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Abstract: Consider a simple graph G with vertex set V(G) and edge set E(G). A graph invariant for
G is a number related to the structure of G, which is invariant under the symmetry of G. The Sombor
index of G is a new graph invariant defined as SO(G) = L,,ck(c) V/(dy)2 + (dy)2. In this work, we
connected the theory of the Sombor index with abstract algebra. We computed this topological index
over the tensor and Cartesian products of a monogenic semigroup graph by presenting two different
algorithms; the obtained results are illustrated by examples.
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1. Introduction

Let G(V, E) be asimple graph with V(G) = {v1,v2,...,v,} and E(G) = {ey,e2,...,m}
as the vertex and the edge sets. The degree of a vertex v € V(G) will be indicated by d,.
The edge adjacent to the vertices # and v will be specified by uv. In graph G, the distance
between any two vertices u and v is stipulated by d(u, v) and is determined as the length
of the shortest path linking u# and v. For further information on the basics of graph theory,
please see reference [1].

A finite multiplicative monogenic semigroup (with zero) is given below

Spm = {O,x,xz,x3,...,x"}, (1)

in which the authors put into effect in [2]. Whilst the graph I'(Sy;) is specified by modifying
the adjacent rule of vertices and sticking to the original stance. The vertices of I'(Sy;)
include all elements in Sys, except zero. For any two different vertices, x and %/ in T(Sy)
that (1 < 7,j < n) are adjoined to one another, if and only if i +j > n. For detailed
information about monogenic semigroup graphs, see [3-5].

Zero divisor graphs are the bases of monogenic semigroup graphs [2]. Zero divisor
graphs were first conducted on commutative rings [6]; following this study, the researchers
worked on commutative and non-commutative rings [7-9]. Following the studies of
zero divisor graphs on rings, in references [10,11], the authors utilized the information in
commutative and noncommutative semigroups.

In chemistry, studies on topological indices have been carried out for more than half a
century [12]. Recently, topological indices have been thoroughly detailed in mathematics.
Indices such as these are utilised in creating structural properties of molecules, equipping
us with data for industrial science, applied physics, biochemistry, environmental science,
and toxicology [13]. In ref. [14], Gutman introduced a graph-based topological index
named the Sombor index. It was first used in chemistry [15-20]; soon after, it captured
the attention of mathematicians [2,21-24]. Network science used the modeling dynamical
effect of biology and social technological complex systems [25]. The Sombor index became
popular for military use as well [26]. Since its inception (less than one year after being
published), the vast interest of mathematicians researching the Sombor index has been
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astounding. We believe that the Sombor index needs to be investigated in-more depth. Our
research produces results based on the Sombor index category of algebraic structures, such
as monogenic semigroups.

Graph operations play a pivotal role in mathematical chemistry due to the substantial
importance they provide in evaluating numerous graph operations of simple graphs, such
as chemical interest graphs. In addition, their importance, i.e., in the construction of
bigger graphs out of smaller ones, is beneficial in the identification and decomposition of
large graphs. Research into the extension of graphs is quintessential in applied sciences
(see [27,28]). It is with this concept that the tensor and Cartesian products have been
determined. The researchers in [29,30] estimated the Wiener index of the Cartesian product
of graphs and in [31] the authors calculated the Szeged index of the Cartesian product
of graphs. In 2011, Yarahmadi calculated certain topological indices, such as the Zagreb
indices and Harary and Schultz indices [32].

In this paper, we use G; and Gy as two simple graphs. The vertex set of the tensor
product and Cartesian product of G; and G, are indicated by V(G ® Gp) = V(Gy) x V(Ga)
and V(G;1 x Gp) = V(Gy) x V(Gy), respectively. For the tensor product, necessary and
sufficient conditions are applied for any u = (u1,uz),v = (v1,v2) in V(Gy) x V(Gy) to be
joined (u1,v1) € E(Gy) and (up,v2) € E(Gy). For the Cartesian product, necessary and
sufficient conditions for any u = (u1,u),v = (v1,v2) in V(G;1) x V(Gy) to be associated is
1y = vy and (up,v2) € E(Gy) or (u1,v1) € E(Gy) and up = ;.

In this study, the S}, monogenic semigroup and S3, monogenic semigroup were used,
as given below, respectively,

St = {xl,x%,xi’,...,xT} u{0} and S%, = {xz,x%,x%,...,xg’} U {0}. ()
The vertex set of the tensor product and the Cartesian product of S}, and S3, is given as:
2 2 n—1

{(xl,xz),(x%,xz),...,(x’l"’,xz),(xl,x%),(xl,xz),...,(xT,x%),...,(xl,xz ),

(2,70, (2, (e, ), (6, ), () b

®)

The Sombor index invented by Gutman [14] is a vertex degree-based topological index,
which is narrowed down as

SO(G) =}, /(duw)?+ (do)?. (4)
uveE(G)

In addition, for a real number r, we designate by |r| the greatest integer < r and by
[r], the least integer > r. It is quite apparent thatr —1 < [r] < randr < [r] <r+1.
In addition, for a natural number n, we have

n 2 if n is even
n_J) 2
{2—‘ { il if n is odd. ©)
Here, any two vertices (x}, x]2) and (x4, x5) are connected to each other if and only if
X CET(SY) e xixi=0cita>m+1 (6)
and ) )
b e ET(S3) e xbd=0sj+b>n+1. @)

Our research calculates results based on the Sombor index of Cartesian and tensor
products of monogenic semigroup graphs. Algorithms in Sections 2 and 4 are given for the
purpose of detecting vertex neighborhoods. With the help of these algorithms, the proper-
ties of the tensor and Cartesian products, respectively, will be used to calculate the Sombor
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indices on these products more easily. These algorithms are calculated independently of
each other and the algorithm given in [23] using tensor and Cartesian product definitions.

2. An Algorithm for the Tensor Product of the Monogenic Semigroup Graph

To make some simplifications in our calculations, we provide our results in Section 3
below; we present this algorithm on the neighborhood of the vertices on T'(S},) ® I'(S%,)
by considering the definition of the monogenic semigroup graph.

If m is even (n is even or odd):

Iy,n: the vertex (x{', x3) is linked to every vertex (xl,x2) 1<i<m-1, 1<j<
n—1).

Lyn—1: the vertex (xi, x5~ 1) is linked to every vertex (xl,xz) 1<i<m-1, 2<
j<n, j#n-1).

Iyyu—2: the vertex (xI'x42) is linked to every vertex (xl,xz) (1<i<m-1,3<j<n

j#n-2).

m1: the vertex (x7", x1) is linked to every vertex (xl,xz) 1<i<m-—1,j=n).

Im—l,n- the vertex (xJ'~!, x}) is linked to every vertex (xl,xz) 2<i<m-21<j<

n—1).

Iy q,: the vertex (xl%lﬂ,xz) is linked to (xl%t,xg).

By keeping these steps in this algorithm, we have two possibilities, depending on
whether n is even or odd:

If m is odd and n is even:

m—1 m—1 +1

Imzl+2 ,: the vertex (xl +2, x3) is linked to (x; 7 ,x%) and (x; 2 ", x%).
If m is odd and n is odd;1 .
Tui,,;: the vertex (xlTJrz, x}) is linked to (x; 2 ,x}) and (x, s ,x).
In the following lemma, the vertex degrees are given as:
1
(x1,%2), (x%,xz) , (xf! ,xz),(xl,x%), (x%,x%),...,(xl ,xg) ,(x1,x57), ®)

(2,50, oo, (3, 50, (1, 39), (3, 33), ..., (0, ) € T(Shy) © T(S3).

These vertex degrees are denoted by

(dv,dy), (do,dy), .. (dm,dy), (d1,dy), (do,ds), ... (dy,dy), ... (dr,dy), (do,dyy), ... (du, d,y). )

Several investigations exist on the degree series with respect to this series; we referred
to [33,34].

Lemma 1.

!

(ddy) =1, (dzd) =2, ..., (dpyydy) =[5] {@pgyd) =51 -
(10)

/

(dp,dy) =m—1...,(d ra]+1 9 ) =

-
NIZ
—

)([3]).
Remark 1. Considering special observations in Lemma 1, the recurrent phrases utilized that follows

1= [3] =g )

Consequently, the degree of d, is noted by n — 1, in spite of the amount of vertices by n.
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3. Computing the Sombor Index of the Tensor Products of Monogenic
Semigroup Graphs

Our data acquired in this area will produce an accurate formula of the Sombor index
over the tensor products of monogenic semigroup graphs by using the above algorithm.

Theorem 1. For any monogenic semigroup, S}, and S3,, the Sombor index over the tensor product
of two monogenic semigroup graphs, T(S},) ® I(S%,), is

SO(T(Sy) @T(S}y)) =

[SO)(T(Sy) @ T(S34))

+
t:gHZr:gHwaHZ V(t=1)(r—1))2+ ((0 - 1)i)*+
"EmHEf_ZHZb_mHZ n+1\/ (=) =12+ (-1)(-1))*+

m m+1 Z?_2+1 ZE 1 171 \/ t—1 (7—1))2+ <b1)2+

m+1E,_2+1Zb 12 n+1\/ t_l (7_1))2 (b(l_l))

(12)

m+12 12;, 1Zz, +1\/ t—l}’ +(b( 1))

t:%+1 Zr=1 Zb:%ﬂ Zi:gﬂ \/ t=1r)2+ ((b-1)(—-1))%

In the formula given above, t,b, and r,m will be taken in accordance with the rules
t+b>m+landr+i>n+1.

Proof. Our primary focus was to methodically formulize SO(I'(S},) ® ['(S3,)) concerning
the sum of the degrees. The calculation includes the tally of several pieces, thereafter deter-
mining each separately. The calculation given in Section 2 is utilized and will determine
the structures of the degrees of vertices. Equations (5), (10) and Remark 1 will allow us to
evaluate further.

If m

and 7 is even:

= (= 1), = 1))+ (12 4+ /(= D, 1)) + (drdy)?

w«dwl)(dfl)) + ()2 W((dmfl)(d,,fl)) @y, DR+

i

m—1

)y~ D)2+ (dr(d, 1)+ /(e — 1)(dy — 1) + (dad; 2

(e~ 1) 1)) <d2d2>2+...+\/<(dm—1>(d:,—1>>2+<dzd’%>2

=)l =)+ (17 +...+¢<<dm ~ 1)y~ D)+ (ol ~ 1)+ ..

+ /(@ = 1), = 1)) + (g 1 = D)2 + /([ = Dy = DY+ (g — D) + ..

+ \/((dm = 1)(d, = 1))+ (g - )(d/g )P+ \/((dm = 1)(d, = 1)+ (g - 1)(@“ -+

+ (=1 =17+ (g = D = DR+ (= 1Dy = 1) + (1 — D)2

T

m_

d, = 1)) + (dwsy _1)’1/2)2"‘-“""\/((‘1”: = 1)(d, = 1)+ ((dn— —1)11/%)2 13
3

+¢<<

dy —

1)(d), = 1)% + (-1 — 1)(d,

2 +...+ \/ m d - 1 ((dm—l - 1)(d;71 - 1))2

LR

(@ = D)y — 1))+ (a2 4\ (g — D)y — 1)) + (dads)? +

¢<<dm—1><d,,1 )>+<d1dn>+¢<(dm—1>(d;4 D+ (i, ~ )P+ ..

+yl

m*

L = D2 (i — D2 A\ — D), — D)+ (dadp)? +

T

m—1

d o — 1))+ (dadl)2 + .. de ~ D~ DR+ (dady 2

+\/((dm71)(d;71 D)2+ (@da(dy = 1)+ oyl = D2+ (ol = 1)

m -

4, —1))2+ d"’+1 +\/ ((dw = 1)(d,_; = 1)) ((d%+1—1)dg)2+,,.

)y =12+ ((dy g = 1))+ \/((dmfl)(d,, 1*1))2+((dg+1*1)(d'%+1*1))2

n
2

oo (= Dy =102+ (g =)y = )P Aoy — D)2 + (g )
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Consequently the Sombor index [SO](T(S},) ® T(S%,)) is noted as the sum following

[SOI(T(Sy) @ T(S31)) = [SONT(Sh) @ T(S3)) () + [SONT(Shy) @ T(S34)) (mim—1) + - - -
+ [SO(T(Sir) @ T(S34)) (m,1) [SOKF(S}\A)(@F(S‘]Z\/I))(mfl,n) 14)
+[SOJ(T(Sh) @ T(S34)) (m—1,u—1) + - - - + [SOI(T(Sp) @ T(S3)) 1,1
+ [SOJ(T(Shy) ® T(S3p)) (z41.1)

Whilst estimating the Sombor index value, the minutest amount is acquired after

several calculations. Where 7 is odd, we utilize the equality [4| = . given in (5). Then

we obtain

[SO(T(Shy) © T(S3)) ) = /(= 1) = 1))2 4 (112 + 1/ (m — 1) (n — 1))2 + (12)2 +
/(= 1) (n = D)2+ (10— 1))+ (m — 1) (n — 1)) + (21)2
+(m=1)(n=1) + (222 + ...+ /(= 1) (n = )P+ (2.(n — 1) +

+\/((m—1 Y =12+ (5 +1-1)1)2 +\/((m—l)(n—l))2+((%+1—1).2)2+‘..

+\/((mfl)(nfl))an((%+171).g)2+\/((mfl)(nfl))ZJr((%+171).(g+171))2+... (1)

+\/((m—l)(n—1))2+(((%+1—1).(n—1—1))2+...+ V(= 1) (= 1))+ ((m—1-1).1)2

+(m=1) (=12 4 ((m—1-1)2)2 ...+ \/((m ~ D)= 1)2 4 (m—1-1).0)2

+\/((mfl)(nf1))2+((mflfl).(nglfl))ZJr...
+(m =) =12+ (m—1-1).(n—1- 1),

The above equation can be given briefly with the sum symbol as follows

Wl H

[SOI(T(Shs) ® T(S3)) ) = Z Z (n —1))2+ (bi)?

b=1i=2+1

% n—1
FY L y(m == 12+ 0 - 1)

L (16)
+ Y Y (1) =)+ (b 1)i)

b="7+41i=1

m—1 n—1
+ V(= 1) (n =12+ (b - 1) (i~ 1))
b=141i=041

If similar operations in [SO](T'(S},) ® F(S%\/I))(m,n) are applied to
[SOJ(T(S}y) ©T(S34)) (mn—1), We obtain
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I
=
M”‘

[SOI(T(Sh) ® T(S34)) 1) \/((m —D((n=1) =1))> + (bi)?

<
Il
-
Il
S}

3

D=1+ 0(-1))>  (i#n-1)

i
—_
Il
INE
+
—

_|_
gl
M:
=

(17)

3
AN

=
8

—D(n=1))2+((b—1)i)?

S
Il
N

N
I|
N

+
MN‘R

mzl n—1
+ Y Y S -1+ (-1 -1 (#£n-1)
b=T+1i=E+1

If it continues in this way, the following equalities will be obtained for [SO](I'(S},) ®
F(S%A))(m,%ﬂ), [SO)(T(S},) ® F(S%/I))(m,%), and [SO](T(S})) ® F(S%A))(mrl), respectively,

bzl_zl:%Jrl (18)
=Y v J- G e-nia-1)
b=%+1i=5+1
and "
ISON(T(Shy) © T(Sh0)( >=bi1¢<<m1>1>2+<b<n1>>
)
+ Y J(m—)12 4 (- D12
b="%+1
In this way, [SO](F(S}\/I) & F(S%\/I))(m—l,n)/ [SO](F(S}\/{) ® F(S%\/I))(m—l,n—l)r"'r
[SOI(T(Sy)  ®  T(S3))(m-1,) [SOI(T(Sy)  ®  T(S3))(z41m)

[SO|(T(S},) ® F(S%A))(gﬂ,n—l)/ ..., [SO|(T(S})) ® F(S%\/I))(%H,l) are calculated one-by-
one to obtain a general sum formula as given below:

g Dy 1 D Ty V(= D — D)2+ (0724
Ti g 1 Dy Do Dy 0 VD0~ 12+ 06—+
o Dy Dy 1 Dy V(1) r—1>>2+<<b i)+
Zt_mzy_ﬁlzb_mzz_m¢ — P+ (G-DiE-1)P+
mHzr i s V((E=1)r)? (b( 1))+
M D Dy Dy V- D2 (=D D)2,

SO(T(Sky) ®T(8%))) = (20)

O

4. An Algorithm for the Cartesian Product of the Monogenic Semigroup Graph

We introduced this algorithm to the neighborhood of the vertices on
I(S},) x I'(S%,), taking into consideration the details of the monogenic semigroup graphs.
Our main results will be presented in Section 5 with our calculations.

If m is even (n is even or odd):

Iy the vertex (x", x}) is linked to (x}, x4) and (x]' ,x2) 1<i<m-1, 1<j<
n—1).
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SO(T(Sy) x T(S3y)) =

Lyyu—1: the vertex (x7, x3~1) is linked to (xf, x4 ') and (x’lﬂ,xé) 1<i<m-1, 2<
j<n-=2).

Lyu—o: the vertex (x7'x~2) is linked to (x}, x4 2) and (x%",x}) (1 <i<m—1, 3<
j<n-—3).

Iy1: the vertex (x7, x}) is linked to (x},x3) (1 <i <m—1).
L1, the vertex (x"~1, x4) is linked to (x},x}) and (¥, x}) 2 <i<m—-2,1<
j<n-—1).

LS| - z
Iy q,1: The vertex (xf - ,x}) is linked to (x2, x3).
By continuing these steps, if m is odd, the following situation will occur depending on
whether 7 is even or odd.

If m is odd (n is even or odd):
m—1

Lo ppy: the vertex (xlTJrz, x}) is linked to (xf, x}) (257 <i< 22l

5. Computing the Sombor Index of the Cartesian Products of Monogenic
Semigroup Graphs

In this section, by using the above algorithm, the formula of the Sombor index of the
Cartesian products of the monogenic semigroup graphs will be given.

Theorem 2. For any monogenic semigroup, Sk, and S3,, the Sombor index over the Cartesian
products of two monogenic semigroup graphs T'(S},) x T'(S3,) is

M D Dy VE D+ = D2+ (o (= 1)+
g Do Ty (=) 412+ (b 1)+
1 Dy Ty V(= D+ =10+ (0= 1)+ (= 1)+

L Sy S (= D)+ =10+ (= 1) + )+
P Dy Ty VE— D+ = D (= D+ (= 1)+

Py D T (= D+ (0= 1) )+
LAy S+ =D 4 ()P
S Dy Dy V(= D (64 (= 1))

(21)

In the formula given above, t, b, and r, m will be taken in accordance with the rules t +b >
m+1,t=bandr+i>n+1,r>1i.

Proof. Since our primary focus is to formulize SO(I'(S},) x T'(S3,)) concerning the total
number of degrees, we need to treat the sum as the sum of the total amount of different
blocks, thereafter determined individually. The calculation given in Section 2 is utilized and
will determine the structures of the degrees of vertices with the addition of Equations (5),
(10), and Remark 1.

If m and n are even:
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[SOI(T(S}y) % T(S3)) = v/ ((dm — 1)+ (dy — 1)) + (dy + dy — 1)2 + ) ((d — 1) + (dy = 1)) + (da + (d — 1) + ...
/(e = 1) (dy = 12+ (g + (dy = 12 [(don = 1)+ (dyy = D)2+ (g — )+ (dy — D)2 .
/(= 1)+ @y = D)2+ (et — 1) + [y = D)2+ /(= 1) + (dy = 1))2 + (e — 1) + ;2

+ w(dm 1) (= D)2+ (e~ 1) + )2+ w(dm ) (= DR (1) + 1R

3/ (@ — Dy~ DY+ (e — 1)+ (d,_, — 1) 2+¢ dwl)+(dn1 D)2+ (dr + (d,_y —1)2
(=D + [, = DP+ (ot oy =12+ /(= D+, )P+ [y + (@, — D)
+/ (@ = 1), - )2+((d%+1—1)+(d;1 D).

/(@ = 1)+ (dy — D+ (g — 1) + (), - ZW — )2+ ((dn — 1) +d)?
ot A (=D 4 (@ = D)2 (= 1)+ (5 = 1)2 4

+ —1)+d'%)2+ (dy+y )2+ \/((dm 1)y (4 )2+

+\/((dm—1)+d;)2+((dm L= D)y = 124 (= 1)+ (= 1)2 + (g — 1) + )2

(= 1)+ (= D)2+ (ot — 1)+ )2 + ...

3/ (et = 1)+ (dy = D)2 (o1 = 1)+ (d_ —1))?

(et =)+ (= D)2+ (d2+ (g — 1) 4 (g = 1)+ (dyy — 1)+ (3 + (d,_ — 1)+ ...
/(g —1 ;1—1» (g yr =)+ ([ —DP A+

(@t = 1)+ [y = D2+ (dog — 1) +dp)? +

+ s -1+ <d;_1 —1))2+ (o — 1)+ )2

22
+-.-+\/((dm—1)+d’%)2+(d2+d’%)z+\/((dmfl—1)+d’g)2+(d3+d’%)2 22

T \/((dm,1 — D) dy 2+ (dna = 1) +d)? + V(@ = 1) + )2 4 (dy + )2

+\/ dp1—1)+d )2+ (ds +d))? +.. +\/ =) +d)2+ (dyz — 1) +d))?

/(@ r =)+ (= D)2+ (g + (= 12+ /(g1 = 1)+ (= 1) + (g1 — 1) +4;)2

+ /(@ =)+ (dy = D)2+ (g gy — 1)+ )2+

+/ (g1 =)+, —1>>2+<<dm+1—1)+<d; -y

(g =)+ @y = D)2+ [y + (g = D)2+ [ ([@yga = 1)+ (A g = 1)+ (g — 1) +dp)2+
oty Ay =12+ (A —1) + (), —1)2

+\/((d%+1—1)+d%) g +dy P [y 1) 4P+ (g + P

2

+\/(d%z+(d’,,71))2+(dm+d')2+...+\/(dm (= 1)+ (dy +dy 2+

/@y + (@ = D2+ g+, — 1))+ (g + (d, — )2+ (dy +d)2+

n

+\/ wAd, - 12+ (du +(d,_ 2+\/d2+dn—1))2+(d2+d1)

+/ (2 + (d, —1))2+(d2+d)2+...+\/(d2+(d;—1)) +(d+ (d,_ — 1))

R A Y (RN CARES RN R

(= D)2+ (d+ 42+ (= D)2+ (d+ )2+

(e + (= 1) 4 4+ (= D)+ + (= 1)+ +dy)?

ot (= 1)+ (@ + (d, — 1)
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Consequently, the Sombor index of [SO](I(S},) x I'(S%,)) is stated as the sum below
[SO)(T'(Shy) x T(S30)) = [SONT(Sh) X T(S30)) ) + [SONT(Spg) X T(SF4)) (m, +[SOI(T(Sh) % T(S}4)) (m,1)
+[SOI(T(Sh) % T(S34)) m—1,n) + [SONT(She) X T(S30))m—1,-1) + - - + [SOI(T(S}y) X T(S}4)) m-1,1) (23)
+[SOJ(T(Sp) X T(S}4)) 1) + - - + [SOIT(Sp) X T(S}4)) (1,2 41)-

n—1) T

Whilst estimating the Sombor index value, the minutest amount is acquired after
several calculations. Where 7 is odd, we utilize the equality [5] = ”*1 given in (5). Then

we have

[SONT(She) X TS = /(= 1)+ (1= DR (1 (1= 1) 44/ (m = 1) + (1= P2+ (2 -2) + (n — 1)) +

+\/((mfl)+(n71))2+(%+(n71))2+\/((mfl) (nfl))2+(( +1-1)+(n-1))2+...

(24)
/(1) + (1)) (((m—l)—l)+(n—1))2+\/((m—1)+(n—l))2+((m—1)+1)2
+\/((m71)+(nfl)) +((m71)+g)2+\/((mfl)Jr(nfl))2+((m71)+(nglfl))z.
The above equation can be given briefly with the sum as follows
(SO (T(SL,) x T(2,) i\/ St (b4 (1))
b=1
L MRV CEr BT R R et lE
S (25)
2\/ 4 (n—1)2+ ((m—1)+i)?
”2 \/ 1)+ (1 —1)2+ ((m—1) + (i — 1))
If similar operations applied in [SO](I(S},) x F(S%A))(m’n) are applied to
[SOJ(T(S}y) X T(S34)) (mn—1), We obtain
[SON(T(Sh) * T(SM)) mn-1) = 3 \/ +((n=1) =1+ 0+ (n-1)-1))
b=1
i Vlm =1+ (=1 =22+ (=D + (= 1) =1))?
5 i\/ L =124 ((b—1) +i)2 (26)
b:% i—2
+ 3= D)+ (= 1) =12+ ((m = 1) + )2

i=2
nﬂi V(=1 + (1 =1) = 1)> + (m = 1)+ (i— 1))

If it is continued in this way, the following equalities are obtained for
[SOI(T(Shy) > T(S34)) (m, 541, [SONT(Shy) * T(S34)) (m, 2y and [SON(T(Spy) x T(S34)) (m1)s
respectively,
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[SOJ(T(She) X T(S3)) ) = J (=D + (G- DP+((b-b)+(5-2)* @)
and
[SON(T(Sh) X T(S34)) (1) = i \/((m —1)+1)2+(b+1)
o e
= Y =)+ 12 (0 1)+ (1 - 1))
b="41

SO(I(Sy) x T(S}y)) =

In this way, [SO] (F(S}\/j) X F(S%\/I))(mfl,n)r [SO} (F(S}VI) X Iﬂ(SJZ\/I))(mfl,nfl)r'’ .
[SOI(T(S}y)  x  T(S3y))(m-1,1) [SOI(T(Spy) % T(Sip))(ms1m)
[SO)(T(S},) x F(S%,I))(%Hrn_l), ..., [SO(T(S},) x F(S%A))(%H,l) are calculated one-by-
one to obtain a general sum formula as given below:

g;ﬂ_mﬂzb%l f_m% Fr—1)2+ b+ (r—1))2+
th’"+12b 1>:r 1\/ t—1) +r) +(b+7)%+
Tl g Dgn Do V(- D+ 0 DP 4 (G- )+ (-1

P SN 3 ¢<<t—1> <r—1>>+<<t—1> i)+
>:tfm+12ﬁn+lz y V- T+ G-I+ (G- D+ =D+

g D T le(t—l) )2+ (- 1)+ 1)’
i, .l s -0
L Ty Ty (=12 (= D)%

(29)

O

The examples given below show the calculation of the Sombor index of the tensor
product and Cartesian product of I'(Sp,) and I'(Syy, ), to support the main theorems.

Example 1. Let Sy, and Sy, be a monogenic semigroup that is given in the following:
SMm, = {x x?,x3, x4, 2%, x }U{O}, Sm, = {x x2,x%, x }U{O} (30)
Now we will calculate the Sombor index of the T'(Spy,) ® T'(Sy, ) graph by using the technique

given in Theorem 1.
By using the formula, which is given in the following

Z 42 3211 12 1\/((t—1)(r—1))2+(bi)2+
s e
B Z Z Z E t—1)(r—1 + ((b—1)1)%+
SO(I(Sh) ©T(Sh)) = | ¥6 iz izz iz D1 (G- DD+ 1)
Z 42 12}; 12 V(= 1)r)2+ (b(i —1))2+
SIS0 s NS BV ( (o ([ (R V)3

we obtain
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[SOI(T(Shy) @ T(S3y)) = V42 + 62 +2/42 492 4 /52 + 32 4 /52 - 62 +21/52 + 92 4 21/52 + 92
+24/52 4122+ 20/62 + 62 +21/82 + 42 + 61/82 + 62 + 51/82 4 92 4 2/92 1 32
+6V92 4+ 6242102 +22 4 21/102 + 32 4 2¢/102 + 42 + 61/10% + 62 +2¢/102 + 82 (32)
F4V102 + 92 + V102 + 122 4 /122 422 4+ 21/122 4+ 32 +20/122 + 42 + 41/122 + 62
+ /152 412 4 3V/152 + 22 4 /152 4 32 + 31/152 + 42 4 31/152 + 62 + 21/152 + 82.

Example 2. The Cartesian products of the graphs T'(S},) and T'(S3,) are given below. By using
the formula given in Theorem 2, we will calculate the Sombor index of (T(S},) x T'(S%,).
By utilizing the formula given as

Yo 4217 1Zr V(=1 +(r—1)2+ 0+ (r—1))%+
YO 32 Y2 (= 1) 1) + (b )+
YO Tt AT (=) + (=) + (b= 1) + (r— 1)+
2 N2
sorshy xrisiy) = | EHERE VI s e )
L T2 D (=) 0 (0 - 1) +7)?
T3 T2 (4 =) 4 (4)?
L s i/ (t+ <r—1>>2+<t+<i—1>>2,

we have

[SO](T'(Shy) X T(S3y)) = V32 + 32+ VA2 +22 4 20/42 4+ 32 4 2/42 + 42 4 2/52 1 32 4 4\/52 + 42 1+ 4\/52 + 52
V62 +2242602 43246762 + 82+ 9V62 +52 4272 132 12/ + 2 1 6V/72 152 (34)
T 6V 62+ T2+ 72 4 /82 +42 4 /82 1 52 4+ 31/82 + 62 +31/82 + 72,

As we understand, the Sombor index of a graph of tensor and Cartesian products, of two monogenic
semigroups, are easily found by considering the exact formula obtained in the main theorems
(Figures 1-4).

x4 x3
x° x>
X x>

Figure 1. 5,1, monogenic semigroup graph.
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ol

o4

20— °3

Figure 2. 5,7, monogenic semigroup graph.

63) (64

B4 3

Figure 4. Cartesian products of Sy, and Sy,, monogenic semigroup graphs.
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6. Conclusions

In the mathematical and chemical literature, there are so-called vertex-degree-based
topological indices. One of the newest vertex-degree-based indices is the Sombor index; it
soon became very popular, with around 100 published papers. The Sombor index differs
from earlier vertex-degree-based topological indices because it has a peculiar geometric
interpretation. Extending the theory of the Sombor index beyond classical combinatorics
and linear algebra is of great importance, as it confirms that the Sombor index concept is
not just one of the numerous vertex-degree-based graph invariants, but it has a deeper
geometry-related meaning (as shown in [14]). Numerous research papers on the Sombor
index and its variants have applied methods involving standard combinatorial optimization
or linear algebra. In this work and in [23] we used the Sombor index in the semigroup
theory as an exception. We connected the Sombor index with abstract algebra. In particular,
we computed this index over the tensor and Cartesian products of a monogenic semigroup
graph; the obtained results are supported by examples. To better comprehend the Sombor
index, see [14]. Calculating the Sombor index (of disjunctive and corona products) over a
graph of a monogenic semigroup remains an open problem.
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