KLT (3D FO-HKLT). The
decomposition is executed in three consecutive stages. In the first stage, after adaptive directional
vectorization (ADV) of the input tensor, the vectors are processed through one-dimensional FO-
Adaptive HKLT (FO-AHKLT), and after folding, the first intermediate tensor is calculated. In the
second stage, on the vectors obtained after ADV of the first intermediate tensor, FO-AHKLT is
applied, and after folding, the second intermediate tensor is calculated. In the third stage, on the
vectors obtained from the second intermediate tensor, ADV is applied, followed by FO-AHKLT,
and the output tensor is obtained. The orientation of the vectors, calculated from each tensor,
could be horizontal, vertical or lateral. The best orientation is chosen through analysis of their
covariance matrix, based on its symmetry properties. The kernel of FO-AHKLT is the optimal
decorrelating KLT with a matrix of size 2 × 2. To achieve higher decorrelation of the decomposition
components, the direction of the vectors obtained after unfolding of the input tensor in each of the
three consecutive stages, is chosen adaptively. The achieved lower computational complexity of
FO-AHKLT is compared with that of the Hierarchical Tucker and Tensor Train decompositions.

Keywords: cubical tensor decomposition; adaptive KLT; 3D Frequency-Ordered Adaptive Hierarchical
KLT; adaptive directional vectorization; correlation vector analysis

1. Introduction

The main tensor decompositions could be divided into two groups.
The first group comprises decompositions executed in the spatial domain of the tensor.

These are the famous Canonical Polyadic Decomposition (CPD), Higher-Order Singular
Value Decomposition (HOSVD) [1–4], Tensor Train (TT) Decomposition [5], Hierarchical
Tucker (H-Tucker) algorithm [6] and some of their modifications [7,8], based on the calcula-
tion of the tensor eigenvalues and eigenvectors. Their most important feature is that they
are optimal regarding the minimization of the mean square approximation error derived
from the low-energy component “truncation”. The calculation of the retained components
is based on iterative methods [9,10] that need a relatively small number of mathematical
operations to achieve the requested accuracy. The hierarchical tensor decompositions
based on the H-Tucker algorithm are presented in publications [8,11]. The compositional
hierarchical tensor factorization introduced in [8] disentangles the hierarchical causal struc-
ture of object image formation, but the computational complexity (or Complexity) is not
presented. In [11] is offered the TT-based hierarchical decomposition of high-order tensors,
based on the Tensor-Train Hierarchical SVD (TT-HSVD). This approach permits parallel
processing, which significantly accelerates the process. Unlike the TT-SVD algorithm,
TT-HSVD is based on applying SVDs to matrices of smaller dimensions, which results in
lower Complexity of TT-HSVD.
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The second group comprises tensor decompositions performed in the transform domain,
which use reversible 3D linear orthogonal transforms such as the Fast Fourier Transform
(FFT), Discrete Cosine Transform (DCT), etc. [12–14]. This approach is distinguished by its
flexibility regarding the choice of the transform based on the processed data contents.

In this work, we present alternative new hierarchical 3D tensor decompositions based
on the famous statistical orthogonal Karhunen–Loeve Transform (KLT) [15,16]. They are
close to optimal (which ensures full decorrelation of the decomposition components), but do
not need iterations and have lower computational complexity. As a basis, we present here
the decomposition called 3D Frequency-Ordered Adaptive Hierarchical Karhunen–Loeve
Transform (3D FO-AHKLT), whose efficiency is enhanced through adaptive directional
tensor vectorization (ADV).

In Section 2, we present the method for 3D hierarchical adaptive transform based on the
one-dimensional Frequency-Ordered Adaptive Hierarchical Karhunen–Loeve Transform
(FO-AHKLT). Section 3 gives the details on the cubical tensor decomposition through
separable 3D FO-AHKLT based on correlation analysis, and Section 4 explains the related
algorithm. In Section 5, we analyze the computational complexity of the new approaches
compared to that of the well-known H-Tucker and TT decompositions; Section 6 contains
the conclusion.

2. Method for 3D Adaptive Frequency-Ordered Hierarchical KLT of a Cubical Tensor

The proposed method for decomposition of 3rd order cubical tensor
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Here, N = 2n is the size of the tensor X  with nonnegative components x (i, j, k). The 
coefficients )m,v,l(s  are the elements of the spectrum tensor S, which is of the same size 
as X . Each coefficient )m,v,l(s represents the weights of the basic tensor, .u,v,lK  Each 
basic tensor is represented as the outer product of three vectors:  

)3()2()1( lvnlv,m, kkk =K . (2)

Here, “  “ denotes the outer product of the two column-vectors ).( Tyxyx = , and 
)3(,)2(),1( lvm kkk  are the basic vectors, obtained after execution of the three stages of 3D 

FO-HKLT. In the first decomposition components m,v,ll).v,s(m, K (as given in Equation 
(1)) the main part of the tensor X  power is concentrated, and their high decorrelation is 
achieved. The kernel of 3D FO-HKLT, defined as KLT2 × 2, is KLT with a transform matrix 
of size 2 × 2. 

The decomposition comprises three consecutive stages arranged in accordance with 
the correlation analysis of the tensor X elements. One example decomposition for the ten-
sor X of size N × N × N (for N = 8) is shown in Figure 1. After applying the 3D FO-AHKLT 
on the input tensor X, it is sequentially transformed into the intermediate tensors E, F and 
the output tensor, S. The 3D FO-AHKLT is divisible, and this permits it to be executed by 
using the FO-AHKLT, whose graph for the case N = 8 is shown in Figure 2. As a result, 
the tensor X  is transformed into the first intermediate tensor E, of the same size.  

∈ RN×N×N

is based on the 3D Frequency-Ordered Hierarchical Karhunen–Loeve Transform (3D FO-
HKLT), defined by the relation below [17]:
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Here, N = 2n is the size of the tensor
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m,v,l = kn(1) ◦ kv(2) ◦ kl(3). (2)

Here, “◦” denotes the outer product of the two column-vectors (x ◦ y = x·yT), and
km(1), kv(2), kl(3) are the basic vectors, obtained after execution of the three stages of 3D
FO-HKLT. In the first decomposition components s(m,v,l).
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the correlation analysis of the tensor X elements. One example decomposition for the ten-
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Figure 1. Sequence of the 3D FO-AHKLT execution stages for a tensor
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Figure 2. Graphs of the 3-level direct FO-AHKLT of the tensor X of size 8 × 8 × 8, with ADV.

In the general case, FO-HKLT is executed for the N-dimensional vectors xs(u) of total
number N2, oriented in horizontal (u = 1), vertical (u = 2) or lateral (u = 3) direction. These
vectors are defined as a result of the ADV of the tensor
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The decomposition comprises three consecutive stages arranged in accordance with 
the correlation analysis of the tensor X elements. One example decomposition for the ten-
sor X of size N × N × N (for N = 8) is shown in Figure 1. After applying the 3D FO-AHKLT 
on the input tensor X, it is sequentially transformed into the intermediate tensors E, F and 
the output tensor, S. The 3D FO-AHKLT is divisible, and this permits it to be executed by 
using the FO-AHKLT, whose graph for the case N = 8 is shown in Figure 2. As a result, 
the tensor X  is transformed into the first intermediate tensor E, of the same size.  

. The choice of the orientation
direction of vectors xs(u) for s = 1, 2, . . . , N2 is defined through analysis of their covariance
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matrices, Kx(u). Before the calculation of FO-HKLT for the N-dimensional vector xs(u), it
is divided into N/2 two-component vectors xq,s(u). For the case N = 8, each vector xs(u) is
divided into 4 vectors xq,s(u), for q = 1, 2, 3, 4. For this case, the total number of vectors
xs(u) is 4N2 = 256, and they are divided into 4 sub-groups of N2 = 64 vectors xq,s(u) each.

Let xs = [x1,s, x2,s, . . . , xn,s]
T and es = [e1,s, e2,s, . . . , eN,s]

T be the input and the output
column-vectors of N = 2n components, respectively, and n is the number of FO-HKLT
hierarchical levels. The relation between vectors es and xs, is [17]:

es = Pn(2
n)[

n

∏
p=1

Gp (2n)] xs = TFO−HKLT(2n)xs for s = 1, 2, . . . , N2, (3)

where TFO−HKLT (2n) = Pn(2n)[
n
∏

p=1
Gp (2n)] is the FO-HKLT matrix; Pn(2n) of size 2n × 2n

is the permutation matrix for the last level n of FO-HKLT, and
n
∏

p=1
Gp (2n) is the product of

n sparse transform matrices Gp(2n) for p = 1, 2, 3, . . . , n. Each matrix Gp(2n) is defined
as follows:

Gp(2n) =


2p−1

⊕
j=1

cp,j
2p−1

⊕
j=1

sp,j

2p−1

⊕
j=1

sp,j
2p−1

⊕
j=1
− cp,j

⊕


2p−1

⊕
j=1

cp,2p−1+j

2p−1

⊕
j=1

sp,2p−1+j

2p−1

⊕
j=1

sp,2p−1+j

2p−1

⊕
j=1
− cp,2p−1+j

⊕ . . .⊕


2p−1

⊕
j=1

cp,2p−1(n−p−1)+j

2p−1

⊕
j=1

sp,2p−1(n−p−1)+j

2p−1

⊕
j=1

sp,2p−1(n−p−1)+j

2p−1

⊕
j=1
− cp,2p−1(n−p−1)+j

 (4)

for p = 1, 2, 3, . . . , n, where “⊕” denotes the direct sum of matrices.
In the equations, figures and text below, the abbreviations cp,q = cosθp,q and sp,q = sinθp,q

are used. Here:

θp,q = arctan
{

2k3(p, q)/[k1(p, q)− k2(p, q) +
√
(k1(p, q)− k2(p, q))2 + 4k2

3(p, q)]
}

, (5)

k1(p, q) = E
{

x2
1,s(p, q)

}
; k2(p, q) = E

{
x2

2,s(p, q)
}

; k3(p, q) = E{x1,s(p, q)x2,s(p, q)}. (6)

E{xi,s(p, q)} = (1/N2)
N2

∑
s=1

xi,s(p, q) for i = 1, 2-averaging operator.

If β2 = 2k3(p,q) and β1 = k1(p, q)− k2(p, q) +
√
[k1(p, q)− k2(p, q)]2 + 4k2

3(p, q) are
two real numbers, the extended arctan function εarctan (β1,β2) is mapped to (−π, π] by
adding π [18]:

εarctan(β1,β2) =



arctan(β2/β1), if β1 > 0;
arctan(β2/β1) + π, if β1 < 0, β2 ≥ 0;
arctan(β2/β1)− π, if β1 < 0, β2 < 0;
π/2, if β1 = 0, β2 > 0;
−π/2, if β1 = 0, β2 < 0;
0, if β2 = β1 = 0.

(7)

In particular, the direct and inverse KLT2×2 of the elements x1s and x2s, which have the
same spatial position in the couple of matrices X1 and X2 of size N×N for m1 = E{x1s} = 0
and m2 = E{x2s} = 0 (valid for the Adaptive KLT2×2), are:

y1s = x1scos θ1,2 + x2ssin θ1,2;x1s = y1scos θ1,2 + y2ssin θ1,2; (8)

y2s = x1ssin θ1,2 − x2scos θ1,2;x2s = y1ssin θ1,2 − y2scos θ1,2. (9)

or ys = T(2)·xs and xs = T(2)·ys for s = 1, 2, . . . , N2.
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Here, y1s and y2s are the corresponding elements in the couple of transformed ma-
trices Y1 and Y2 (each of size N × N); ys = [y1,s, y2,s]

T, xs = [x1,s, x2,s]
T and [T(2)] =[

cos θ1,2 sin θ1,2
sin θ1,2 − cos θ1,2

]
=

[
c1,2 s1,2
s1,2 −c1,2

]
.

In particular, for θ1,2 = π/4, the relations (8) and (9) become as follows:

y1s = (x1s + x2s);
y2s = (x1s − x2s);

. . .
x1s = (1/2)(y1s + y2s);
x2s = (1/2)(y1s − y2s).

(10)

Hence, in this case, the KLT2×2 coincides with the Walsh–Hadamard Transform (WHT).
In the level n, the components of the column-vectors yn,s = Gn(2n)yn−1,s (respectively,

the components of matrices Yn,k for k = 0, 1, . . . , N − 1) are rearranged. For this, the
permutation matrix Pn(2n) is used.

From the components of the column-vectors es = Pn(2n)yn,s are obtained the frequency-
ordered matrices Er (i.e., E0, E1, . . . , EN−1), calculated in accordance with the relation
between their sequential number r and the sequential number k (for matrices Yn,k).

The relation that defines the matrix Pn(2n) is:

• The binary code kn−1, kn−2, . . . , k0 of the sequential decimal number k = 0, 1, . . . , 2n−1

of the component Yn,k is arranged inversely (i.e., k0, k1, . . . , kn−1), as gi = kn−i−1 for
0 ≤ i ≤ n − 1;

• The so-obtained code gn−1, gn−2, . . . , g0 is transformed from Gray code into the binary
code rn−1, rn−2, . . . , r0, in accordance with the operations rn−1 = gn−1, ri = ri−1 ⊕ gi
for 0 ≤ i ≤ n − 2. Here, “⊕” denotes the operation “exclusive OR”.

The decimal number r =
n−1
∑

i=0
ri2i defines the sequential number of Er for r = 0, 1, . . . ,

2n−1, which (before the rearrangement) corresponded to Yn,k, with sequential number

k =
n−1
∑

i=0
ki2i.

For N = 8 (n = 3), p = 1, 2, 3 and q = 1, 2, 3, 4, FO-HKLT is executed in three consecutive
levels. The transform matrix of size 8 × 8 is decomposed in accordance with the relation:

TFO−HKLT(8) = P3(8)G3(8)G2(8)G1(8) (11)

Since es = P3(8)G3(8)G2(8)G1(8)xs, the transform is executed as follows:

y1,s = G1(8)xs, y2,s = G2(8)y1,s, y3,s = G3(8)y2,s, es = P3(8)y3,s (12)

The operations above correspond to the calculations in hierarchical levels p = 1, 2, 3
of FO-HKLT. In this case, the transform matrices G1(8), G2(8), G3(8) are defined by
the equations:

G1(8) =



c1,1 s1,1 0 0 0 0 0 0
s1,1 −c1,1 0 0 0 0 0 0
0 0 c1,2 s1,2 0 0 0 0
0 0 s1,2 −c1,2 0 0 0 0
0 0 0 0 c1,3 s1,3 0 0
0 0 0 0 s1,3 −c1,3 0 0
0 0 0 0 0 0 c1,4 s1,4
0 0 0 0 0 0 s1,4 −c1,4


(13)
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where θ1,q = arctan
{

2k3(1, q)/[k1(1, q)− k2(1, q) +
√
(k1(1, q)− k2(1, q))2 + 4k2

3(1, q)]
}

for q = 1, 2, 3, 4 and p = 1; k1(1, q) = E
{

x2
1,s(1, q)

}
; k2(p, q) = E

{
x2

2,s(1, q)
}

; k3(1, q) =

E{x1,s(1, q)·x2,s(1, q)}.

G2(8) =



c2,1 0 s2,1 0 0 0 0 0
0 c2,2 0 s2,2 0 0 0 0

s2,1 0 −c2,1 0 0 0 0 0
0 s2,2 0 −c2,2 0 0 0 0
0 0 0 0 c2,3 0 s2,3 0
0 0 0 0 0 c2,4 0 s2,4
0 0 0 0 s2,3 0 −c2,3 0
0 0 0 0 0 s2,4 0 −c2,4


(14)

where: θ2,q = arctan
{

2k3(2, q)/[k1(2, q)− k2(2, q) +
√
(k1(2, q)− k2 (2, q))2 + 4k2

3(2, q)]
}

for q = 1, 2, 3, 4 and p = 2; k1(2, q) = E
{

y2
1,1s(2, q)

}
; k2(2, q) = E

{
y2

1,2s(2, q)
}

; k3(2, q) =

E
{

y1,1s(2, q)·y1,2s(2, q)
}

.

G3(8) =



c3,1 0 0 0 s3,1 0 0 0
0 c3,2 0 0 0 s3,2 0 0
0 0 c3,3 0 0 0 s3,3 0
0 0 0 c3,4 0 0 0 s3,4

s3,1 0 0 0 −c3,1 0 0 0
0 s3,2 0 0 0 −c3,2 0 0
0 0 s3,3 0 0 0 −c3,3 0
0 0 0 s3,4 0 0 0 −c3,4


(15)

where θ3,q = arctan
{

2k3(3, q)/[k1(3, q)− k2(1, q) +
√
(k1(3, q)− k2(3, q))2 + 4k2

3(3, q)]
}

for q = 1, 2, 3, 4 and p = 3; k1(3, q) = E
{

y2
2,1,s(3, q)

}
; k2(3, q) = E

{
y2

2,2,s(3, q)
}

; k3(3, q) =

E
{

y2,1,s(3, q)− y2,2,s(3, q)
}

.
The permutation matrix P3(8) in the level p = 3 is:

P3(8) =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0


(16)

The vector km(1) for m = 0, 1, . . . , 7 comprises the elements of the mth row of the
matrix T1

FO−HKLT(8) for the stage S1 of 3D FO-HKLT. The vectors kv(2) and kl(3) for v,
l = 0, 1, . . . , 7 respectively comprise the elements of rows v and l in matrices T2

FO−HKLT(8)
and T3

FO−HKLT(8), for 3D FO-HKLT stages S2 and S3.

3. Enhancement of the 3D FO-HKLT Efficiency, Based on Correlation Analysis

To achieve higher efficiency of the 3D tensor decomposition based on the 3D FO-HKLT,
here, we use the correlation relations between the tensor
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Here, N = 2n is the size of the tensor X  with nonnegative components x (i, j, k). The 
coefficients )m,v,l(s  are the elements of the spectrum tensor S, which is of the same size 
as X . Each coefficient )m,v,l(s represents the weights of the basic tensor, .u,v,lK  Each 
basic tensor is represented as the outer product of three vectors:  

)3()2()1( lvnlv,m, kkk =K . (2)

Here, “  “ denotes the outer product of the two column-vectors ).( Tyxyx = , and 
)3(,)2(),1( lvm kkk  are the basic vectors, obtained after execution of the three stages of 3D 

FO-HKLT. In the first decomposition components m,v,ll).v,s(m, K (as given in Equation 
(1)) the main part of the tensor X  power is concentrated, and their high decorrelation is 
achieved. The kernel of 3D FO-HKLT, defined as KLT2 × 2, is KLT with a transform matrix 
of size 2 × 2. 

The decomposition comprises three consecutive stages arranged in accordance with 
the correlation analysis of the tensor X elements. One example decomposition for the ten-
sor X of size N × N × N (for N = 8) is shown in Figure 1. After applying the 3D FO-AHKLT 
on the input tensor X, it is sequentially transformed into the intermediate tensors E, F and 
the output tensor, S. The 3D FO-AHKLT is divisible, and this permits it to be executed by 
using the FO-AHKLT, whose graph for the case N = 8 is shown in Figure 2. As a result, 
the tensor X  is transformed into the first intermediate tensor E, of the same size.  

components in the orthogonal
directions x, y, z. To detect the direction in which these relations are strongest, correlation
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analysis should be used. It is based on the analysis of the covariance matrices Kx(u) of
vectors xs(u), obtained through unfolding mode u = 1, 2, 3 of the tensor
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.

3.1. Analysis of the Covariance Matrices

To estimate the correlation of vectors xs(u) = [x1,s(u), x2,s(u), . . . , xN,s(u)]
T, for 3D

FO-AHKLT, we use the ratio ∆(u) of the sums of the squares of coefficients kx,i,j(u) placed
outside the main diagonal of the matrix Kx(u), and those on the diagonal:

∆(u) =

{
N

∑
i=1

N

∑
j=1

[kx,i,j(u)]
2
(i 6=j)/

N

∑
i=1

N

∑
j=1

[kx,i,j(u)]
2
(i=j)

}
for u = 1, 2, 3 (17)

The relation above takes into account the symmetry of coefficients kx,i,j(u)= kx,j,i(u) for i 6= j,
in respect of the main diagonal of the covariance matrix, Kx(u). The value of this ratio is
maximum for the highest correlation of vectors xs(u) of same orientation, u.

3.2. Choice of Vectors’ Orientation for Adaptive Directional Tensor Vectorization

The choice of the orientation u = 1, 2, 3 of vectors xs(u) in each stage Su of 3D FO-
AHKLT which ensures maximum decorrelation for the tensor
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, is based on the relation
between coefficients ∆(u), given in Table 1. Figure 3a–c shows the vectors xs(1), xs(2), xs(3),
which have horizontal, vertical and lateral orientation, correspondingly, and are obtained
through unfolding mode u = 1, 2, 3 of the tensor
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Table 1. Adaptive choice of the orientation of vectors xs(u) for u = 1, 2, 3, based on the
correlation analysis.

No. Relations for ∆(1), ∆(2), ∆(3) Sequence of Stages Su in the
3D FO-AHKLT Execution (for u = 1, 2, 3)

1

∆(1) > ∆(2) > ∆(3)
∆(1) = ∆(2) = ∆(3)
∆(1) > ∆(2) = ∆(3)
∆(1) = ∆(2) > ∆(3)

S1 → S2 → S3

2
∆(1) > ∆(3) > ∆(2)
∆(1) > ∆(3) = ∆(2)
∆(1) = ∆(3) > ∆(2)

S1 → S3 → S2

3
∆(2) > ∆(1) > ∆(3)
∆(2) > ∆(1) = ∆(3)
∆(2) = ∆(1) > ∆(3)

S2 → S1 → S3

4
∆(2) > ∆(3) > ∆(1)
∆(2) > ∆(3) = ∆(1)
∆(2) = ∆(3) > ∆(1)

S2 → S3 → S1

5
∆(3) > ∆(2) > ∆(1)
∆(3) > ∆(2) = ∆(1)
∆(3) = ∆(2) > ∆(1)

S3 → S2 → S1

6
∆(3) > ∆(1) > ∆(2)
∆(3) > ∆(1) = ∆(2)
∆(3) = ∆(1) > ∆(2)

S3 → S1 → S2
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for s = 1, 2, ..., 64.   

Here, the sub‐matrices  )u(p
yq
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Figure 3. Orientations of vectors xs(u) for u = 1, 2, 3 and N = 4 after unfolding mode u = 1, 2, 3 of the
tensor
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: (a) horizontal; (b) vertical; (c) lateral.

3.3. Evaluation of the Decorrelation Properties of FO-AHKLT

The qualities of the one-dimensional FO-AHKLT correspond to the decorrelation
degree of the output eigen images, which defines the number of needed execution levels,
n. As an example, here is given the evaluation of the decorrelation properties of the
transform, for the case N = 8 and n = 3. In the hierarchical level p = 1, 2, 3 of FO-AHKLT,
the covariance matrix Kp

y of size 8 × 8, which represents the transformed 8-component
vectors yp,s(u) = [yp,1,s(u), yp,2,s(u), . . . , yp,8,s(u)]

T, is:

Kp
y(u) = E{yp,s(u)·yT

p,s(u)} − E{yp,s(u)}·E
{

yp,s(u)
}T

=


Kp

y1
(u) Kp

y1,y2
(u) Kp

y1,y3
(u) Kp

y1,y4
(u)

Kp
y2,y1

(u) Kp
y2
(u) Kp

y2,y3
(u) Kp

y2,y4
(u)

Kp
y3,y1

(u) Kp
y3,y2

(u) Kp
y3
(u) Kp

y3,y4
(u)

Kp
y4,y1

(u) Kp
y4,y2

(u) Kp
y4,y3

(u) Kp
y4
(u)

 (18)

for s = 1, 2, . . . , 64.
Here, the sub-matrices Kp

yq
(u) of size 2 × 2 (for q = 1, 2, 3, 4) are defined as:

Kp
yq
(u) = E{yp

q,s(u), yp T
q,s (u)} − E{yp

q,s(u)}·E{y
p
q,s(u)}

T
=

[
λ

p
1,q(u) 0

0 λ
p
2,q(u)

]
(19)

These are the covariance matrices of the transformed vectors yp
q,s(u) = [yp

q,1,s(u), yp
q,2,s(u)]

T

in the group q for the level p, and λ
p
1,q(u), λ

p
2,q(u) are the eigen values of the covariance

matrices Kp
yq
(u). Respectively,

Kp
yq,yk

(u) = E{yp
q,s(u)·y

p T
k,s (u)} − E{yp

q,s(u)}·E{y
p
k,s(u)}

T
for q, k = 1, 2, 3, 4 (q 6= k) (20)

are the mutual covariance matrices of size 2 × 2 of the two-component vectors yp
q,s(u) and

yp
k,s (u) for the couples of groups q and k from the level p.

After the rearrangement that follows the decomposition level p = 3, the vectors
y3,s(u) = [y3,1,s(u), y3,2,s(u), . . . , y3,8,s(u)]

T are transformed into vectors es(u) = [e1,s(u),

e2,s(u), . . . , e8,s(u)]
T. To evaluate the result of FO-AHKLT, the covariance matrix K3

e(u) of
the vectors es (u) is analyzed, from which the achieved decorrelation degree in the level
is defined.

4. Adaptive Control for Each Level of FO-AHKLT

After the execution of FO-AHKLT in the current level p, from the transformed two-

component vectors yp
q,s(u) = [yp

q,1,s(u), yp
q,2,s(u)]

T
for each group q = 1, 2, . . . , (N/2),

through concatenation the N-dimensional vectors yp,s(u) = [yp,1,s(u), yp,2,s(u), . . . , yp,n,s(u)]
T

for p = 1, 2, . . . , n (n = lg2N) and s = 1, 2, . . . , N2 are obtained. At this moment, the decision
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to continue with the next level of FO-AHKLT, or to stop, must be taken. For this, the
covariance matrix Kp

y(u) of the vectors yp,s(u) is analyzed for s = 1, 2, . . . , S, which defines

the achieved decorrelation. In the case that the decorrelation is full, their matrix Kp
y(u)

is diagonal, and the algorithm is stopped. The proposed adaptive control of FO-AHKLT
permits the process to stop earlier, despite that full decorrelation is not achieved, if the
result is satisfactory. The decision to stop the FO-AHKLT in the current level p is defined
by the relation:

Λp =
N

∑
i=1

N

∑
j=1

[kyp,i,j(u)]
2
(i 6=j) ≤ δ1 (21)

Here, kyp,i,j(u) is the (i, j)th element of the matrix Kp
y(u), and δ1 is a threshold of

small value, set in advance. In the case that the condition is satisfied, the calculations
stop. Otherwise, the processing continues with the next FO-AHKLT level, p + 1. When the
calculations for the second level are finished, the result is checked again, but in this case
kyp+1,i,j(u) are the elements of the matrix Kp+1

y (u) of the vectors yp+1,s(u), etc.
Taking into account the condition (21), the FO-AHKLT matrix defined in Equation (3)

turns into:

TFO−AHKLT(2n) =


Pp0

(2)[
p0
∏

p=1
Gp(2

n)] for p0 < n if Λp0
≤ δ1;

Pn(2
n)[

n
∏

p=1
Gp(2

n)] for p = 1, 2, . . . , n− 1 if Λp > δ1,
(22)

yq
p,1,s(u) =

{
yq

p−1,1,s(u) cos θp,q(u) + yq
p−1,2,s(u)sin θ(u)p, q if [kq

p,3( u)]2 > δ2;
yq

p−1,1,s(u) if [kq
p,3(u)]

2 ≤ δ2,
(23)

yq
p,2,s(u) =

{
yq

p−1,1,s(u) sin θ(u)p, q− yq
p−1,2,s(u) cos θ(u)p, q if [kq

p,3(u)]
2 > δ2;

−yq
p−1,2,s(u) if [kq

p,3( u)]2 ≤ δ2
(24)

for p = 2,3, . . . ,n, q = 1, 2, . . . , (N/2) and kq
p,3(u) = E

{
yq

p−1,1,s(u), yq
p−1,2,s(u)

}
.

For the level p = 1 only, the relations (22) and (23) are transformed as follows:

yq
1,1,s(u) =

{
xq

1,1,s(u)cos θ1,q(u) + xq
1,2,s(u) sin θ1,q(u) if [kq

1,3(u)]
2 > δ2;

xq
1,1,s(u) if [kq

1,3(u)]
2 ≤ δ2.

(25)

yq
1,2,s(u) =

{
xq

1,1,s(u) sin θ1,q(u)− xq
1,2,s(u) cos θ1,q(u) if [kq

1,3(u)]
2 > δ2;

−xq
1,2,s(u) if [kq

1,3(u)]
2 ≤ δ2,

(26)

where [kq
1,3(u)]

2
= E

{
xq

1,1,s(u), xq
1,2,s(u)

}
.

In these relations, δ2 is a threshold of small value, set in advance. The condition
(21), together with the adaptive KLT2×2 performed in accordance with relations (23)–
(26), permits reducing the number of calculations without worsening the 3D FO-AHKLT
decorrelation properties.

5. Algorithm 3D FO-AHKLT

On the basis of the 3D FO-HKLT tensor decomposition, together with the adaptive
control of the directional vectorization on the input, the intermediate and the output
tensor, and the correlation analysis, the algorithm called 3D FO-AHKLT is developed as
Algorithm 1:
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Algorithm 1

Input: Third-order tensor
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of size N × N × N (N = 2n) with elements x(i, j, k), and threshold
values, δ1, δ2;
The steps of the algorithm are given below:
1. Unfolding of the tensor
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Here, N = 2n is the size of the tensor X  with nonnegative components x (i, j, k). The 
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FO-HKLT. In the first decomposition components m,v,ll).v,s(m, K (as given in Equation 
(1)) the main part of the tensor X  power is concentrated, and their high decorrelation is 
achieved. The kernel of 3D FO-HKLT, defined as KLT2 × 2, is KLT with a transform matrix 
of size 2 × 2. 

The decomposition comprises three consecutive stages arranged in accordance with 
the correlation analysis of the tensor X elements. One example decomposition for the ten-
sor X of size N × N × N (for N = 8) is shown in Figure 1. After applying the 3D FO-AHKLT 
on the input tensor X, it is sequentially transformed into the intermediate tensors E, F and 
the output tensor, S. The 3D FO-AHKLT is divisible, and this permits it to be executed by 
using the FO-AHKLT, whose graph for the case N = 8 is shown in Figure 2. As a result, 
the tensor X  is transformed into the first intermediate tensor E, of the same size.  

(mode u = 1, 2, 3), thereby obtaining the corresponding groups of
vectors, xs(u).
2. Calculation of the covariance matrices Kp

y(u) of the vectors xs(u), for u = 1, 2, 3.
3. Calculation of the coefficients ∆(u) for u = 1, 2, 3, using the matrices Kp

y(u).
4. Setting the sequence of stages Su1, Su2, Su3 for the execution of 3D FO-AHKLT, chosen in
accordance with the relations between coefficients ∆(1), ∆(2), ∆(3).
5. Start of stage Su1, which comprises:

5.1. Execution of FO-AHKLT for the vectors xs(u1) with orientation u1 (for ∆(u1) = max), in
correspondence with the calculation graph of n hierarchical levels and with a kernel—the
adaptive KLT2×2, thereby obtaining the vectors es(u1). In each level p = 1, 2, . . . , n is checked if
the condition to stop the FO-AHKLT calculations is satisfied;

5.2. Folding of the tensor E of size N × N × N, by using the vectors es(u1);
5.3. Unfolding of the tensor E (mode u2), thereby obtaining the vectors xs(u2) with

orientation u2, for ∆(u2) ≤ ∆(u1).
6. Start of stage Su2, which comprises:

6.1. Execution of FO-AHKLT for the vectors xs(u2) in correspondence with the
computational graph of n hierarchical levels and with a kernel—the adaptive KLT2 × 2, thereby
obtaining the vectors ys(u2). In each level p = 1, 2, . . . , n is checked if the condition to stop the
FO-AHKLT calculations is satisfied;

6.2. Folding the tensor F of size N × N × N, by using the vectors ys(u2);
6.3. Unfolding the tensor F (mode u3), thereby obtaining the vectors xs(u3), with orientation

u3, for ∆(u3) ≤ ∆(u2);
7. Start of stage Su3, which comprises:

7.1. Execution of FO-AHKLT for the vectors xs(u3) in correspondence with the
computational graph of n hierarchical levels and with a kernel—the adaptive KLT2 × 2, thereby
obtaining the vectors ss(u3). In each level p = 1, 2, . . . , n is checked if the condition to stop the
FO-AHKLT calculations is satisfied;

7.2. Folding of the tensor S of size N × N × N (N = 2n) by using the vectors ss(u3). The
elements of the tensor S are the spectrum coefficients s (m, v, l).
8. Calculation of the transform matrices Tt

FO−AHKLT(2
n) for each stage t = 1, 2, 3 of the 3D

FO-AHKLT in accordance with the relations below:

es(u1) = T1
FO−AHKLT(2

n)xs(u1)fors = 1, 2, . . . , N2; (27)

ys(u2) = T2
FO−AHKLT(2

n)xs(u2)fors = 1, 2, . . . , N2; (28)

ss(u3) = T3
FO−AHKLT(2

n)xs(u3)fors = 1, 2, . . . , N2. (29)

9. Determination of the basic vectors km(1), kv (2), kl(3) for m, v, l = 0, 1, 2, . . . , N − 1, which
are the rows of the matrices T1

FO−AHKLT(2
n),T2

FO−AHKLT(2
n),T3

FO−AHKLT(2
n). With this, the

decomposition of the tensor
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in correspondence with Equation (1), is finished.
Output: Spectral tensor S, whose elements s(m, v, l) are the coefficients of the 3D FO-AHKLT.

As a result of the algorithm execution:

• The main part of the tensor energy is concentrated into a small number of coefficients
s(m, v, l) of the spectrum tensor S, for m, v, l = 0, 1, 2;

• The decomposition components of the tensor are uncorrelated.

6. Comparative Evaluation of the Computational Complexity

For the computation of the covariance matrix Kp
y(u) = E{yp,s(u)·yT

p,s(u)} − E{yp,s(u)}·
E{yp,s(u)}

T of size N × N for N = 2n, in correspondence with Equation (17), AKp
y
(n) =
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3× 22n additions and MKp
y
(n) = 22n multiplications are needed. Then, the total number of

the operations needed for the calculation of Kp
y(u) is:

OKp
y
(n) = AKp

y
(n) + MKp

y
(n) = 4× 22n for p = 1, 2, . . . , n (30)

For the n levels of the algorithm FO-HKLT is obtained:

n

∑
p=1

OKp
y
(n) = 4× 22nn (31)

For the calculation of ∆u(u) in correspondence with Equation (17), A∆u(n) = 22n − 1
additions and M∆u(n) = 22n + 1 multiplications are needed. Then,

O∆u(n) = A∆u(n) + M∆u(n) = 2× 22n for u = 1, 2, 3 (32)

Hence,
3

∑
u=1

O∆u(n) = 6× 22n. (33)

In accordance with [17], the computational complexity (or Complexity) of FO-HKLT
is defined by taking into account the number of needed additions AFO

HKLT(n) = 2n−1(5×
22n + 1)n ≈ 2.5× 23nn, and multiplications MFO

HKLT(n) = 2n−1(7× 22n + 5)n ≈ 3.5× 23nn.
Hence, the total number of operations needed for the 3D FO-HKLT execution is:

O3DFO
HKLT(n) = A3DFO

HKLT(n) + M3DFO
HKLT(n) ≈ 18× 23nn (34)

The total number of operations needed for the execution of the algorithm 3D FO-
AHKLT (without taking into consideration the possibility to stop the processing earlier
than the last level) is:

O3DFO
AHKLT(n) = A3DFO

AHKLT(n) + M3DFO
AHKLT(n) ≈ 22n+1[2n(9× 2n−1 + 1) + 3] (35)

For the H-Tucker and TT decomposition of a cubical tensor of size N = 2n, in accordance
with [17], the number of needed operations is:

OHT(n) = 23n(2n+1 + 3), OTT(n) = 3× 24n (36)

Compared to H-Tucker and TT, the Complexity of the new decomposition decreases
together with the growth of n. In the general case, the relative Complexity of 3D FO-
AHKLT with respect to decompositions H-Tucker and TT is evaluated in accordance with
the relations below:

ψ1(n) =
OHT(n)

O3DFO
AHKLT(n)

= 2n−1 2n+1 + 3
2n(9× 2n−1 + 1) + 3

(37)

ψ2(n) =
OTT(n)

O3DFO
AHKLT(n)

= 22n−1 3
2n(9× 2n−1 + 1) + 3

(38)

For example, for n = 8 the results are: ψ1(8) = 3.57 and ψ2(8) = 5.33.
For the case when the new decomposition must have minimum Complexity, the

transform kernel KLT2×2 could be replaced by WHT of the same size (2 × 2), which in
correspondence with Equation (10), is the particular case of KLT2×2 for the fixed value of
θ1,2 = π/4. According to [19], the Complexity of the 3D Fast Walsh-Hadamard Transform
(3D-FWHT) evaluated through the total number of operations O3D−FWHT(n) is defined by
the relation:

O3D−FWHT(n) = A3D−FWHT(n) + M3D−FWHT(n) = 3× 23nn (39)
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Then, for the Complexity of 3D-FWHT with ADV (3D-AFWHT), we obtain:

O3D−AFWHT(n) = A3D−AFWHT(n) + M3D−AFWHT(n) ≈ 22n[3× 2nn + 2(2n + 3)] (40)

The relative Complexity of 3D FO-AHKLT with respect to 3D-AFWHT is defined by
the relation:

ψ3(n) =
O3DFO

AHKLT(n)
O3D−AFWHT(n)

= 2
2n(9× 2n−1 + 1) + 3
3× 2nn + 2(2n + 3)

(41)

Hence, for the example value n = 8, it is ψ3(n) = 5.97, and the relative Com-
plexities of H-Tucker and TT vs. 3D-AFWHT are OHT(8)/O3D−AFWHT(8) = 21.33 and
OTT(8)/O3D−AFWHT(8) = 31.84, correspondingly.

In Table 2 are given the values of coefficients ψ1(n), ψ2(n) and ψ3(n), calculated in
accordance with Equations (36), (37) and (40), for n = 2, 3, . . . , 10. From the table, it is seen
that for n > 5, the values of coefficients ψ1(n) and ψ2(n) are higher than “1” and grow fast
together with n, while for the same values of n, the coefficient ψ3(n) increases a little in the
range from 4 up to 6.

Table 2. Relative Complexity of H-Tucker and TT vs. 3D FO-AHKLT and of 3D FO-AHKLT vs.
3D-AFWHT.

n 2 3 4 5 6 7 8 9 10

ψ1(n) 0.28 0.34 0.48 0.74 1.21 2.05 3.57 6.34 11.39
ψ2(n) 0.30 0.42 0.66 1.06 1.77 3.04 5.33 9.47 17.06
ψ3(n) 4.16 5.00 5.46 5.74 5.87 5.94 5.97 5.98 5.99

From the comparison follow the conclusions below:

• The new hierarchical decomposition has low Complexity, which decreases together
with the growth of n faster than those of the H-Tucker and TT decompositions;

• Significant reduction in the decomposition Complexity could be achieved through
replacement of the kernel KLT2×2 by WHT2×2. In this particular case, the decrease in
the decomposition Complexity results in a lower decorrelation degree;

• For the case n = 8, the Complexity of the algorithm 3D-AFWHT is approximately
6 times lower than that of the 3D FO-AHKLT;

• The Complexity of algorithms 3D FO-AHKLT and 3D-AFWHT was evaluated without
taking into consideration the use of the adaptive KLT2×2 and the possibility to stop the
execution prior to the maximum level n. Equations (35) and (40) give the maximum
values of Complexity used for the evaluation of the compared algorithms.

7. Conclusions

This work presented the new algorithm 3D FO-AHKLT, aimed at the decorrelation
of the elements of a cubical tensor of size N = 2n. The Complexity of the algorithm was
evaluated and compared with that of other, similar algorithms, and its efficiency was
shown. The main qualities of the tensor decomposition 3D FO-AHKLT are:

• Efficient decorrelation of the calculated components;
• Concentration of the tensor energy into a small number of decomposition components;
• Lack of iterations;
• Low Complexity;
• The capacity for parallel recursive implementation, which reduces the needed

memory volume;
• The capacity for additional significant Complexity reduction through the use of the

algorithm 3D-AFWHT, depending on the needs of the implemented application.

The presented algorithms 3D FO-AHKLT and 3D-AFWHT could be generalized for
tensors with three different dimensions 2n1 × 2n2 × 2n3 (i.e., for n1 6= n2 6= n3). The choice
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of the offered hierarchical 3D decompositions depends on the requirements and limitations
of their Complexity imposed by the application area.

The future investigations of 3D FO-AHKLT and 3D-AFWHT will be aimed at the eval-
uation of their characteristics compared to famous tensor decompositions, in order to define
the best settings and to define the most efficient applications for tensor image compression,
feature space reduction, filtration, analysis, search and recognition of multidimensional
visual information, deep learning, etc. The future development of the presented algorithm
will be aimed at applications related to tree tensor network [20], multiway array (tensor)
data analysis [21,22], tensor decompositions in neural networks for tree-structured data, etc.
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