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Abstract: In this paper, a novel admissible estimate function is proposed to schedule flexible manufac-
turing systems (FMSs) by using heuristic search. The FMSs to be scheduled are modeled by P-timed
Petri nets. The problem is to make the system evolve from the initial marking to a given final marking
by firing a sequence of transitions. The structure of jobs in an FMS is always symmetrical to utilize
the shared resources, but the processing time of each job is asymmetrical to reduce the global process
time. By utilizing the structural symmetry of a Petri net model of an FMS, a partial reachability graph
is generated such that the notorious state explosion problem is mitigated. For each generated marking,
the proposed estimate function is used to provide an estimated cost for firing the transition sequence.
Then, we can select the marking with the smallest cost from the generated markings and compute its
successors. This process is continued until the system reaches the final marking. With the proposed
method, the performance is evaluated in terms of the cost of the obtained transition firing sequence
and the number of the expanded markings. The cost provided by the proposed estimate function
is closer to the optimal cost than the previous work, i.e., the proposed method can find a transition
firing sequence with less expanded markings and minimal process time from a marking to the final
marking. Experimental results are used to demonstrate and evaluate the proposed approach.

Keywords: flexible manufacturing system (FMS); Petri net; scheduling; heuristic search

1. Introduction

Flexible manufacturing systems (FMSs) are a classical type of discrete event system.
They can produce multiple product types by sharing a limited number of resources [1–6].
These part types are concurrently processed by competing for these limited resources
in a system, and each of them is manufactured by one of the predetermined routes. The pro-
duction processes always have partially identical sequences to use the shared system
resources. Hence, the structure of jobs in an FMS is always symmetrical in the sense of uti-
lizing the shared resources, but the processing time of each job is asymmetrical. The goal
of scheduling FMSs is to determine the assignment of resources in the process of produc-
tion by considering some criteria (for example, the time cost and deadlock avoidance).
With routing flexibility, it becomes an important issue to develop an efficient approach
for scheduling FMSs to obtain a sequence of operations such that some performance criteria
are optimized and relevant constraints are met. However, it is generally difficult to find
an optimal solution using typical methods in a short time. Hence, a number of researchers
have adopted artificial intelligence, and heuristics methods are applied to the scheduling
problem. Specifically, in recent years, some researchers have proposed robust approaches
that eliminate the necessity of optimizing such schedules [7–10].

Petri nets (PNs) [11] are a powerful tool for the modeling and analysis of FMSs, and
for the scheduling of FMSs and various production systems [12–26]. They are suitable
for representing the operations, resources and constraints of an FMS [15,27–34], as well
as other behaviors in discrete event systems [35,36]. In particular, great attention has been
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paid to the scheduling problem of discrete event systems modeled with PNs and finite
state automata in industrial and academic communities [12,13,16–19,22,24,37,38]. There are
a number of groups working on the scheduling of FMSs by using P-timed PNs. In [39], Luo
et al. present an anytime branch and bound scheduling problem of deadlock-prone FMSs
modeled by P-timed PNs. By considering no-wait constraints, Wang et al. [40] develop
a scheduling algorithm based on the P-timed PN model and heuristic search. The study
in [41] focuses on solving the scheduling problem of minimizing the total energy consump-
tion of FMSs. Le et al. [42] deal with uncertainties in the energy optimization of FMSs
by using a weighted P-timed PN model. Baruwa et al. [43] touch upon the deadlock-free
scheduling problem of FMSs by using timed colored PNs.

The A* algorithm, a well-known graph search algorithm, is used in a number of studies
to deal with the scheduling problem of FMSs [14,23,44,45]. The A* strategy [46–48] is a well-
known computer algorithm. It has been widely used in graph traversal and pathfinding
in computer science. With a best-first search given the initial marking M0, the A* strategy
aims at finding the lowest-cost path from M0 to the final marking Mf. The greatest advan-
tage of these A* strategy-based methods is that they can obtain an optimal schedule if an ad-
missible heuristic function is designed. However, the method is difficult to use for complex
scheduling problems since an optimal solution cannot be found in a reasonable time.
In [49], a dynamic weighting A* strategy is presented to reduce the computational cost.
As stated in [49], the quality of the obtained solution is controllable since its cost is no
more than (1 + ε)C∗, where C∗ denotes the optimal cost, i.e., the minimal processing time
from M0 to Mf. However, to achieve this, the depth of a solution should be estimated
in advance. Furthermore, there is no guarantee of the optimality of the obtained solution.
Huang et al. [50–53] have performed a great deal of work on this problem and proposed sev-
eral heuristic search algorithms. Specifically, in [50], with an admissible heuristic function,
they develop a weighted A* algorithm to schedule an FMS with alternative routes. By this
method, it is not necessary to estimate the solution’s depth in advance. More importantly,
the cost of the obtained solution is controllable and it is no more than (1 + ε)C∗.

Generally, an admissible estimate function for a marking is closer to the optimal
time of all the paths passing it from the initial marking to the final marking, and the A*
algorithm can more quickly find the optimal solution. The main contribution of the paper is
to propose a more precise estimate function for a given marking. By using the A* algorithm,
the proposed estimate function can find the optimal solution with fewer expanded markings
than in the previous work. In this paper, motivated by the work in [50], by using a P-timed
PN, we design a novel admissible heuristic function to schedule FMSs with alternative
routes. Based on this function, a dynamic weighting scheduling strategy is presented.
It uses only the current marking to obtain an estimate of the cost and eliminates the need
for anticipating the depth of a solution. Furthermore, with the proposed method, the cost
of a solution obtained by the proposed method is no more than (1 + ε)C∗ (ε ≥ 0, i.e., its
quality is controllable). Finally, an FMS is used to demonstrate the method’s applications
and the improvement over the work in [50].

The remainder of the paper is organized as follows. Section 2 recalls the basics of P-timed
PNs and FMSs. The novel heuristic function is proposed in Section 3. Section 4 presents
the solution algorithm that uses the improved heuristic function. The experimental results
for the proposed heuristic function are shown in Section 5. We conclude this paper in Section 6.

2. Preliminaries

Some basics of untimed PNs and P-timed PNs, and the modeling of FMSs, are recalled
in this section. More details can be found in [11,50,54–57].

A (untimed) PN is a four-tuple N = (P, T, F, W), where P and T are non-empty and
finite sets of places and transitions, respectively, with P ∩ T = ∅. F ⊆ (P× T) ∪ (T × P)
indicates a PN flow relation, represented by directed arcs from transitions to places or
places to transitions. The weight of an arc is a mapping W : (T × P) ∪ (P× T) → N, i.e.,
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W(x, y) > 0 if (x, y) ∈ F; otherwise, W(x, y) = 0, where N = {0, 1, 2, . . . , } denotes the set
of nonnegative integers and x, y ∈ P ∪ T.

A marking M of a PN N is a mapping: P→ N. For a place p, M(p) denotes the number
of tokens in it at M. (N, M0) is called a net system, where M0 is an initial marking.
Let x ∈ P ∪ T be a node of N = (P, T, F, W). Then, the preset and postset of x are defined
as •x = {y ∈ P ∪ T | (y, x) ∈ F} and x• = {y ∈ P ∪ T | (x, y) ∈ F}, respectively. We can
extend the notation to a set of nodes X ⊆ P ∪ T: •X = ∪x∈X

•x and X• = ∪x∈Xx•.
A transition t ∈ T is enabled at a marking M if, for all p ∈ •t, M(p) ≥W(p, t), which

is denoted by M[t〉. Firing t at M, a new marking M′ is generated such that, for all p ∈ P,
M′(p) = M(p)−W(p, t)+W(t, p), denoted by M[t〉M′. If there is a sequence of transitions
σ = t0t1 . . . tn, as well as markings M1, M2, . . . , Mn, such that M[t0〉M1[t1〉M2 . . . Mn[tn〉M′′
holds, M′′ is said to be reachable from marking M, denoted by M[σ〉M′′. R(N, M0) is
called the set of reachable markings of a net system (N, M0), consisting of all the markings
reachable from the initial marking M0, i.e., R(N, M0) = {M ∈ N|P||∃σ ∈ T∗ : M0[σ〉M}.

A P-timed PN is a six-tuple N = {P, T, I, O, M, D}, where:

• P = {p1, p2, . . . , pn}, n ∈ N+ = {1, 2, . . .} is a set of places;
• T = {t1, t2, . . . , tm}, m ∈ N+ is a set of transitions;
• I : P× T → N = {0, 1, 2, . . .} is a mapping for defining directed arcs from P to T;
• O : P× T → N is a mapping for defining directed arcs from T to P;
• M : P→ N is an n-dimension vector with the i-th element M(pi) denoting the token

count in pi, with M0 being the initial one;
• D : P → R+ ∪ {0} is a mapping for describing the time delay associated with

the places, with R+ being a set of positive real numbers. Formally, D is an n-dimension
vector whose i-th component D(pi) is the time delay with pi.

For PN models of FMSs, there are generally three types of places: the set of idle places
P0, the set of operation places PR and the set of resource places PA [54–57]. The maximal
number of products to be processed concurrently for a product type is given by the tokens
in the corresponding idle place at the initial marking. In this paper, an idle place is divided
into two places: a source one and a sink one. The source place is the one without input
transitions, while the sink place is the one without output transitions. A token in a source
place represents a raw part ready for processing, while a token in a sink one indicates
a completed part. Resources (machines and robots, for example) in an FMS are modeled by
resource places. The tokens in a resource place at the initial marking represent the available
resource units. The operation places indicate the operations to be performed for the parts
in the production sequences and are initially unmarked. Based on P-timed PNs, each
operation place is associated with a time delay, representing the time taken for processing
the according operation. The token in an operation place is available when its time delay
elapses. Note that some operation places have no time delay since the corresponding
operation can be finished immediately. In other words, the tokens in these operation places
are available at any time. The aim of scheduling FMSs is to find a transition firing sequence
such that all tokens in the source places are moved to the sink places, with the optimization
of the processing time.

A running example in [50] is considered to illustrate the modeling of P-timed PNs.
It has three resources, R1, R2, and R3, to process four types of jobs, J1, J2, J3, and J4, and their
production processes are shown in Figure 1. I and O are the input and output for each job.
A path from I to O implies that the job can be performed in a sequential manner using the re-
sources in the path, and the operating time for each operation is shown below the resources.
Each job has a number of operations. For example, J4 has three operations, which use R3,
R3, and R1 in sequence. Thus, J4 can be finished by sequentially using R3, R3, and R1,
with the corresponding operating times being 99, 76, and 93, respectively. Some operations
may be processed by alternative resources. For instance, the first operation of J1 can be
processed by R3 or R2 alternatively, with the operating time being 69 and 75, respectively.
The P-timed PN for this system is shown in Figure 2.
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Figure 1. The four jobs.
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Figure 2. A P-timed PN model of an FMS.

In [58], with an A* algorithm and P-timed PNs, a heuristic search algorithm is de-
veloped. To perform this algorithm, the cost for a marking M is estimated by a function
f (M) = g(M) + h(M), which calculates the time required for the PN to evolve from M0
to Mf via M along an optimal path. Specifically, g(M) gives the current shortest time
taken from M0 to M, while h(M) estimates the time needed from M to Mf. Function h(M)
is said to be admissible if it is no greater than all possible solutions obtained from any
M [20,21], i.e.,
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h(M) ≤ h∗(M), ∀M (1)

where h∗(M) presents the shortest time needed from M to Mf. As stated in [45], the
admissibility of h(M) can guarantee the optimality of the obtained solution.

3. A Novel Heuristic Function

In [20,21,51,52], an admissible heuristic function is applied, as shown below:

h(M) = maxi{ξi(M), i ∈ {1, 2, . . . , NR}} (2)

with ξi(M) estimating the time needed for completing all the remaining operations that
definitely need to be processed by resource ri at M, and NR is the number of resources. As
stated in [50], the FMSs with alternative routes have some alternative routes for performing
operations. In this case, the alternative routes of operations are not definitely applied.
Hence, this heuristic function is inapplicable. In the following, a novel heuristic function is
proposed by modifying (2) as:

h′(M) = maxi{ξ ′i(M), i ∈ {1, 2, . . . , NR}} (3)

with ξ ′i(M) estimating the minimal time needed for completing the remaining operations
by resource ri at marking M.

Next, we define this function in a formally mathematical way. With the PN model
in Figure 2, we can explain the according definitions.

Let pi be a place and pe be the sink place of pi. A sink place is always the sink place
of a process. In Figure 2, p17 is the sink place of all operation places for Job 1. Similarly,
p27, p37, and p47 indicate the sink places of all operation places for Job 2, Job 3, and Job 4,
respectively. The problem in scheduling an FMS is to decide on a transition firing sequence
that can transform all tokens in the initial marking to the sink places by minimizing the total
processing time. For this example, the goal is to find a transition firing sequence that can
transform the tokens in p11, p21, p31, and p41 to p17, p27, p37, and p47, respectively, and
requires minimal processing time.

A path from p1 to pk is defined as θp1→pk
= {p1 p2 . . . pk}, and ∃t ∈ T, s.t. I(pi,t) > 0

and O(pi+1,t) > 0, i ∈ {1, 2, . . . , k − 1}. Let pi be a place and θpi→pe
a path from pi

to pe, where pe is the sink place of pi. All paths from pi to pe are denoted as Θpi→pe
.

Function τj(θpi→pe
) denotes the remaining processing time when using rj to make a token

in pi to reach pe along the path θpi→pe
.

Now, we introduce a least remaining work time vector ϕrj for each resource rj.
Then, an element ϕrj(pi) in vector ϕrj is defined as

ϕrj(pi) = min{τj(θpi→pe)|∀θpi→pe
∈ Θpi→pe} (4)

In (4), ϕrj(pi) indicates the least remaining processing time of using rj for marking
a token in pi to reach the sink place pe. For the PN in Figure 2, it has four paths from
p11 to p17, i.e., Θp11→p17

= {θ1, θ2, θ3, θ4}, where the four paths are shown in Table 1.
The processing time for path θi (i ∈ {1, 2, 3, 4}) with rj (j ∈ {1, 2, 3} being used is denoted
by τj(θi), as shown in the last three columns. Then, we have ϕr1(p11) = min{τ1(θi), i ∈
{1, 2, 3, 4}} = 57. Similarly, we can find all elements in ϕr1 , i.e.,

ϕr1 = [57 57 57 57 57 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 93 93 93 93 93 0 0 0 0 0] (5)

where elements in ϕr1 and the corresponding places are shown in Table 2.
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Table 1. The four paths in Θp11→p17
in Figure 2.

θi Paths τ1(θi) τ2(θi) τ3(θi)

θ1 p11 p12 p13 p14 p15 p16 p17 80 0 69 + 85
θ2 p11 p122 p13 p14 p15 p16 p17 80 75 85
θ3 p11 p12 p13 p14 p15 p162 p172 p182 p17 57 0 69 + 85 + 51
θ4 p11 p122 p13 p14 p15 p162 p172 p182 p17 57 75 85 + 51

Table 2. The elements in ϕr1 for the PN in Figure 2.

Place p p11 p12 p122 p13 p14 p15 p16 p162 p172 p182 p17 p21 p22 p23 p24 p242 p25 p26 p262 p27

ϕr1 (p) 57 57 57 57 57 57 0 0 0 0 0 0 0 0 0 0 0 0 0 0

place p p31 p32 p33 p34 p35 p36 p362 p372 p382 p37 p41 p42 p43 p44 p45 p46 p47 r1 r2 r3

ϕr1 (p) 0 0 0 0 0 0 0 0 0 0 93 93 93 93 93 0 0 0 0 0

By considering resources r2 and r3, we have:

ϕr2 = [0 0 0 0 0 0 0 0 0 0 0 95 0 0 0 0 0 0 0 0 78 0 0 0 0

70 0 70 0 0 0 0 0 0 0 0 0 0 0 0] (6)

ϕr3 = [85 85 85 85 0 0 51 0 51 0 0 0 0 0 0 0 0 0 0 0 75 75

75 0 0 0 0 0 0 0 175 76 76 0 0 0 0 0 0 0] (7)

where the elements in ϕr2 and ϕr3 have the same correspondences with the places as shown
in Table 2 for ϕr1 .

Let M be a reachable marking. The token in a marked place pi (M(pi) > 0) is
available when its time delay has run out. DM(pi) represents the remaining processing time
for a token in pi. If a place pi is marked at M, DM(pi) = d(pi). If time τ elapses, it becomes
DM(pi) = d(pi) − τ. Thus, DM represents the remaining processing time vector of M.
The total remaining time Drj(M) of rj in the marked places at M is defined as:

Drj(M) = ∑
M(pi)>0,pi∈H(rj)

DM(pi) (8)

where H(rj) = {p|p ∈ r••j } is rj’s holder.
Then, the shortest processing time for marking M by using rj, denoted by ψrj(M), is

defined as:
ψrj(M) = ∑

M(pi)>0
ϕrj(pi) + Drj(M) (9)

Finally, we obtain a function hR(M) to estimate the time needed from M to Mf:

hR(M) = max{ψrj(M), j = 1, 2, . . . , NR} (10)

Theorem 1. hR(M) is admissible.

Proof. Since ψrj(M) denotes the shortest processing time of a marking M for using rj, it is no
greater than the required time to process all operations from M to Mf.
Thus, the maximum of ψrj(M) (j = 1, 2, . . . , NR) is no more than the time of any opti-
mal firing sequence from M to Mf. In other words, hR(M) is admissible.

In [50], Huang et al. provide a heuristic function hRWT(M) for a given marking M.
First, they present a remaining work time (RWT) vector, where RWTi indicates the minimum
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time needed for moving a token in pi to its sink place. For instance, the RWT vector
for the PN model in Figure 2 is a 40× 1 vector:

RWT = [234 165 165 165 80 80 51 0 51 0 0 272 177 177

92 92 92 0 0 0 221 143 143 68 68 70 0 70 0 0 278

179 179 93 93 0 0 0 0 0] (11)

Next, the heuristic function in [50] is defined as follows:

Definition 1 ([50]). hRWT(M) = maxpi∈SM(RWTi + Mri), where Mri is the ith element that
presents the remaining processing time for the ith place in an n× 1 vector, with n being the number
of places and SM the set of marked places.

Note that Mri in Definition 1 equals DM(pi). We also have the following result for
hRWT(M) in [50].

Theorem 2 ([50]). hRWT(M) is admissible.

The estimate function hRWT(M) in [50] is admissible. However, it is not close enough
to the optimal cost h∗(M). In this case, it may lead to a longer makespan and more
expanded markings. This fact motivates us to provide an admissible estimate function
to provide an estimated cost that is closer to the optimal one, aiming to find a solution with
a shorter makespan and less expanded markings. By combining hRWT(M) and ψrj(M), we
obtain an improved heuristic function:

hmax(M) = max{hR(M), hRWT(M)} (12)

Theorem 3. hmax(M) is admissible.

Proof. The conclusion holds immediately from Theorems 1 and 2.

For any M reachable from the init ial marking M0 , hmax(M) ≥ hRWT(M)
holds. In this sense, we can claim that hmax(M) is closer to the optimal value
h∗(M) than hRWT(M) in [50] .

4. Algorithm for Scheduling FMSs

Next, a novel weighting A* algorithm is developed by using hmax(M). The estimated cost
f (M), i.e., the makespan from M0 to Mf via M along an optimal path, is presented below.

f (M) = g(M) + hmax(M) + ε
hmax(M)

hmax(M0)
hmax(M) (13)

Note that (13) is obtained by replacing h(m) in [59] with the new estimate function
hmax(M). Next, a search algorithm for scheduling FMSs by using P-timed PNs and the pro-
posed heuristic function is presented as follows.

As stated in [50], Algorithm 1 can obtain a path with its cost being no more than
(1 + ε)C∗ if h(M) is admissible, with C∗ being the lowest cost among all paths from M0
to Mf.
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Algorithm 1 Scheduling FMSs.

Input: A P-timed PN N = {P, T, I, O, M, D} with M0 and Mf being the initial and final
markings, respectively, and ε being a factor.

Output: A firing sequence from M0 to M f .
1: NOPEN := 1.MOPEN(NOPEN) := M0. /*MOPEN is a set of markings whose successors

are not generated,MOPEN(NOPEN) represents the NOPEN-th marking inMOPEN, and
NOPEN indicates the number of markings inMOPEN. */

2: NCLOSED := 0. MCLOSED := ∅. /*MCLOSED is a set of markings whose successors
have been generated and NCLOSED is the number of markings inMCLOSED. */

3: NCLOSED := NCLOSED + 1. MCLOSED(NCLOSED) := MOPEN(NOPEN). M :=
MOPEN(NOPEN). NOPEN := NOPEN − 1. /* Remove the last marking M with the mini-
mal f fromMOPEN */

4: if (M = Mf) then
5: Terminate the algorithm and output σ(M).
6: end if
7: for (each enabled t at M) do
8: Fire t and generate a new marking M′, and compute the firing sequence σ(M′)

of M′ by adding t in σ(M). Compute g(M′).
9: if (∃MOPEN(j) is equal to M′) then

10: if (g(M′) < g(MOPEN(j)) then
11: g(MOPEN(j)) := g(M′).
12: σ(MOPEN(j)) := σ(M′).

13: f (MOPEN(j)) = f (M′) = g(M′) + hmax(M′) + ε
hmax(M′)
hmax(M0)

hmax(M′).

14: end if
15: else
16: if (∃MCLOSED(j) is equal to M′) then
17: if (g(M′) < g(MCLOSED(j))) then
18: g(MCLOSED(j)) := g(M′).
19: NOPEN := NOPEN + 1.
20: MOPEN(NOPEN) := M′.
21: σ(MOPEN(NOPEN)) := σ(M′).
22: f (MOPEN(NOPEN)) = f (M′) = g(M′) + hmax(M′) +

ε
hmax(M′)
hmax(M0)

hmax(M′).

23: end if
24: end if
25: ReorderMOPEN in a decreasing way with respect to the value of f .
26: end if
27: end for
28: Go to Step 3

Let g∗(M′) be the optimal cost among all the paths from M0 to M. Then, due to
hmax(M′) ≤ h∗(M′) and g(M′) = g∗(M′), we have

f (M′) = g(M′) + hmax(M′) + ε
hmax(M′)
hmax(M0)

hmax(M′)

≤ g∗(M′) + h∗(M′) + ε
hmax(M′)
hmax(M0)

h∗(M′)

≤ C∗ + εh∗(M′)

≤ (1 + ε)C∗

This means that the cost of the path obtained by Algorithm 1 is controllable, i.e., no
more than (1 + ε)C∗. This fact can also be seen in Lemma 2 in [59] and the work in [50]. In
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the next section, we show that the proposed heuristic function can lead to a smaller number
of extended markings than the one required by the work in [50].

5. Experimental Results

In this section, we apply the proposed method to an example from [50] for demonstration.
With this example, the method is coded by the C++ program. Then, experiments are performed,
and the results are shown in Table 3. The Gantt charts for the results obtained by the proposed
method are shown in Figures 3 and 4. For comparison and to show the difference between
the experimental results of the proposed heuristic function and the one proposed in [50], we
also develop a C++ program to implement the method proposed in [50], and the obtained
results are shown in the third column. It should be noted that we cannot obtain the same results
as in Table 2 in work [50], although we use the same heuristic function proposed in [50]. In
the following, discussions about the existing work in [50] and the proposed one are based on
the experimental results obtained by our developed C++ programs.

Table 3. The experimental results.

ε
The Results in [50] Our Implementation of [50] Proposed Method

Makespan Expanded Makespan Expanded Makespan Expanded
Markings Markings Markings

0.0 427 1442 427 1165 427 969
0.1 427 662 427 905 427 749
0.2 435 596 427 872 427 684
0.3 435 621 427 908 427 805
0.4 435 398 427 905 427 876
0.5 435 237 496 876 427 357
0.6 435 229 509 777 505 193
0.7 435 283 547 1010 505 120
0.8 496 224 547 646 505 81
0.9 496 226 547 595 505 81
1.0 496 236 547 572 505 81

Figure 3. The Gantt chart for the proposed results with makespan = 427 in Table 3.

Figure 4. The Gantt chart for the proposed results with makespan = 505 in Table 3.

For this example, the optimized makespan and the number of markings that have been
searched by using the heuristic function hRWT(M) in [50] are 427 and 1165, respectively.
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By using the proposed heuristic function hmax(M) in this work, these values are 427
and 969, respectively. This means that we can obtain the same makespan by searching
less markings, i.e., hmax(M) proposed in this paper is better in terms of computational
efficiency than hRWT(M) in [50]. The second and third columns in Table 3 show that
both the makespan and the number of extended markings obtained by this work are less
than or equal to those obtained by our C++ program by using the method in [50]. From
the table, the minimal number of extended markings to obtain an optimal makespan is
357 for the proposed method. In [50], the minimal number of extended markings to obtain
an optimal makespan is 662. In summary, the proposed method outperforms the one in [50]
in the sense of extended markings and the obtained makespan.

6. Conclusions

Motivated by the work in [50], this paper proposes a novel heuristic function for schedul-
ing FMSs in the framework of P-timed PNs. The proposed heuristic function is admissible.
A dynamic weighting heuristic scheduling strategy is applied by using the proposed function,
aiming to find an optimal transition sequence such that the time taken for firing the sequence
is optimized. By the proposed method, in the solution process, the estimation of a solution’s
depth in advance is not required. Furthermore, the obtained optimized cost is no greater than
the optimal one by a factor 1 + ε (ε ≥ 0). The performance of the proposed approach is verified
via an example from the literature. With this example, results show that, by applying the
proposed heuristic function, a solution with a shorter makespan can be obtained by searching
less markings. In the future, we will focus on the improvement of the proposed approach by
finding novel heuristic functions that are closer to the optimal cost.
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