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Abstract: A dependable semi-analytical method via the application of a modified Adomian Decom-
position Method (ADM) to tackle the coupled system of Emden–Fowler-type equations has been
proposed. More precisely, an effective differential operator together with its corresponding inverse
is successfully constructed. Moreover, this operator is able to navigate to the closed-form solution
easily without resorting to converting the coupled system to a system of Volterra integral equations;
as in the case of a well-known reference in the literature. Lastly, the effectiveness of the method is
demonstrated on some coupled systems of the governing model, and a speedier convergence rate
was noted.

Keywords: modified ADM; coupled ODEs; singular ODEs; Emden-Fowler equations; Lane-
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1. Introduction

Ordinary differential equations arise in different areas of applied sciences, such as en-
gineering, physics, and applied science. Numerous methods have been used to determine
solutions of these problems. The solutions to ordinary differential equations exhibit sym-
metries and this property can be exploited to find those solutions. Many real-life problems
are mathematically modeled through Initial-Value Problems (IVPs) of nonlinear Ordinary
Differential Equations (ODEs), including, for instance, models, such as the Emden–Fowler
equation [1–4]. The Emden–Fowler equation is a singular second-order nonlinear ODE that
arises in modeling various phenomena in thermodynamics and astrophysics to mention
a few. This important equation in the presence of inhomogeneous term g(x) reads the
following equation [5]

u′′ +
r
x

u′ + f (u) = g(x), (1)

where r > 0 is a positive constant, and g(x) and f (u) are prescribed functions in x and u,
sequentially.

Moreover, Equation (1) reduces to the famous Lane–Emden [6] equation when

r = 2, f (u) = um, g(x) = 0. (2)

This equation is one of the fundamental equations that are used to study stellar structures.
The model equally has applications in modeling thermal and isothermal behaviors of
spherical gas clouds, and also works magically in the theory and application of harmonic
current to mention a few; see [1–6] and the references therein for other vital methods to
treat such singular nonlinear models. Additionally, one may find various approaches in
both the recent and past literature to study these types of models, including, for instance,
an analytical procedure via the combination of the Laplace transform and homotopy
perturbation approach to study a class of Lane–Emden equations by Eltayeb [7], the
homotopy perturbation technique for the class of Emden–Fowler equations by Chowdhury
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and Hashim [8], the Homotopy analysis procedure for the solution of Emden–Fowler-type
models by Bataineh et al. [9], and the Harr wavelet numerical process for the solution of
Emden–Fowler equations by Singh et al. [10]; see also methods for the solution of time-
dependent Emden–Fowler type and Lane–Emden–Fowler equations, and the generalized
Thomos–Fermi equations in [11,12], respectively.

Further, there exist several variants of Emden–Fowler equation given in Equation (1), in-
cluding the coupled system of Emden–Fowler-type equations that reads as follows [5,13–15]

u′′1 +
r1

x
u′1 + f1(u1, u2) = g1(x),

u′′2 +
r2

x
u′2 + f2(u1, u2) = g2(x),

(3)

where r1 > 0, r2 > 0 are real constants, and g1(x) and g2(x) are given functions of x; while
f1(u1, u2) and f2(u1, u2) are prescribed analytic nonlinear functions of u1 and u2. This
equation arises in certain physical processes, such as population growth, pattern formation,
and chemical reaction, among others. More so, one would see the application of the various
methods to study such a coupled model, such as the modified ADM to solve certain systems
of Emden–Fowler type equations by Biazar [13], the variational iteration process for the
systems of Emden–Fowler equations by Wazwaz [14]; and, lastly, an analytical procedure
by Singh [15] to treat certain systems of Lane–Emden–Fowler type equations, among others.

Furthermore, the literature is full of diverse methods to study ODEs, such as the
classical Adomian Decomposition Method (ADM) [16,17] and its different reliable exten-
sions and modifications [18–20]. No wonder, the ADM procedure and its modifications
have been greatly used in both the past and recent times to solve different types of dif-
ferential equations, integral equations, and mixed integro-differential equations. In fact,
this is associated with the flexibility of the method in handling both linear and nonlinear
problems via the application of domain decomposition. Various forms of tricky models
have been successfully solved through the application of this method and its modifica-
tions. To state a few, we recall how certain nonlinear equations were solved using integral
transform-ADM methods in [21,22], the ADM modification method for the solution of KdV
equation [23], solution of nonlinear wave propagation model via ADM [24], and the study
of fractional heat diffusion model in the nonlocal setting by Laplace–ADM approach [25],
to mention a few. However, the current study aims at studying the coupled system of the
Emden–Fowler-type equations by utilizing a dependable semi-analytical method. This
method is based upon the application of the modified ADM by Hasan [3]. Additionally,
the effectiveness of the method will be demonstrated on certain systems of the coupled
model. These systems will be taken from the existing literature as test problems. What is
more, the current paper is arranged in the following way: Section 2 outlines the method of
the study; while Section 3 demonstrates the presented method given in Section 2 on certain
test problems, and Section 4 presents some concluding remarks.

2. Methodology

This section gives a mathematical algorithm for the determination of recursive so-
lution of the inhomogeneous coupled system of Emden–Fowler-type equations. This
algorithm is based upon the modified ADM procedure for the solution of various func-
tional equations. Different differential operators and their corresponding inverse integral
operators will be recalled and thereafter used to treat certain forms of the coupled equations
under consideration.

Let us consider the inhomogeneous coupled system of Emden–Fowler-type equations{
u′′j +

(2hj+rj)
x u′j +

(hj−1)(hj+rj)

x2 uj + Nj(u1, u2) = gj(x),
j = 1, 2, hj ≥ 1, rj ≥ −1,

(4)
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subject to the following prescribed initial data

uj(0) = ξ j, u′j(0) = ζ j, j = 1, 2, (5)

where hj and rj are real constants, Nj are the nonlinear functions of uj; while gj(x) are
known functions, all for j = 1, 2.

So, rewriting the system given in Equation (4) through a differential operator notation
L becomes

Luj = gj(x)− Nj(u1, u2), j = 1, 2, (6)

where the differential operator L and its corresponding two-fold inverse integral operator
L−1 are considered in this study based on the ADM modification by Hassan [3] as follows

L(.) = x−hj
d

dx

(
x−rj

d
dx

xhj+rj

)
(.),

L−1(.) = x−(hj+rj)
∫ x

0
xrj

∫ x

0
xhj(.)dxdx.

(7)

More so, these operators are specifically devised in the present examination to study
the coupled Emden–Fowler-type equations. What is more, applying the inverse oper-

ator L−1 to the first three terms u′′j +
(2hj+rj)

x u′j +
(hj−1)(hj+rj)

x2 uj of Equation (6) yields
the following

uj = uj(0) + u′j(0)x + L−1(gj(x))− L−1Nj(u1, u2). (8)

Therefore, the ADM decomposes the solutions uj(x) and the nonlinear functions
Nj(u1, u2) for j = 1, 2, through infinite series of the following forms

uj(x) =
∞

∑
n=0

ujn(x), j = 1, 2, (9)

and

Nj(u1, u2) =
∞

∑
n=0

Ajn, j = 1, 2, (10)

where the components ujn(x) are recursively computed; while the Adomian polynomials
Ajn’s corresponding to the nonlinear functions Nj are acquired through the following
relation [16,17]

Ajn =
1
n!

dn

dλn

[
N

(
n

∑
k=0

λkujn

)]
λ=0

, j = 1, 2, n = 0, 1, 2, ... (11)

So, substituting Equations (9) and (10) into Equation (8) yields

∞

∑
n=0

ujn = ξ j + ζ jx + L−1(gj(x))− L−1
∞

∑
n=0

Ajn, (12)

of which the components ujn(x) are recursively obtained via the ADM process as follows
uj0 = ξ j + ζ jx + L−1(gj(x)),

uj(n+1) = −L−1 Ajn, n ≥ 0,
(13)

for j = 1, 2.
We, therefore, remark here that this method that is based on the modification of the

standards ADM and presented on the coupled system of Emden–Fowler-type equations
has numerous advantages over the approach presented in [10]. However, the most notable
advantage of the method is its ability to reveal a convergent series solution without resorting
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to converting the coupled system to a system of Volterra integral equations; as in the case
of the algorithm that was presented in Wazwaz et al. [20].

In addition, the convergence of the ADM was discussed by Cherruault [26], Cherruault
and Adomian [27], Abbaoui and Cherruault [28]. Cherruault [26] has given the first
proof of convergence of the ADM using the fixed point theorems for abstract functional
equations. In [27], Cherruault and Adomian have avoided this type of hypothesis which
is difficult to satisfy and to verify in physical problems. Additionally, in [29], it has been
proven that the Adomian polynomials An depend only on u0, u1, ..., un. Furthermore, Gabet
in [30] generalized the convergence results obtained by Cherruaulet in Banach space; while
Babolian and Biazar [31] used the Cherruaulet’s definition and considered the order of
convergence of the method.

Thus, in what follows, we make consideration to several numerical test problems
featuring both the linear and nonlinear coupled systems of Emden–Fowler-type equations.

3. Applications

The present section examines the application of the proposed algorithms on different
test singular problems of the coupled system of Emden–Fowler-type equations.

Example 1. Consider the coupled system of Lane–Emden-type equations when r1 = 3, r2 = 2 as
follows [5,20] 

u′′1 + 3
x u′1 − 4(u1 + u2) = 0,

u′′2 + 2
x u′2 + 3(u1 + u2) = 0,

(14)

with initial conditions {
u1(0) = 1 = u2(0),
u′1(0) = 0 = u′2(0).

(15)

Accordingly, we make use of 2h1 + r1 = 3 and (h1 − 1)(h1 + r1) = 0 in the first ODE
to obtain h1 = 1, r1 = 1. Therefore, substituting these values into Equation (7) gives the
following differential operator L and its inverse L−1 as follows

L(.) = x−1 d
dx

(
x−1 d

dx
x2
)
(.),

L−1(.) = x−2
∫ x

0
x
∫ x

0
x(.)dxdx.

(16)

Furthermore, we use the relations 2h2 + r2 = 2 and (h2− 1)(h2 + r2) = 0 in the second
ODE to obtain h2 = 1, r2 = 0. This yields from Equation (7) the following operators

L(.) = x−1 d
dx

(
d

dx
x
)
(.),

L−1(.) = x−1
∫ x

0

∫ x

0
x(.)dxdx.

(17)

Therefore, Equation (14) in an operator form is expressed as{
Lu1 = 4(u1 + u2),
Lu2 = −3(u1 + u2),

(18)

such that after operating L−1 on the above equation gives the following recursive schemes{
u10 = 1,
u1(n+1) = 4L−1(u1 + u2), n ≥ 0,
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and {
u20 = 1,
u2(n+1) = −3L−1(u1 + u2), n ≥ 0.

Therefore, we express some of the components of the above recurrent relations as fol-
lows

u10 = 1, u20 = 1,

u11 = 4L−1(u10 + u20) = x2, u21 = −3L−1(u10 + u20) = −x2,

u12 = 4L−1(u11 + u21) = 0, u22 = −3L−1(u11 + u21) = 0,

leading to the closed-form solution for the system as follows{
u1 = 1 + x2,
u2 = 1− x2.

(19)

Example 2. Consider the coupled system of Lane–Emden-type equations when r1 = 1, r2 = 3 as
follows [20] 

u′′1 + 1
x u′1 − u3

2(u
2
1 + 1) = 0,

u′′2 + 3
x u′2 + u5

2(u
2
1 + 3) = 0,

(20)

with initial conditions {
u1(0) = 1 = u2(0),
u′1(0) = 0 = u′2(0).

(21)

Here, from the first ODE, let us make a transformation using 2h1 + r1 = 1 and
(h1 − 1)(h1 + r1) = 0. This gives that h1 = 1, r1 = −1. Therefore, we devise the following
differential operator L and its inverse L−1 by substituting these values into Equation (7) as
follows substitution

L(.) =x−1 d
dx

(
x

d
dx

)
(.),

L−1(.) =
∫ x

0
x−1

∫ x

0
x(.)dxdx.

(22)

Similarly, from the second ODE, we use the following relations 2h2 + r2 = 3 and
(h2 − 1)(h2 + r2) = 0. This results in getting h2 = 1, r2 = 1 such that the following
operators are obtained from Equation (7) as follows

L(.) = x−1 d
dx

(
x−1 d

dx
x2
)
(.),

L−1(.) = x−2
∫ x

0
x
∫ x

0
x(.)dxdx.

(23)

So, the system given in Equation (20) becomes in an operator form the following{
Lu1 = u3

2(u
2
1 + 1),

Lu2 = −u5
2(u

2
1 + 3),

(24)

such that after operating L−1 on the above equation gives the following recursive schemes{
u10 = 1,
u1(n+1) = L−1(A1n), n ≥ 0, (25)
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and {
u20 = 1,
u2(n+1) = −L−1(A2n), n ≥ 0, (26)

where A1n’s and A2n’s are the Adomian polynomials corresponding to the nonlinear terms
u3

2(u
2
1 + 1) and u5

2(u
2
1 + 3) given, respectively, as follows

A10 = u3
20(u

2
10 + 1),

A11 = (2u3
20u10u11 + 3u2

20u2
10u21 + 3u2

20u21),
...

and
A20 = u5

20(u
2
10 + 3),

A21 = (2u5
20u10u11 + 5u4

20u2
10u21 + 15u4

20u21),
...

Then, we express some of the components of the above recurrent relations as follows

u10 = 1, u20 = 1,

u11 = L−1(A10) =
1
2

x2, u21 = −L−1(A20) = −
1
2

x2,

u12 = L−1(A11) = −
1
8

x4, u22 = −L−1(A21) =
3
8

x4,

u13 = L−1(A12) =
1

16
x6, u23 = −L−1(A22) = −

5
16

x6,

...
...

leading to the following series solution
u1 = 1 + 1

2 x2 − 1
8 x4 + 1

16 x6 + · · ·

u2 = 1− 1
2 x2 + 3

8 x4 − 5
16 x6 + · · ·

(27)

which subsequently yields the closed-form solution for the coupled system as follows

(u1(x), u2(x)) =
(√

1 + x2,
1√

1 + x2

)
. (28)

Example 3. Consider the coupled system of Emden–Fowler-type equations with r1 = 5, r2 = 3 as
follows [20] 

u′′1 + 5
x u′1 + 8(eu1 + 2e−

u2
2 ) = 0,

u′′2 + 3
x u′2 − 8(e−u2 + e

u1
2 ) = 0,

(29)

with initial conditions {
u1(0) = 0 = u2(0),
u′1(0) = 0 = u′2(0).

(30)



Symmetry 2022, 14, 843 7 of 12

Accordingly, from the first ODE, we set 2h1 + r1 = 5 and (h1 − 1)(h1 + r1) = 0 to
obtain h1 = 1, r1 = 3 and further lead to the following operator from Equation (7), together
with its corresponding inverse integral operator

L(.) =x−1 d
dx

(
x−3 d

dx
x4
)
(.),

L−1(.) =x−4
∫ x

0
x3
∫ x

0
x(.)dxdx.

(31)

Similarly, we set 2h2 + r2 = 3 and (h2 − 1)(h2 + r2) = 0 in the second ODE to get
h2 = 1, r2 = 1. This yields the following operators via Equation (7)

L(.) =x−1 d
dx

(
x−1 d

dx
x2
)
(.),

L−1(.) =x−2
∫ x

0
x
∫ x

0
x(.)dxdx.

(32)

Therefore, the given coupled model in these new operators becomes{
Lu1 = −8(eu1 + 2e−

u2
2 ),

Lu2 = 8(e−u2 + e
u1
2 ),

(33)

such that after operating the inverse operator L−1 on the above respective equations gives
the following recursive schemes{

u10 = 0,
u1(n+1) = −8L−1(A1n), n ≥ 0,

and {
u20 = 0,
u2(n+1) = 8L−1(A2n), n ≥ 0,

where A1n’s and A2n’s are the Adomian polynomials corresponding to the nonlinear terms
(eu1 + 2e−

u2
2 ) and (e−u2 + e

u1
2 ) given, respectively, as follows

A10 = eu10 + e−
u20

2 ,

A11 = u11eu10 − u21e
−

u20

2 ,
...

and
A20 = (e−u20 + e

u10
2 ),

A21 = −u21e−u20 +
1
2

u11e
u10

2 ,
...
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Thus, we express some of the components of the above recursive relations as follows

u10 = 0, u20 = 0,

u11 = −8L−1(A10) = −2x2, u21 = 8L−1(A20) = 2x2,

u12 = −8L−1(A11) = x4, u22 = 8L−1(A21) = −x4,

u13 = −8L−1(A12) = −
2
3

x6, u23 = 8L−1(A22) =
2
3

x6,

u14 = −8L−1(A13) =
1
2

x8, u24 = 8L−1(A23) = −
1
2

x8,

...
...

that lead to the following series solution
u1 = −2x2 + x4 − 2

3 x6 + 1
2 x8 + · · ·

u2 = 2x2 − x4 + 2
3 x6 − 1

2 x8 + · · ·
(34)

which subsequently yields the closed-form solution for the coupled system as follows

(u1(x), u2(x)) = (−2 ln(1 + x2), 2 ln(1 + x2)). (35)

Example 4. Consider the coupled system of Emden–Fowler-type equations when r1 = 8, r2 = 4 as
follows [20] 

u′′1 + 8
x u′1 + 18u1 − 4u1 ln u2 = 0,

u′′2 + 4
x u′2 − 10u2 + 4u2 ln u1 = 0,

(36)

with initial conditions {
u1(0) = 1 = u2(0),
u′1(0) = 0 = u′2(0).

(37)

As preceded, in the first ODE, we get 2h1 + r1 = 8 and (h1 − 1)(h1 + r1) = 0. This
gives h1 = 1, r1 = 6. So, the operators in Equation (7) become

L(.) =x−1 d
dx

(
x−6 d

dx
x7
)
(.),

L−1(.) =x−7
∫ x

0
x6
∫ x

0
x(.)dxdx.

(38)

Additionally, we put 2h2 + r2 = 4 and (h2 − 1)(h2 + r2) = 0 from the second ODE to
get h2 = 1, r2 = 2 such that the operators in Equation (7) yield

L(.) = x−1 d
dx

(
x−2 d

dx
x3
)
(.),

L−1(.) = x−3
∫ x

0
x2
∫ x

0
x(.)dxdx.

(39)

Furthermore, Equation (36) in these new operators becomes{
Lu1 = −18u1 + 4u1 ln u2,
Lu2 = 10u2 − 4u2 ln u1,

(40)
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of which the application of the inversions L−1 on Equation (40) reveals the following
recursive schemes {

u10 = 1,
u1(n+1) = −18L−1(u1) + 4L−1(A1n), n ≥ 0,

and {
u20 = 1,
u2(n+1) = 10L−1(u2)− 4L−1(A2n), n ≥ 0,

where A1n’s and A2n’s are the Adomian polynomials corresponding to the nonlinear terms
u1 ln u2 and u2 ln u1, correspondingly.

Then, we express some of the components of the above recursive relations as follows

u10 = 1, u20 = 1,

u11 = −18L−1(u10) + 4L−1(A10) = −x2, u21 = 10L−1(u20)− 4L−1(A20) = x2,

u12 = −18L−1(u10) + 4L−1(A10) =
1
2

x4, u22 = 10L−1(u20)− 4L−1(A20) =
1
2

x4,

u13 = −18L−1(u10) + 4L−1(A10) = −
1
6

x6, u23 = 10L−1(u20)− 4L−1(A20) =
1
6

x6,

...
...

that lead to the following series solutions
u1 = 1− x2 + 1

2 x4 − 1
6 x6 + 1

24 x8 + · · ·

u2 = 1 + x2 + 1
2 x4 + 1

6 x6 + 1
24 x8 + · · ·

(41)

which subsequently yields the following closed-form solution of the system

(u1(x), u2(x)) = (e−x2
, ex2

). (42)

Example 5. Consider the coupled system of Emden–Fowler-type equations when r1 = 1, r2 = 2 as
follows [13] 

u′′1 + 1
x u′1 + u2

1u2 − (4x2 + 5)u1 = 0,

u′′2 + 2
x u′2 + u1u2

2 − (4x2 − 5)u2 = 0,
(43)

with initial conditions {
u1(0) = 1 = u2(0),
u′1(0) = 0 = u′2(0).

(44)

As in the preceding examples, the first ODE admits 2h1 + r1 = 1 and (h1 − 1)(h1 +
r1) = 0. This gives h1 = 1, r1 = −1. So, the operators in Equation (7) become

L(.) =x−1 d
dx

(
x

d
dx

)
(.),

L−1(.) =
∫ x

0
x−1

∫ x

0
x(.)dxdx

(45)
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Additionally, the second ODE admits 2h2 + r2 = 2 and (h2 − 1)(h2 + r2) = 0. This
gives h2 = 1, r2 = 0. So, the operators in Equation (7) become

L(.) = x−1 d
dx

(
d

dx
x
)
(.),

L−1(.) = x−1
∫ x

0

∫ x

0
x(.)dxdx

(46)

Furthermore, Equation (43) in these new operators becomes{
Lu1 = −u2

1u2 + (4x2 + 5)u1,
Lu2 = −u1u2

2 + (4x2 − 5)u2,
(47)

of which the application of the inversions L−1 on Equation (47) reveals the following
recursive schemes{

u10 = 1,
u1(n+1) = L−1((4x2 + 5)u1n)− L−1(A1n), n ≥ 0,

and {
u20 = 1,
u2(n+1) = L−1((4x2 − 5)u2n)− L−1(A2n), n ≥ 0,

where A1n’s and A2n’s are the respective Adomian polynomials of the nonlinear terms
u2

1u2and u1u2
2, correspondingly.

What is more, we express some of the components of the above recurrent relations as
follows

u10 = 1, u20 = 1,

u11 = L−1((4x2 + 5)u10)− L−1(A10), u21 = L−1((4x2 − 5)u20)− L−1(A20),

= x2 +
1
4

x4, = −x2 +
1
5

x4,

u12 = L−1((4x2 + 5)u11)− L−1(A11), u22 = L−1((4x2 − 5)u21)− L−1(A21),

=
1
4

x4 + · · · , =
3

10
x4 + · · ·

...
...

that lead to the following series solution
u1 = 1 + x2 + 1

2 x4 + 1
6 x6 + 1

24 x8 + · · ·

u2 = 1− x2 + 1
2 x4 − 1

6 x6 + 1
24 x8 + · · ·

(48)

and subsequently yields the following closed-form solution of the system

(u1(x), u2(x)) = (ex2
, e−x2

). (49)

4. Conclusions

In conclusion, the current paper examined some important IVPs of the coupled system
of Emden–Fowler-type equations. Emden–Fowler equation is a generalization of the
Lane–Emden equation that arises in modeling a variety of phenomena in physics and
engineering. The present study proposed a method via the application of the modified
ADM by Hassan [3] to construct a generalized differential operator together with its
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corresponding integral inverse operator. In fact, this operator was able to navigate to
the closed-form solution easily, as against the methods presented in [5,20]. It is pertinent
to recall here that an ADM procedure coupled with an integral transform was utilized
in [5]; while [20] presented a modification of ADM via the application of Volterra integral
equations. Amazingly, our devised method rapidly gets hold of the closed-form solutions
once the proposed differential operator is applied. Lastly, the effectiveness of the devised
method was further evaluated taking into account the noted speedier convergence rate
and the level of exactitude with the exact analytical solutions in comparison with the
highlighted references.
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