
Citation: Kao, M.-T.; Kao, S.-J.; Tseng,

H.-W.; Chang, F.-M. A Rapid

Deployment Mechanism of

Forwarding Rules for Reactive Mode

SDN Networks. Symmetry 2022, 14,

1026. https://doi.org/10.3390/

sym14051026

Academic Editors: Teen-Hang Meen,

Charles Tijus, Chun-Yen Chang and

Po-Lei Lee

Received: 9 April 2022

Accepted: 15 May 2022

Published: 17 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Rapid Deployment Mechanism of Forwarding Rules for
Reactive Mode SDN Networks
Ming-Tsung Kao 1 , Shang-Juh Kao 1, Hsueh-Wen Tseng 1 and Fu-Min Chang 2,*

1 Department of Computer Science and Engineering, National Chung-Hsing University, 145, Xingda Rd.,
South District, Taichung 402, Taiwan; kevinkao@cs.nchu.edu.tw (M.-T.K.); sjkao@cs.nchu.edu.tw (S.-J.K.);
hwtseng@nchu.edu.tw (H.-W.T.)

2 Department of Finance, Chaoyang University of Technology, 168, Jifeng E. Rd., Wufeng District,
Taichung 41349, Taiwan

* Correspondence: fmchang@cyut.edu.tw

Abstract: In reactive mode software-defined networking (SDN) networks, a new initiated flow re-
quires back-and-forth communications between the controller and the switches along the forwarding
route. As SDN is getting popularly accepted, many studies have reported on how to reduce the
amount of communication traffic and to release the controller’s loading. Several techniques have been
proposed, such as proactive and active mode integration, MPLS adoption, and various forwarding
rule installation techniques. In this paper, we adopt the idea of the tunnel penetration technique,
called the tunnel boring machine in SDN or SDN-TBM, to effectively cut down the traffic between
switches and the controller as well as to speed up packet delivery. Using the TBM mechanism,
the communication symmetry between the controller and the switches on the path is broken and
transformed into asymmetry. Only the first and last switches of each application flow need to make
forwarding queries to the controller, and all intermediate switches simply forward packets consisting
of the forwarding information needed to determine the next-hop switch. An M/M/1 queueing model
is developed to verify the feasibility and efficiency of the proposal. Under the simulation of more than
a million flows with 3–8 intermediate switches, the packet sojourn time using SDN-TBM mechanism
is less than that of adopting the conventional SDN and JumpFlow model. Additionally, by adopting
SDN-TBM, both the number of packet-in and packet-out packets and the controller’s loading are
significantly reduced.

Keywords: software-defined networking; Openflow; reactive mode; forwarding rules

1. Introduction

Software-defined networking (SDN) [1,2] is a centralized, revolutionized technology
for alternative network management control, which separates network operations into
the control plane and the data plane [3,4]. The controller controls the packet forwarding
route through the control plane using OpenFlow protocol [5,6] and packets are transmitted
among switches through the data plane. Relying on the information of network usages
collected from all switches, the controller is able to efficiently provide a forwarding decision
for each flow. In addition to define the mechanism for forwarding rules composition, the
OpenFlow protocol also provides the way to deal with the incoming packets over the
switch, such as to modify the destination IP address, to change the source MAC address, or
to be associated with a VLAN ID. Multiple actions, called an action set, can also be defined
to control SDN network operations.

As in SDN networks, the switch always refers the flow entries to forward the flow
packet; when and how to manage the flow table is critical in forwarding efficiency. In the
flow table, each flow entry defines a forwarding rule, which specifies the switch of the
next hop and actions of how to deal with the packet. The approach of deploying flow
entries can be either a proactive mode or reactive mode [7]. In the proactive mode, the

Symmetry 2022, 14, 1026. https://doi.org/10.3390/sym14051026 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14051026
https://doi.org/10.3390/sym14051026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-3239-8696
https://doi.org/10.3390/sym14051026
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14051026?type=check_update&version=5

Symmetry 2022, 14, 1026 2 of 19

controller determines the forwarding path before the arrival of a packet by writing the
forwarding rules into the flow tables in advance. When a packet arrives, the switch simply
follows the forwarding rule to transmit the packet. The forwarding policy of the proactive
mode is similar to traditional IP network routing, MPLS [8], or segment routing [9]. The
proactive mode operations are suitable for a static network environment where routing
paths are not frequently adjusted. In reactive mode SDN, upon the arrival of a packet, the
flow table at the switch is inspected, and if there is an entry associated with the packet’s
destination, the packet is forwarded accordingly. Otherwise, the switch sends a query
request, called a packet-in message, to the controller for forwarding determination. Upon
receiving a packet-in packet, the controller returns a packet-out message to the switch,
which installs a flow entry to the flow table at the switch. Consequently, the pending
packet can be successfully transmitted following the forwarding rule. The forwarding route
management at the controller enhances the capability of balancing the network resource
usage. Opposed to the proactive mode, the operations of the reactive mode are more
suitable for the dynamic network environment.

Most current data centers involve dynamic virtual machines connection to provide
network services; the reactive mode SDN is well suited for this frequently changed network
environment. However, with the reactive mode operations, the controller requires dialogs
for all switches on the forwarding path. The number of dialogs is symmetric to the number
of switches. Therefore, issuing forwarding rules for each unfamiliar packet, the controller
can easily become a bottleneck. If a packet passes through N switches to reach its destina-
tion, there are 2N communications between the controller and switches, which may increase
the controller’s loading as N becomes larger. Even though all subsequent packets in a flow
may reference an existing flow rule for forwarding without the controller’s interventions,
most current network applications, such as social networks IoT [10], UAV [11], NIDS [12],
etc., are prone to generate a large volume of unfamiliar flows. The occurrences of unfa-
miliar flows will certainly increase the traffic load over the controller and hence cause the
processing delay. Therefore, for the reactive mode SDN applications to be practical, novel
approaches of effectively reducing the packet sojourn time and minimizing the number of
packet-in messages deserve further study and development.

Under reactive mode SDN networks, in order to effectively reduce the number of
packet-in messages, we borrowed the idea from the tunnel boring machine (TBM) [13].
A TBM, also known as ‘Mole’, is a machine used to excavate a tunnel with circular cross
sections in various solid and rock formations. We adopt the concept of tunnel excavation to
establish forwarding paths. As the TBM is placed at the entrance of a tunnel, the machine
excavates a hole following the scheduled trail until it reaches the exit. When a switch
first connects to the controller asking for an unfamiliar packet transmission, which is
similar to the initial setup for TBM at the entrance, the controller generates forwarding
rules for the switches along the path. Meanwhile, the packet is temporarily buffered at
the controller until the tunnel is passed through. In other words, we emulate the tunnel
penetration technique to establish a forwarding path and propose a mechanism called the
SDN tunnel boring machine (SDN-TBM). The idea is to leave the first packet of a flow at
the controller until the forwarding path is established, while only the boring packet (BP),
which contains forwarding rules and actions, is transmitted over the switches along the
path. Consequently, all intermediate switches can be waived from the sending packet-in
messages to the controller.

The rest of the paper is organized as follows. Related work is given in Section 2.
The architecture and operations of SDN-TBM are presented in Section 3. In Section 4, an
M/M/1 queuing model is developed for the system performance. The evaluation results
are then reported, and conclusions are given.

2. Related Work

In the study of reactive mode SDN networks, several efforts have been presented to
reduce the controller’s load, such as multiple controllers, flow entries merge, and MPLS

Symmetry 2022, 14, 1026 3 of 19

label switching. Ma et al. [14] proposed a meta controller (MC), which is based on building
a manager for several controllers to control SDN operations in a decentralized manner. The
key idea of multiple controllers is to redistribute switch–controller association to offload
the overloaded controllers. Meta controllers may reduce the load over the control plane but
could also increase the overall bandwidth usage. Neghabi et al. [15] surveyed several multi-
controller proposals. Most of the proposed approaches focus on controllers’ load balancing.
Generally, the multi-controller approach may distribute the load, but it is costly and may
suffer from low scalability and low availability, as well as high complexity. Moreover, the
multi-controller approach may not be able to reduce packet-in messages.

Flow entries can also be logically merged depending on the tags, as reported by
MacDavid et al. [16]. They proposed PathSets, which uses a compression encoding scheme
to insert a compact tag into packet header. By the increased probability of flow matching, the
merging approach can be effective to reduce the number of packet-in messages. However,
the forwarding route may lack flexibility due to the invariant bundle of flow rules. This
approach is suitable for data centers with stable network topology but is not for topology
with frequent changes.

One other approach to reduce the number of packet-in messages is to adopt the
concept of label switching as in MPLS [17–20]. Under the MPLS-based approach, routing
information is encoded by the 12-bits VLAN identifier (VID). When a packet enters its
ingress switch, it is encapsulated with multiple port numbers, which map to the forwarding
switches on the route. Intermediate switches will use the VID to forward the packet to the
next hop and delete the used header until the packet is delivered to its final destination.
The VID field can record 3–5 hops. The scheme cannot need the controller service when
receiving an unfamiliar packet, except for ingress switch. Therefore, it effectively reduces
the number of packet-in messages. However, the switches may only forward packets
(or flows) to designated ports but be unable to perform more actions for dealing with
the packets. Consequently, the ability of forwarding the packet is restricted, such as
changing the source or the destination MAC or IP addresses. Hence, even though the
MPLS-based approach can solve the controller’s overloading problem, SDN features may
not be fully implemented.

Once the first packet-in message of a flow has been received by the controller and a
forwarding path has been determined, the controller may send packet-out messages to all
intermediate switches. It seems that this approach may be effective in reducing the number
of packet-in messages. However, the arrival of the packet-out message may be later than
the arrival of a subsequent packet over the switch, which may cause the switch to send
packet-in messages. Hu et al. proposed a scheme called Softring [21] to allow the packet to
stay in a circular route at the switch to avoid unnecessary packet-in requests. However,
this approach requires extra processing time and extra space to deal with the packet at the
switch, which causes an overhead to the switch. We briefly explain the pros and cons of the
SDN-TBM mechanism compared to other solutions in Table 1.

Table 1. Comparison of different methods.

Method Pros Cons

Multiple Controllers Distribute the requirements of the switch and
reduce the overload of the controller.

Management of synchronous flow rules and
fault tolerance mechanisms are not easy to
implement.

PathSets Effective to reduce the number of packet-in
messages.

Forwarding route may lack flexibility due to
an invariant bundle of flow rules.

MPLS-based A simple implementation is possible. Only forward packets to the designated port
but is unable to perform more packet
processing operations.

Reacitve and proactive mix mode Effective in reducing the number of packet-in
messages.

May cause packet-in messages to be sent
repeatedly.

SDN-TBM Effectively addresses the high load of
reactive mode on the controller.

Need to add switch functionality

Symmetry 2022, 14, 1026 4 of 19

3. Design of SDN-TBM

As in reactive mode SDN networks, when an unfamiliar packet arrives at a switch,
the switch issues a packet-in message to the controller, waits for a forwarding instruction
from the controller, and resumes its packet forwarding process. All intermediate switches
along the route to the destination follow the similar interactions with the controller, which
results in a severe delay and a large number of communications involved. In our proposed
approach, only the first and the final switches along the forwarding route are required
to connect to the controller, while a light packet, called a boring packet (BP), including
only the requisite information for packet forwarding is transmitted between switches. The
use of boring packets is different to the circular route design in Softring, which allows all
intermediate switches along the path to be free in communication with the controller for
transmitting a service flow.

3.1. Overview of SDN-TBM Operations

Other than conventional SDN functions, the SDN-TBM system adds three functional
modules to enable the boring packet processing: boring packet processor (BPP), TBM
processor (TBMP), and packet holding store (PHS), as shown in Figure 1 of the SDN-
TBM architecture. BPP is included in each OpenFlow switch and plays the role of both
packet-in message transmitter and boring packet resolver, while TBMP and PHS are extra
modules added to the controller. TBMP is the core logic of SDN-TBM, which stores the
to-be-delivered packets in PHS and generates boring packets. A to-be-delivered packet is
the first packet in a flow, which is temporarily kept in the controller and is delivered when
the tunnel has been completely set up. PHS is a database which stores the to-be-delivered
packets and the relevant information, such as timestamp, action set, etc.

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 19

Reacitve and proactive mix mode Effective in reducing the number of packet-in messages. May cause packet-in messages to be sent repeat-
edly.

SDN-TBM Effectively addresses the high load of reactive mode on the
controller.

Need to add switch functionality

3. Design of SDN-TBM
As in reactive mode SDN networks, when an unfamiliar packet arrives at a switch,

the switch issues a packet-in message to the controller, waits for a forwarding instruction
from the controller, and resumes its packet forwarding process. All intermediate switches
along the route to the destination follow the similar interactions with the controller, which
results in a severe delay and a large number of communications involved. In our proposed
approach, only the first and the final switches along the forwarding route are required to
connect to the controller, while a light packet, called a boring packet (BP), including only
the requisite information for packet forwarding is transmitted between switches. The use
of boring packets is different to the circular route design in Softring, which allows all in-
termediate switches along the path to be free in communication with the controller for
transmitting a service flow.

3.1. Overview of SDN-TBM Operations
Other than conventional SDN functions, the SDN-TBM system adds three functional

modules to enable the boring packet processing: boring packet processor (BPP), TBM pro-
cessor (TBMP), and packet holding store (PHS), as shown in Figure 1 of the SDN-TBM
architecture. BPP is included in each OpenFlow switch and plays the role of both packet-
in message transmitter and boring packet resolver, while TBMP and PHS are extra mod-
ules added to the controller. TBMP is the core logic of SDN-TBM, which stores the to-be-
delivered packets in PHS and generates boring packets. A to-be-delivered packet is the
first packet in a flow, which is temporarily kept in the controller and is delivered when
the tunnel has been completely set up. PHS is a database which stores the to-be-delivered
packets and the relevant information, such as timestamp, action set, etc.

Figure 1. The system architecture of SDN-TBM.

When an unfamiliar flow arrives at the switch, BPP forwards a packet-in message to
the controller for the first packet. The packet is passed through BPP to the controller.
TBMP on the controller receives the packet-in message and stores it to PHS. The header
of the packet is sent to the route planning module for forwarding the path calculation.
Once the forwarding rules are determined, the information is provided to TBMP to con-
struct a boring packet (BP). BP, as carried by a packet-out message, is then sent back to the

Key Extraction Flow Table
Lookup

Backplane
SwitchingHs HdS3S2 Sn

Boring Packet Processor

Secure Channel
(SSL)

Switch (S1)

SDN Framework

TBM ProcessorPacket Holding Store Route Planning
Module

Controller

TBM Application

Figure 1. The system architecture of SDN-TBM.

When an unfamiliar flow arrives at the switch, BPP forwards a packet-in message
to the controller for the first packet. The packet is passed through BPP to the controller.
TBMP on the controller receives the packet-in message and stores it to PHS. The header of
the packet is sent to the route planning module for forwarding the path calculation. Once
the forwarding rules are determined, the information is provided to TBMP to construct a
boring packet (BP). BP, as carried by a packet-out message, is then sent back to the initiated
switch. BP consists of the forwarding rules as in action sets for all intermediate switches.
Once receiving the BP, the switch updates the flow table and forwards the boring packet
to the next switch hop. The next hop switch treats the BP as an unfamiliar packet and
issues a packet-in message. However, BPP in the intermediate switch deals with the BP

Symmetry 2022, 14, 1026 5 of 19

without sending to the controller, instead, it creates a packet-out boring packet. The flow
entry carried by this packet-out BP are then written to the flow table. Meanwhile, the BP is
further forwarded to the next switch hop. This procedure continues repeatedly until BP
reaches the final switch which the destination host is associated.

When the BP arrives at the last switch, which is the egress switch on the forwarding
path, a packet-in boring packet is sent to the controller through the boring packet processor.
TBMP in the controller extracts the matched to-be-delivered packet in PHS and constructs
a complete packet-out packet, which is the original packet, and returns to the egress switch.
Once the first packet of a flow has been successfully delivered, the forwarding tables of
intermediate switches along the forwarding path are already updated. All subsequent
data packets of the same flow are forwarded accordingly without interventions with
the controller.

3.2. Operations at the Controller

Other than built-in SDN framework modules, such as the route planning module,
SDN-TBM includes two more modules, packet holding store (PHS) and TBM processor
(TBMP), as shown in Figure 1. TBMP communicates with built-in modules and stores the
packet into PHS. TBMP is also responsible for generating a packet-out message, either
containing a boring packet (BP) or a regular message. PHS stores to-be-delivered packets,
including the information of the packet id, timestamp, action_set, and payload for each
holding packet. As shown in Figure 2, PID denotes the packet identifier of the to-be-
delivered packet, timestamp records the creation time, and action_set records the sequence
of actions to be applied to the switch on the forwarding path. For each associated switch,
there is an entry including a tag of boring packet, the switch identifier, dbid (or switch id),
length of action-set, and action-set. The data structure of the boring packet contains the
header portions, which are inherited from the original packet, and payload portions, which
consist of tag, dbid, length, and actions, as can be shown in Figure 3.

Symmetry 2022, 14, x FOR PEER REVIEW 5 of 19

initiated switch. BP consists of the forwarding rules as in action sets for all intermediate
switches. Once receiving the BP, the switch updates the flow table and forwards the bor-
ing packet to the next switch hop. The next hop switch treats the BP as an unfamiliar
packet and issues a packet-in message. However, BPP in the intermediate switch deals
with the BP without sending to the controller, instead, it creates a packet-out boring
packet. The flow entry carried by this packet-out BP are then written to the flow table.
Meanwhile, the BP is further forwarded to the next switch hop. This procedure continues
repeatedly until BP reaches the final switch which the destination host is associated.

When the BP arrives at the last switch, which is the egress switch on the forwarding
path, a packet-in boring packet is sent to the controller through the boring packet proces-
sor. TBMP in the controller extracts the matched to-be-delivered packet in PHS and con-
structs a complete packet-out packet, which is the original packet, and returns to the
egress switch. Once the first packet of a flow has been successfully delivered, the forward-
ing tables of intermediate switches along the forwarding path are already updated. All
subsequent data packets of the same flow are forwarded accordingly without interven-
tions with the controller.

3.2. Operations at the Controller
Other than built-in SDN framework modules, such as the route planning module,

SDN-TBM includes two more modules, packet holding store (PHS) and TBM processor
(TBMP), as shown in Figure 1. TBMP communicates with built-in modules and stores the
packet into PHS. TBMP is also responsible for generating a packet-out message, either
containing a boring packet (BP) or a regular message. PHS stores to-be-delivered packets,
including the information of the packet id, timestamp, action_set, and payload for each
holding packet. As shown in Figure 2, PID denotes the packet identifier of the to-be-de-
livered packet, timestamp records the creation time, and action_set records the sequence
of actions to be applied to the switch on the forwarding path. For each associated switch,
there is an entry including a tag of boring packet, the switch identifier, dbid (or switch id),
length of action-set, and action-set. The data structure of the boring packet contains the
header portions, which are inherited from the original packet, and payload portions,
which consist of tag, dbid, length, and actions, as can be shown in Figure 3.

Figure 2. Data structure of PHS.

PHS Structure

dpid#1 action_setlength

dpid#2 action_setlength

dpid#n action_setlength

Pid#1 timestamp Packet

dpid#1 action_setlength

dpid#2 action_setlength

dpid#n action_setlength

Pid#2 timestamp Packet

dpid#1 action_setlength

dpid#2 action_setlength

dpid#n action_setlength

Pid#n timestamp Packet

Figure 2. Data structure of PHS.

Symmetry 2022, 14, 1026 6 of 19Symmetry 2022, 14, x FOR PEER REVIEW 6 of 19

Figure 3. Data structure of BP payload.

The TBMP module plays the central role of SDN-TBM, which performs the core logic
for dealing with the packet management at the controller. When a packet is received by
the controller, the step-by-step operations of TBMP are described in the following, as sup-
plemented in Figure 4.

Figure 4. Flowchart of the TBMP.

Step 1: Check whether the incoming packet is a BP or not. If it is a BP, then jump to step
6, otherwise, proceed to step 2.

Step 2: Calculate the forwarding path. The calculation of forwarding path requires in-
teractions with the route planning module in the third-party modules. Forward-
ing rules for the switches along the path are also determined.

Pid

dpid#2 action_setlength

dpid#3 action_setlength

dpid#n-1 action_setlength

BP Payload Structure

#!SDN-TBM BP!#

SDN Framework

Switches

Path Planning
Calculation

TBM Processor

PHS Module

Is Boring Packet ?

Packet Holding
Store
(PHS)

Search for Pid

Route Planning
Module

Path Length > 2 ?

To-be-delivered
Packet is found?

Re-construct the
original packet

Detach packet and
save it to PHS

Construct a BP

Stop and report
error

Controller

Northbound

Packet Holding
Store Module

Output packet-out
message

Yes

No
Yes

No

Yes
No

Third-party Module

Figure 3. Data structure of BP payload.

The TBMP module plays the central role of SDN-TBM, which performs the core logic
for dealing with the packet management at the controller. When a packet is received
by the controller, the step-by-step operations of TBMP are described in the following, as
supplemented in Figure 4.

Symmetry 2022, 14, x FOR PEER REVIEW 6 of 19

Figure 3. Data structure of BP payload.

The TBMP module plays the central role of SDN-TBM, which performs the core logic
for dealing with the packet management at the controller. When a packet is received by
the controller, the step-by-step operations of TBMP are described in the following, as sup-
plemented in Figure 4.

Figure 4. Flowchart of the TBMP.

Step 1: Check whether the incoming packet is a BP or not. If it is a BP, then jump to step
6, otherwise, proceed to step 2.

Step 2: Calculate the forwarding path. The calculation of forwarding path requires in-
teractions with the route planning module in the third-party modules. Forward-
ing rules for the switches along the path are also determined.

Pid

dpid#2 action_setlength

dpid#3 action_setlength

dpid#n-1 action_setlength

BP Payload Structure

#!SDN-TBM BP!#

SDN Framework

Switches

Path Planning
Calculation

TBM Processor

PHS Module

Is Boring Packet ?

Packet Holding
Store
(PHS)

Search for Pid

Route Planning
Module

Path Length > 2 ?

To-be-delivered
Packet is found?

Re-construct the
original packet

Detach packet and
save it to PHS

Construct a BP

Stop and report
error

Controller

Northbound

Packet Holding
Store Module

Output packet-out
message

Yes

No
Yes

No

Yes
No

Third-party Module

Figure 4. Flowchart of the TBMP.

Symmetry 2022, 14, 1026 7 of 19

Step 1: Check whether the incoming packet is a BP or not. If it is a BP, then jump to step 6,
otherwise, proceed to step 2.

Step 2: Calculate the forwarding path. The calculation of forwarding path requires interac-
tions with the route planning module in the third-party modules. Forwarding rules
for the switches along the path are also determined.

Step 3: Check the number of hops. If the number of hops is 2, a packet-out packet is
constructed and is returned back to the switch as regular SDN workflow. Otherwise,
prepare to build a boring packet.

Step 4: Store the packet into PHS. If there are more than 2 switch hops in the forwarding
path, the packet is temporarily saved in the packet holding store together with rele-
vant forwarding rules. The packet header is extracted for the purpose of generating
a boring packet.

Step 5: Generate a packet-out boring packet. Following the saving of the packet, a boring
packet is constructed by including the header and all action-sets, as determined
in step 2. This packet includes the boring packet identification as well as the
identification of to-be-delivered packet, which is previous stored in PHS.

Step 6: Search for stored packet in PHS. It assumes that the incoming packet is a boring
packet. This is the case that the last switch in the path sends the packet-in message
and asks for the original complete packet. Pid is used as the key to search for the
to-be-delivered packet.

Step 7: Is the to-be-delivered packet found? If the target Pid is not matched, the searching
process fails, and an error is reported. Otherwise, the original packet is ready to be
re-constructed.

Step 8: Replace the BP with original packet to form the packet-out packet. A packet-out
message is generated by replacing the BP with the original packet and is returned to
the last switch as listed in the boring packet.

The packet holding store (PHS) interacts with the tunnel boring machine processor
(TBMP) in two occasions: store the packet before generating a boring packet and retrieve
the to-be-delivered packet to construct a packet-out message for the final switch. A packet
identifier is created when the packet is stored in PHS, and this identifier is used as an index
to search for to-be-delivered packets in the database.

Through the operations at the controller, SDN-TBM differentiates between a regular
packet-in packet and a boring packet and generates a packet-out boring packet. Under
SDN-TBM, only the switch receiving the first packet from a new flow and the last switch of
the forwarding path may send a packet-in packet to the controller; all intermediate switches
along the route will not be in touch with the controller.

3.3. Operations at the Switches

An SDN-TBM-enabled system requires the boring packet processor (BPP) to be in-
cluded in each participating switch. BBP is a functional module that deals with packet-in
and packet-out messages, particularly the boring packets. As shown in Figure 5, once
a packet arrives at a switch, there is normal packet forwarding if it is matched packet.
Otherwise, it fails in searching for a match in flow table, a packet-in message is generated
and it is passed to BPP for boring packet inspection. If the arriving packet is not a boring
packet, then it is simply forwarded to the controller and waits for a packet-out message
sent from the controller. For the purpose of consistent processing, a packet-in message
is always passed to the boring packet processor (BPP). When a packet-out boring packet
is received by the switch, the switch retrieves the flow entry and updates the flow table.
Accordingly, the boring packet is then forwarded to the next hop.

When the BP is received at the next hop switch, the receiving switch routinely looks
for a match in the flow table. An unsuccessful match results in generating a packet-in
message, and it is sent to a boring packet processor (BPP). After being sure that the packet is
a BP, BPP extracts the flow entry for this switch and generates a packet-out message which

Symmetry 2022, 14, 1026 8 of 19

contains the boring packet. Subsequently, the flow table is updated, and the boring packet
is forwarding accordingly. This procedure continues until the BP reaches the last switch.

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 19

Figure 5. Flowchart of the BP processor.

When the BP is received at the next hop switch, the receiving switch routinely looks
for a match in the flow table. An unsuccessful match results in generating a packet-in
message, and it is sent to a boring packet processor (BPP). After being sure that the packet
is a BP, BPP extracts the flow entry for this switch and generates a packet-out message
which contains the boring packet. Subsequently, the flow table is updated, and the boring
packet is forwarding accordingly. This procedure continues until the BP reaches the last
switch.

The last switch requires a special processing for receiving the boring packet. When
the BPP at the last switch discovers that it is the final hop in the forwarding path, it trans-
forms the packet-in boring packet to the controller without flow entry update being exe-
cuted. The controller receiving the packet-in boring packet will reconstruct the original
packet and send it as a packet-out packet to the switch. Hence, the last switch is able to
directly send the packet to the associated destination host.

3.4. Security Discussion
The most worrisome aspect of the SDN-TBM mechanism is the modification of for-

warding rules in BP packets. A hacker who can add, modify, or remove traffic rules from
a switch by modifying BP packets can lead to incorrect forwarding behavior on the data
plane. Therefore, a hacker may modify BP packets. First, we assume that the controller is
secure and that the communication between the switch and the controller is secure. In this
way, a hacker can only intercept BP packets on the network link of the data plane or at the
switch. In a high control, high security data center, it is difficult to intercept the network
link to listen for packets. Moreover, BP packets are only delivered on a certain path, and
a hacker cannot listen to all BP packets. If hackers can do so in the data plane, it also means
that the IDC is no longer secure. In addition, a hacker can emulate BP packets and inject
them into the data platform through the source host. The SDN-TBM mechanism will treat
the emulated packets as normal packets and faithfully deliver them to the destination
host. This is because such emulated packets cannot be used by the switch’s BP module to

Switch

Controller

Flow Table
Lookup

SSL Module

Boring Packet Processor

Is Boring Packet ?

Switch action-set is
found?

Construct packet-
out data and sent it

back

Yes

No

Yes
No

Packet Input Packet Output

Southbound

Figure 5. Flowchart of the BP processor.

The last switch requires a special processing for receiving the boring packet. When the
BPP at the last switch discovers that it is the final hop in the forwarding path, it transforms
the packet-in boring packet to the controller without flow entry update being executed.
The controller receiving the packet-in boring packet will reconstruct the original packet
and send it as a packet-out packet to the switch. Hence, the last switch is able to directly
send the packet to the associated destination host.

3.4. Security Discussion

The most worrisome aspect of the SDN-TBM mechanism is the modification of for-
warding rules in BP packets. A hacker who can add, modify, or remove traffic rules from
a switch by modifying BP packets can lead to incorrect forwarding behavior on the data
plane. Therefore, a hacker may modify BP packets. First, we assume that the controller is
secure and that the communication between the switch and the controller is secure. In this
way, a hacker can only intercept BP packets on the network link of the data plane or at the
switch. In a high control, high security data center, it is difficult to intercept the network
link to listen for packets. Moreover, BP packets are only delivered on a certain path, and a
hacker cannot listen to all BP packets. If hackers can do so in the data plane, it also means
that the IDC is no longer secure. In addition, a hacker can emulate BP packets and inject
them into the data platform through the source host. The SDN-TBM mechanism will treat
the emulated packets as normal packets and faithfully deliver them to the destination host.

Symmetry 2022, 14, 1026 9 of 19

This is because such emulated packets cannot be used by the switch’s BP module to change
the traffic rules. Therefore, we believe that the SDN-TBM mechanism does not increase the
risk of attacks on SDN networks.

4. Analysis Model

In this section, following previous studies [22–29], we develop the corresponding
queuing models, shown in Figure 6, to analyze the average sojourn time of an external
packet (EP) passing through the conventional SDN and the proposed SDN-TBM networks.
For both queuing models, we assume that both switch and controller are Markovian servers,
and the service time of the controller incorporates the two-way transmission time between
the switch and the controller. The overall traffic process at the switch and the controller
follows the Poisson process, and two processes occur in different time slots. In addition,
two infinite buffers are deployed in the switch and the controller. Following [22], we model
the operation of a switch by using an M/M/1 queue while the operation of a controller is
modeled using an M/G/1 queue. Table 2 defines the notation we use in this paper.

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 19

change the traffic rules. Therefore, we believe that the SDN-TBM mechanism does not
increase the risk of attacks on SDN networks.

4. Analysis Model
In this section, following previous studies [22–29], we develop the corresponding

queuing models, shown in Figure 6, to analyze the average sojourn time of an external
packet (EP) passing through the conventional SDN and the proposed SDN-TBM net-
works. For both queuing models, we assume that both switch and controller are Markov-
ian servers, and the service time of the controller incorporates the two-way transmission
time between the switch and the controller. The overall traffic process at the switch and
the controller follows the Poisson process, and two processes occur in different time slots.
In addition, two infinite buffers are deployed in the switch and the controller. Following
[22], we model the operation of a switch by using an M/M/1 queue while the operation of
a controller is modeled using an M/G/1 queue. Table 2 defines the notation we use in this
paper.

(a)

(b)

Figure 6. Queuing models of system. (a) Conventional SDN model, (b) SDN-TBM model.

Table 2. Variable notation.

Notation Meaning
λ Arrival rate of EP to the switch according to Poisson distribution 𝜇௦ Switch service rate

Figure 6. Queuing models of system. (a) Conventional SDN model, (b) SDN-TBM model.

Symmetry 2022, 14, 1026 10 of 19

Table 2. Variable notation.

Notation Meaning

λ Arrival rate of EP to the switch according to Poisson distribution
µs Switch service rate
µc Controller service rate
ps Probability that a packet is forwarded to the controller
pb Probability that a non-BP packets to the controller

We first discuss the scenario of an EP arriving at a switch. For the conventional SDN
network, as shown in Figure 6a, we assume that λ denotes the arriving rate of an EP
arriving at a switch according to a Poisson distribution, µs represents the service rate of
the switch, µc denotes the service rate of the controller, and ps represents the probability
that a packet is forwarded to the controller. When an EP arrives at a switch and finds no
flow entry matched in the flow table, it is forwarded to the controller psλ. Otherwise, the
EP is forwarded to the next hop (1− ps)λ.

For the SDN-TBM network, as depicted in Figure 6b, we assume that λ denotes the
arriving rate of an EP arriving at the switch according to a Poisson distribution, µs denotes
the service rate of the switch. We also let pb represent the probability of forwarding the
non-boring packets (BPs) to the controller, and µc denotes the service rate of the controller.
When an EP, which is not a BP, arrives at a switch and finds no flow entry matching in the
flow table, it is forwarded to the controller pb psλ. Otherwise, the packet is processed by
the BPP, and then the processed packet is sent directly to the same switch (1− pb)psλ.

Next, we derive the average sojourn time of an EP for both models. Let Ts and Tb
denote the sojourn time of the packet-in message in the switch and the BPP, respectively. Ts
and Tb can be expressed as follows

Ts =
1

µs − λ
, (1)

Tb =
1

µs − psλ
. (2)

Let Tsdn
c and Ttbm

c denote the sojourn time of a packet in the controller in the SDN and
SDN-TBM mechanisms, respectively. Tsdn

c and Ttbm
c can be expressed as follows:

Tsdn
c =

1
µc − psλ

, (3)

Ttbm
c =

1
µc − pb psλ

. (4)

The total sojourn time Wsdn of a packet entering the SDN network and the total sojourn
time Wtbm of a packet entering the SDN-TBM network can be respectively expressed
as follows:

Wsdn =

{
Ts with probability 1− ps
Ts + Tsdn

c + T′s with probability ps
, (5)

Wtbm =


Ts with probability 1− ps
Ts + Tb + T′s with probability (1− pb)ps
Ts + Tb + Ttbm

c + T′s with probability pb ps.
, (6)

Symmetry 2022, 14, 1026 11 of 19

Note that T′s represents the sojourn time of a packet in the switch, where the packet is re-
transmitted to the same switch after processing by BPP. We assume that T′s is equal to Ts. There-
fore, we can calculate the mean of Wsdn and Wtbm according to the following expressions:

E
[
Wsdn

]
= (1− ps)E[Ts] + ps

(
E[Ts] + E

[
Tsdn

c

]
+ E[T′s]

)
= E[Ts] + ps

(
E
[

Tsdn
c

]
+ E[T′s]

)
≈ 2E[Ts] + psE

[
Tsdn

c

]
,

(7)

E
[
Wtbm

]
= (1− ps)E[Ts] + ((1− pb)ps)(E[Ts] + E[Tb] + E[T′s])

+pb ps

(
E[Ts] + E[Tb] + E

[
Ttbm

c

]
+ E[T′s]

)
= E[Ts] + ((1− pb)ps)E[Tb] + pb psE

[
Ttbm

c

]
+ psE[T′s]

≈ (1 + ps)E[Ts] + ((1− pb)ps)E[Tb] + pb psE
[

Ttbm
c

]
.

(8)

By substituting Equations (1)–(4) into Equations (7) and (8), we can obtain E[Wsdn]

and E
[
Wtbm

]
as follows:

[
Wsdn

]
= 2

(
1

µs − λ

)
+ ps

(
1

µc − psλ

)
, (9)

E
[
Wtbm

]
= (1 + ps)

(
1

µs − λ

)
+ ((1− pb)ps)

(
1

µs − psλ

)
+ pb ps

(
1

µc − pb psλ

)
. (10)

Next, we analyze the average sojourn time of a packet passing through multiple
switches for both networks. For convenience, we do not consider the transmission time of
the link because the transmission time of the link is extremely short. Only the processing
time of the switch and the controller is considered. Figure 7 shows the operation flow of a
packet arriving at conventional SDN and SDN-TBM networks. We assume that the number
of switches on the transmission path of the packet from the source to the destination is k. For
the conventional SDN network illustrated in Figure 7a, each switch operates independently,
and the controller communicates with each switch individually when an unfamiliar packet
is encountered. A switch communicates with the controller when it receives an unfamiliar
packet. On the other hand, for the SDN-TBM model illustrated in Figure 7b, only the first
and last switches on the transmission path will directly communicate with the controller
as an unfamiliar packet is encountered. Therefore, the value of pb is equal to 2

k . The total
average sojourn time of a packet passing through multiple switches for both networks,
E
[
Wsdn

f

]
and E

[
Wtbm

f

]
, is calculated as follows:

E
[
Wsdn

f

]
=

k

∑
i=1

(
2

(
1

µi
s − λ f

)
+ pi

s

(
1

µc − pi
sλ f

))
, (11)

E
[
Wtbm

f

]
=

k

∑
i=1

((
1 + pi

s

)(1
µi

s − λ f

)
+
((

1− pi
s

)
pi

s

)(1
µi

s − pi
sλ f

)
+ pi

b pi
s

(
1

µc − pi
b pi

sλ f

))
(12)

where k represents the total number of switches in the flow path, and λ f represents one
flow packet.

Symmetry 2022, 14, 1026 12 of 19

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 19

𝐸[𝑊௧௕௠] = (1 − 𝑝௦)𝐸[𝑇௦] + ((1 − 𝑝௕)𝑝௦)(𝐸[𝑇௦] + 𝐸[𝑇௕] + 𝐸[𝑇௦ᇱ])+𝑝௕𝑝௦(𝐸[𝑇௦] + 𝐸[𝑇௕] + 𝐸[𝑇௖௧௕௠] + 𝐸[𝑇௦ᇱ])= 𝐸[𝑇௦] + ((1 − 𝑝௕)𝑝௦)𝐸[𝑇௕] + 𝑝௕𝑝௦𝐸[𝑇௖௧௕௠] + 𝑝௦𝐸[𝑇௦ᇱ]≈ (1 + 𝑝௦)𝐸[𝑇௦] + ൫(1 − 𝑝௕)𝑝௦൯𝐸[𝑇௕] + 𝑝௕𝑝௦𝐸[𝑇௖௧௕௠]. (8)

By substituting Equations (1)–(4) into Equations (7) and (8), we can obtain 𝐸[𝑊௦ௗ௡]
and 𝐸[𝑊௧௕௠] as follows: [𝑊௦ௗ௡] = 2 ቀ ଵఓೞିఒቁ + 𝑝௦ ቀ ଵఓ೎ି௣ೞఒቁ, (9)𝐸[𝑊௧௕௠] = (1 + 𝑝௦) ൬ 1𝜇௦ − 𝜆൰ + ൫(1 − 𝑝௕)𝑝௦൯(1𝜇௦ − 𝑝௦𝜆) + 𝑝௕𝑝௦(1𝜇௖ − 𝑝௕𝑝௦𝜆). (10)

Next, we analyze the average sojourn time of a packet passing through multiple
switches for both networks. For convenience, we do not consider the transmission time of
the link because the transmission time of the link is extremely short. Only the processing
time of the switch and the controller is considered. Figure 7 shows the operation flow of
a packet arriving at conventional SDN and SDN-TBM networks. We assume that the num-
ber of switches on the transmission path of the packet from the source to the destination
is 𝑘. For the conventional SDN network illustrated in Figure 7a, each switch operates in-
dependently, and the controller communicates with each switch individually when an
unfamiliar packet is encountered. A switch communicates with the controller when it re-
ceives an unfamiliar packet. On the other hand, for the SDN-TBM model illustrated in
Figure 7b, only the first and last switches on the transmission path will directly communi-
cate with the controller as an unfamiliar packet is encountered. Therefore, the value of 𝑝௕
is equal to ଶ௞. The total average sojourn time of a packet passing through multiple switches
for both networks, 𝐸ൣ𝑊௙௦ௗ௡൧ 𝑎𝑛𝑑 𝐸ൣ𝑊௙௧௕௠൧, is calculated as follows: 𝐸ൣ𝑊௙௦ௗ௡൧ = ∑ ቆ2 ൬ ଵఓೞ೔ ିఒ೑൰ + 𝑝௦௜ ൬ ଵఓ೎ି௣ೞ೔ ఒ೑൰ቇ௞௜ୀଵ , (11)

𝐸ൣ𝑊௙௧௕௠൧ = ෍ ቌ(1 + 𝑝௦௜) ቆ 1𝜇௦௜ − 𝜆௙ቇ + ቀ(1 − 𝑝௦௜)𝑝௦௜ቁ (1𝜇௦௜ − 𝑝௦௜𝜆௙)௞
௜ୀଵ + 𝑝௕௜ 𝑝௦௜ ቆ 1𝜇௖ − 𝑝௕௜ 𝑝௦௜𝜆௙ቇቍ

(12)

where 𝑘 represents the total number of switches in the flow path, and 𝜆௙ represents one
flow packet.

(a)

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 19

(b)

Figure 7. Procession flow of the first packet. (a) Conventional SDN model, (b) SDN-TBM model.

5. Numerical Analysis and Simulation
Based on the queueing models developed in the last section, we conduct two numer-

ical experiments to investigate the effects of system parameters on the average packet so-
journ time. We also conduct a simulation to verify the feasibility of the proposed SDN-
TBM approach and compare it to the conventional SDN approach and JumpFlow ap-
proach in terms of the packet sojourn time and the number of packet-in messages. To val-
idate the performance of the proposed SDN-TBM approach, we developed a simulator to
support three modes, i.e., standard SDN, JumpFlow, and SDN-TBM. This simulator sup-
ports flow table comparison and timeout mechanisms for flow entries, as well as network
environments with multiple switches. This simulator runs in Table 3 of the device speci-
fications.

Table 3. The system environment.

The Development Environment of System
OS Ubuntu 18.04.3 LTS
CPU Intel Xeon 2.3 GHz
RAM 16 GB
OpenvSwitch v2.13, C++
Ryu Controller Python
Simulator PHP 7

5.1. The Effect of 𝑝௕ and 𝑝௦ on the Sojourn Time in a Single Switch
The first numerical experiment investigates the effects of 𝑝௕ and 𝑝௦ on the packet

sojourn time in a single switch. Noted that 𝑝௦ represents the probability that a packet is
forwarded to the controller, and 𝑝௕ represents the probability of forwarding the non-bor-
ing packets (BPs) to the controller. The work of [2,14] indicated that the distribution of the
number of switches on a path in a data center is {3, 5, 7}. Therefore, we vary the values of 𝑝௕ as {0.67, 0.4, 0.3}. We also vary the values of 𝑝௦ as {1.0, 0.5, 0.2}. Because the load ratio
of the controller will affect the packet sojourn time, we vary the controller load ratio from
0.05 to 0.95 by an incremental 0.05. We compare the proposed SDN-TBM approach to the
conventional SDN approach proposed by Pranata et al. [15]. The numerical results are
shown in Figure 8a–c. From Figure 8, one can see that for a fixed value of 𝑝௦, the average
packet sojourn time increases as the controller load ratio increases. For a fixed 𝑝௦ and a
fixed controller load ratio, the average packet sojourn time in a switch decreases as the
value of 𝑝௕ decreases. One also can find that, from Figure 8, our approach outperforms
the SDN approach. For example, in Figure 8a, when the controller load ratio approaches
95%, the average packet sojourn time drops significantly by approximately 70%, 60%, and
33%, and the average packet sojourn time is approximately 54%.

Figure 7. Procession flow of the first packet. (a) Conventional SDN model, (b) SDN-TBM model.

5. Numerical Analysis and Simulation

Based on the queueing models developed in the last section, we conduct two numerical
experiments to investigate the effects of system parameters on the average packet sojourn
time. We also conduct a simulation to verify the feasibility of the proposed SDN-TBM
approach and compare it to the conventional SDN approach and JumpFlow approach in
terms of the packet sojourn time and the number of packet-in messages. To validate the per-
formance of the proposed SDN-TBM approach, we developed a simulator to support three
modes, i.e., standard SDN, JumpFlow, and SDN-TBM. This simulator supports flow table
comparison and timeout mechanisms for flow entries, as well as network environments
with multiple switches. This simulator runs in Table 3 of the device specifications.

Table 3. The system environment.

The Development Environment of System

OS Ubuntu 18.04.3 LTS
CPU Intel Xeon 2.3 GHz
RAM 16 GB
OpenvSwitch v2.13, C++
Ryu Controller Python
Simulator PHP 7

5.1. The Effect of pb and ps on the Sojourn Time in a Single Switch

The first numerical experiment investigates the effects of pb and ps on the packet
sojourn time in a single switch. Noted that ps represents the probability that a packet is
forwarded to the controller, and pb represents the probability of forwarding the non-boring
packets (BPs) to the controller. The work of [2,14] indicated that the distribution of the
number of switches on a path in a data center is {3, 5, 7}. Therefore, we vary the values
of pb as {0.67, 0.4, 0.3}. We also vary the values of ps as {1.0, 0.5, 0.2}. Because the load
ratio of the controller will affect the packet sojourn time, we vary the controller load ratio
from 0.05 to 0.95 by an incremental 0.05. We compare the proposed SDN-TBM approach to
the conventional SDN approach proposed by Pranata et al. [15]. The numerical results are
shown in Figure 8a–c. From Figure 8, one can see that for a fixed value of ps, the average

Symmetry 2022, 14, 1026 13 of 19

packet sojourn time increases as the controller load ratio increases. For a fixed ps and a
fixed controller load ratio, the average packet sojourn time in a switch decreases as the
value of pb decreases. One also can find that, from Figure 8, our approach outperforms the
SDN approach. For example, in Figure 8a, when the controller load ratio approaches 95%,
the average packet sojourn time drops significantly by approximately 70%, 60%, and 33%,
and the average packet sojourn time is approximately 54%.

Symmetry 2022, 14, x FOR PEER REVIEW 13 of 19

(a)

(b)

(c)

Figure 8. Effect of controller load on packet sojourn time. (a) 𝑝௦ = 1.0 , (b) 𝑝௦ = 0.5 , (c) 𝑝௦ = 0.2 . Figure 8. Effect of controller load on packet sojourn time. (a) ps = 1.0 , (b) ps = 0.5 , (c) ps = 0.2 .

Symmetry 2022, 14, 1026 14 of 19

5.2. The Effect of ps on the Average Packet Sojourn time on a Path

The second numerical experiment studies the effect of ps on the average packet sojourn
time on a path. In this scenario, we assume that there are several transmission paths with
different lengths, and a large number of flows are transmitted on the same path. For those
flows on the same path, we vary the values of ps as 1, 0.5, and 0.2. We also vary the number
of switches on a path from 1 to 8 by an incremental 1. We compare the SDN-TBM approach
to conventional SDN approach and JumpFlow approach [18]. For SDN and SDN-TBM
approaches, the switches on the flow path operate independently, and the effect of packet-in
messages on the controller is treated independently as well. In JumpFlow approach, by
referring [30], we assume that each switch has 24 ports. In addition, because the size of the
VLAN Identifier (VID) of a packet is 12 bits, only the next two hops can be recorded in VID.

The numerical results are shown in Figure 9. The figure shows that both SDN-TBM
and JumpFlow approaches can effectively reduce the sojourn time of packet on a path. The
JumpFlow approach performs better than the SDN-TBM approach when the number of
switches on a path is less than 3. When the number of switches on a path is in the range
from 4 to 6, the average sojourn time of packet in our approach is close to the JumpFlow
approach. When the number of switches on a path exceeds 6, our approach is superior to
the JumpFlow approach. Although the JumpFlow approach performs better than or nearly
as well as our approach when the number of switches on a path is less than or equal to
6, but the JumpFlow approach has many limitations in the SDN environment. First, with
JumpFlow approach, the SDN network needs to support the VLAN protocol. Second, the
JumpFlow approach can only forward packets to the designated port and cannot forward
packets to different routes based on the packet information. In addition, with JumpFlow
approach, the number of ports in the switch affects the largest number of hops. Recording
fewer hops in the VID will increase the number of requests to the controller, which increases
the packet sojourn time. In addition, the JumpFlow approach cannot solve the challenges in
the reactive mode of the SDN network, which are mentioned in [21]. Unlike the JumpFlow
approach, our approach can fully support the features of the standard SDN and does not
need to install other specific communication protocols.

Symmetry 2022, 14, x FOR PEER REVIEW 14 of 19

5.2. The Effect of 𝑝௦ on the Average Packet Sojourn time on a Path
The second numerical experiment studies the effect of 𝑝௦ on the average packet so-

journ time on a path. In this scenario, we assume that there are several transmission paths
with different lengths, and a large number of flows are transmitted on the same path. For
those flows on the same path, we vary the values of 𝑝௦ as 1, 0.5, and 0.2. We also vary the
number of switches on a path from 1 to 8 by an incremental 1. We compare the SDN-TBM
approach to conventional SDN approach and JumpFlow approach [18]. For SDN and
SDN-TBM approaches, the switches on the flow path operate independently, and the ef-
fect of packet-in messages on the controller is treated independently as well. In JumpFlow
approach, by referring [30], we assume that each switch has 24 ports. In addition, because
the size of the VLAN Identifier (VID) of a packet is 12 bits, only the next two hops can be
recorded in VID.

The numerical results are shown in Figure 9. The figure shows that both SDN-TBM
and JumpFlow approaches can effectively reduce the sojourn time of packet on a path.
The JumpFlow approach performs better than the SDN-TBM approach when the number
of switches on a path is less than 3. When the number of switches on a path is in the range
from 4 to 6, the average sojourn time of packet in our approach is close to the JumpFlow
approach. When the number of switches on a path exceeds 6, our approach is superior to
the JumpFlow approach. Although the JumpFlow approach performs better than or
nearly as well as our approach when the number of switches on a path is less than or equal
to 6, but the JumpFlow approach has many limitations in the SDN environment. First,
with JumpFlow approach, the SDN network needs to support the VLAN protocol. Second,
the JumpFlow approach can only forward packets to the designated port and cannot for-
ward packets to different routes based on the packet information. In addition, with Jump-
Flow approach, the number of ports in the switch affects the largest number of hops. Re-
cording fewer hops in the VID will increase the number of requests to the controller,
which increases the packet sojourn time. In addition, the JumpFlow approach cannot solve
the challenges in the reactive mode of the SDN network, which are mentioned in [21].
Unlike the JumpFlow approach, our approach can fully support the features of the stand-
ard SDN and does not need to install other specific communication protocols.

(a)

0

50

100

150

200

1 2 3 4 5 6 7 8

av
er

ag
e

so
jo

ur
n

tim
e

of

pa
ck

et
 o

n
th

e
pa

th
 (m

s)

number of switches on the path (Ps = 1.0)

SDN JumpFlow SDN-TBM

Figure 9. Cont.

Symmetry 2022, 14, 1026 15 of 19Symmetry 2022, 14, x FOR PEER REVIEW 15 of 19

(b)

(c)

Figure 9. Comparison of sojourn time for flow forwarding on a path. (a) 𝑝௦ = 1.0 , (b) 𝑝௦ = 0.5 , (c) 𝑝௦ = 0.2 .
5.3. Simulation and Results

In the new generation of cloud application services, microservices are increasingly
used to provide network resources. Most of the RESTful API protocols [31] are used in
business applications and most of the MQTT protocols are used in IoT applications. Fran-
cesco et al. proposed solutions for the problems related to social internet of things (SIoT)
and multi-internet of things (MIoT) [10]. The data characteristics for such a large number
of small data streams require dynamic microservice migration and scaling. Network man-
agement in data centers can be done using the SDN-TBM mechanism to quickly adjust
network paths and reduce the service latency time.

We collected real data for simulation in a set of formal commercial information sys-
tems. This dataset uses the RESTful API protocol and is characterized by a large number
of flows and consists of fewer packets, which is a common traffic type for most applica-
tions today. Such a characteristic can be precisely controlled by the reactive mode of the
SDN. The data period is two months. We record the traffic flows data every 30 min, and
the contents include input traffic, output traffic, and flows. For convenience, we only show
the 60 pieces of collected traffic flow data in Figure 10a. The properties of collected traffic
flow and system parameters are shown in Table 4. Comparisons of the average sojourn
time and the average number of packet-in messages among the SDN, JumpFlow, and
SDN-TBM approaches are shown in Figure 10b,c, respectively. In Figure 10b, one can ob-
serve that the prominent points appeared when the number of unfamiliar flows was
greater than the number of regular flows. From the Figure 10b,c, we can find that the

0

50

100

150

1 2 3 4 5 6 7 8

av
er

ag
e

so
jo

ur
n

tim
e

of

pa
ck

et
 o

n
th

e
pa

th
 (m

s)

number of switches on the path (Ps = 0.5)

SDN JumpFlow SDN-TBM

0

50

100

150

1 2 3 4 5 6 7 8

av
er

ag
e

so
jo

ur
n

tim
e

of

pa
ck

et
 o

n
th

e
pa

th
 (m

s)

number of switches on the path (Ps = 0.2)

SDN JumpFlow SDN-TBM

Figure 9. Comparison of sojourn time for flow forwarding on a path. (a) ps = 1.0 , (b) ps = 0.5 ,
(c) ps = 0.2 .

5.3. Simulation and Results

In the new generation of cloud application services, microservices are increasingly
used to provide network resources. Most of the RESTful API protocols [31] are used
in business applications and most of the MQTT protocols are used in IoT applications.
Francesco et al. proposed solutions for the problems related to social internet of things (SIoT)
and multi-internet of things (MIoT) [10]. The data characteristics for such a large number
of small data streams require dynamic microservice migration and scaling. Network
management in data centers can be done using the SDN-TBM mechanism to quickly adjust
network paths and reduce the service latency time.

We collected real data for simulation in a set of formal commercial information systems.
This dataset uses the RESTful API protocol and is characterized by a large number of flows
and consists of fewer packets, which is a common traffic type for most applications today.
Such a characteristic can be precisely controlled by the reactive mode of the SDN. The
data period is two months. We record the traffic flows data every 30 min, and the contents
include input traffic, output traffic, and flows. For convenience, we only show the 60 pieces
of collected traffic flow data in Figure 10a. The properties of collected traffic flow and
system parameters are shown in Table 4. Comparisons of the average sojourn time and
the average number of packet-in messages among the SDN, JumpFlow, and SDN-TBM

Symmetry 2022, 14, 1026 16 of 19

approaches are shown in Figure 10b,c, respectively. In Figure 10b, one can observe that
the prominent points appeared when the number of unfamiliar flows was greater than the
number of regular flows. From the Figure 10b,c, we can find that the average sojourn time
and the average number of packet-in messages in the SDN-TBM approach are lower than
the other approaches.

Symmetry 2022, 14, x FOR PEER REVIEW 16 of 19

average sojourn time and the average number of packet-in messages in the SDN-TBM
approach are lower than the other approaches.

(a)

(b)

(c)

Figure 10. Comparison of RESTful data simulations for SDN, JumpFlow and SDN-TBM models.
(a) traffic flow data, (b) average sojourn time, (c) packet-in messages

Table 4. Simulation properties.

Property Value
Number of records 35,533,9161
Number of flows 1,330,909
Range of flow size 1–18,000,625 bytes
Average flow size 10,975.37 bytes
Range of packets in a flow 1–231,279 packets
Average packets in a flow 20.97 packets
Length of path 3–8 hops
Time out of flow entry 30 min

0

1000

2000

3000

4000

5000

6000

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

1 6 11 16 21 26 31 36 41 46 51 56

Fl
ow

s

tra
ffi

c
(K

B)

30 minutes of each statistics

input traffic out traffic flows

0
1

2
3

4

5
6

7
8

1 6 11 16 21 26 31 36 41 46 51 56

av
er

ag
e

so
jo

ur
n

tim
e

(m
s)

30 minutes of each statistics

SDN JumpFlow SDN-TBM

0

200

400

600

800

1000

1200

1 6 11 16 21 26 31 36 41 46 51 56

pa
ck

et
-in

 m
es

sa
ge

s

30 minutes of each statistics

SDN JumpFlow SDN-TBM

Figure 10. Comparison of RESTful data simulations for SDN, JumpFlow and SDN-TBM models.
(a) traffic flow data, (b) average sojourn time, (c) packet-in messages.

Symmetry 2022, 14, 1026 17 of 19

Table 4. Simulation properties.

Property Value

Number of records 35,533,9161
Number of flows 1,330,909
Range of flow size 1–18,000,625 bytes
Average flow size 10,975.37 bytes
Range of packets in a flow 1–231,279 packets
Average packets in a flow 20.97 packets
Length of path 3–8 hops
Time out of flow entry 30 min

We summarize the influence of unfamiliar flows on the sojourn time of flows for the
three approaches in Figure 11. The values of the SDN-TBM approach are close because
any length of path sends only two packet-in messages to the controller. In the JumpFlow
approach, because different path lengths send different packet-in messages to the controller,
the sojourn time values are diverse. Figure 12, summarizing the influence of unfamiliar
flows on the number of packet-in messages, shows a trend similar to that of the influence of
unfamiliar flows on the sojourn time. Based on the simulation results, the average packet
sojourn time of the SDN-TBM approach outperforms the JumpFlow approach and the
conventional SDN approach as 15.81% and approximately 67.16%, respectively. In addition,
the number of packet-in messages in the SDN-TBM approach outperforms the JumpFlow
approach and the conventional SDN approach as 15.97% and 83.69%, respectively.

Symmetry 2022, 14, x FOR PEER REVIEW 17 of 19

We summarize the influence of unfamiliar flows on the sojourn time of flows for the
three approaches in Figure 11. The values of the SDN-TBM approach are close because
any length of path sends only two packet-in messages to the controller. In the JumpFlow
approach, because different path lengths send different packet-in messages to the control-
ler, the sojourn time values are diverse. Figure 12, summarizing the influence of unfamil-
iar flows on the number of packet-in messages, shows a trend similar to that of the influ-
ence of unfamiliar flows on the sojourn time. Based on the simulation results, the average
packet sojourn time of the SDN-TBM approach outperforms the JumpFlow approach and
the conventional SDN approach as 15.81% and approximately 67.16%, respectively. In ad-
dition, the number of packet-in messages in the SDN-TBM approach outperforms the
JumpFlow approach and the conventional SDN approach as 15.97% and 83.69%, respec-
tively.

Figure 11. Impact of unfamiliar flows on the average sojourn time.

Figure 12. Impact of unfamiliar flows on the average of the packet-in message.

6. Conclusions and Future Work
We proposed an SDN-TBM mechanism to reduce the load on the controller in the

reactive mode of SDN. In the SDN-TBM mechanism, only the starting and destination
switches for each application flow are connected to the controller; all intermediate
switches on the routing path simply carry the information required for forwarding pur-
poses. Consequently, the number of packet-in messages is reduced; this reduction results
in reduced load on the controller. We also developed a queuing model to analyze the
SDN-TBM process and performed two numerical experiments to study the effects of
changes in parameter values on the average sojourn time of a packet and on the average

0
10
20
30
40

50
60
70
80
90

SDN JumpFlow SDN-TBM

av
er

ag
e

so
jo

ur
n

tim
e

of
 fl

ow

(m
s)

max min average

0

500

1000

1500

2000

2500

3000

3500

4000

SDN JumpFlow SDN-TBM

av
er

ag
e

pa
ck

et
-in

 m
es

sa
ge

s max min average

Figure 11. Impact of unfamiliar flows on the average sojourn time.

Symmetry 2022, 14, x FOR PEER REVIEW 17 of 19

We summarize the influence of unfamiliar flows on the sojourn time of flows for the
three approaches in Figure 11. The values of the SDN-TBM approach are close because
any length of path sends only two packet-in messages to the controller. In the JumpFlow
approach, because different path lengths send different packet-in messages to the control-
ler, the sojourn time values are diverse. Figure 12, summarizing the influence of unfamil-
iar flows on the number of packet-in messages, shows a trend similar to that of the influ-
ence of unfamiliar flows on the sojourn time. Based on the simulation results, the average
packet sojourn time of the SDN-TBM approach outperforms the JumpFlow approach and
the conventional SDN approach as 15.81% and approximately 67.16%, respectively. In ad-
dition, the number of packet-in messages in the SDN-TBM approach outperforms the
JumpFlow approach and the conventional SDN approach as 15.97% and 83.69%, respec-
tively.

Figure 11. Impact of unfamiliar flows on the average sojourn time.

Figure 12. Impact of unfamiliar flows on the average of the packet-in message.

6. Conclusions and Future Work
We proposed an SDN-TBM mechanism to reduce the load on the controller in the

reactive mode of SDN. In the SDN-TBM mechanism, only the starting and destination
switches for each application flow are connected to the controller; all intermediate
switches on the routing path simply carry the information required for forwarding pur-
poses. Consequently, the number of packet-in messages is reduced; this reduction results
in reduced load on the controller. We also developed a queuing model to analyze the
SDN-TBM process and performed two numerical experiments to study the effects of
changes in parameter values on the average sojourn time of a packet and on the average

0
10
20
30
40

50
60
70
80
90

SDN JumpFlow SDN-TBM

av
er

ag
e

so
jo

ur
n

tim
e

of
 fl

ow

(m
s)

max min average

0

500

1000

1500

2000

2500

3000

3500

4000

SDN JumpFlow SDN-TBM

av
er

ag
e

pa
ck

et
-in

 m
es

sa
ge

s max min average

Figure 12. Impact of unfamiliar flows on the average of the packet-in message.

Symmetry 2022, 14, 1026 18 of 19

6. Conclusions and Future Work

We proposed an SDN-TBM mechanism to reduce the load on the controller in the
reactive mode of SDN. In the SDN-TBM mechanism, only the starting and destination
switches for each application flow are connected to the controller; all intermediate switches
on the routing path simply carry the information required for forwarding purposes. Conse-
quently, the number of packet-in messages is reduced; this reduction results in reduced load
on the controller. We also developed a queuing model to analyze the SDN-TBM process
and performed two numerical experiments to study the effects of changes in parameter
values on the average sojourn time of a packet and on the average sojourn time of a packet
on a path. A simulation was also carried out. The numerical results revealed that the
SDN-TBM model can reduce the average packet sojourn time by up to 70% compared
to the conventional SDN. Additionally, when the controller load increased to 95%, the
average sojourn time was reduced by approximately 54%. Moreover, the SDN-TBM model
outperforms the JumpFlow model when the number of switches on the path exceeds 6. The
simulation results showed similar trends. However, the JumpFlow model only performs
routing functions. The SDN-TBM approach not only performs routing functions but also
can deploy the flow entries of the switches on the path.

Author Contributions: M.-T.K., S.-J.K., H.-W.T. and F.-M.C. contributed equally to this work. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hakiri, A.; Gokhale, A.; Berthou, P.; Schmidt, D.C.; Gayraud, T. Software-Defined Networking: Challenges and research

opportunities for Future Internet. Comput. Netw. 2014, 75, 453–471. [CrossRef]
2. Lara, A.; Kolasani, A.; Ramamurthy, B. Network Innovation using OpenFlow: A Survey. IEEE Commun. Surv. Tutor. 2014,

16, 493–512. [CrossRef]
3. Pfaff, B.; Pettit, J.; Koponen, T.; Jackson, E.; Zhou, A.; Rajahalme, J.; Gross, J.; Wang, A.; Stringer, J.; Shelar, P. The design

and implementation of open vswitch. In Proceedings of the 12th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 15), Oakland, CA, USA, 4–6 May 2015; pp. 117–130.

4. Sattar, D.; Matrawy, A. An empirical model of packet processing delay of the Open vSwitch. In Proceedings of the 2017 IEEE 25th
International Conference on Network Protocols (ICNP), Toronto, ON, Canada, 10–13 October 2017; pp. 1–6. [CrossRef]

5. Chen, Z.; Wu, Y.; Ge, J.; Yuepeng, E. A New Lookup Model for Multiple Flow Tables of Open Flow with Implementation
and Optimization Considerations. In Proceedings of the 2014 IEEE International Conference on Computer and Information
Technology (CIT), Xi’an, China, 11–13 September 2014; pp. 528–532. [CrossRef]

6. Hatami, R.; Bahramgiri, H. High-performance architecture for flow-table lookup in SDN on FPGA. J. Supercomput. 2019,
75, 384–399. [CrossRef]

7. Fernandez, M.P. Comparing OpenFlow Controller Paradigms Scalability: Reactive and Proactive. In Proceedings of the 2013 IEEE
27th International Conference on Advanced Information Networking and Applications (AINA), Barcelona, Spain, 25–28 March
2013; pp. 1009–1016. [CrossRef]

8. Xiao, X.; Hannan, A.; Bailey, B.; Ni, L.M. Traffic engineering with MPLS in the Internet. IEEE Netw. 2000, 14, 28–33. [CrossRef]
9. Filsfils, C.; Nainar, N.K.; Pignataro, C.; Cardona, J.C.; Francois, P. The Segment Routing Architecture. In Proceedings of the 2015

IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–6. [CrossRef]
10. Cauteruccio, F.; Cinelli, L.; Fortino, G.; Savaglio, C.; Terracina, G.; Ursino, D.; Virgili, L. An approach to compute the scope of a

social object in a Multi-IoT scenario. Pervasive Mob. Comput. 2020, 67, 101223. [CrossRef]
11. Praveena, V.; Praveena, V.; Ponnusamy, C.; Ihsan, A.; Alroobaea, R.; Yahya, S.; Raza, M.A. Optimal Deep Reinforcement Learning

for Intrusion Detection in UAVs. Comput. Mater. Contin. 2022, 70, 2639–2653. [CrossRef]
12. Sudar, K.M.; Beulah, M.; Deepalakshmi, P.; Nagaraj, P.; Chinnasamy, P. Detection of Distributed Denial of Service Attacks in SDN

using Machine learning techniques. In Proceedings of the 2021 International Conference on Computer Communication and
Informatics (ICCCI), Coimbatore, India, 27–29 January 2021.

http://doi.org/10.1016/j.comnet.2014.10.015
http://doi.org/10.1109/SURV.2013.081313.00105
http://doi.org/10.1109/ICNP.2017.8117597
http://doi.org/10.1109/CIT.2014.108
http://doi.org/10.1007/s11227-018-02732-2
http://doi.org/10.1109/AINA.2013.113
http://doi.org/10.1109/65.826369
http://doi.org/10.1109/GLOCOM.2015.7417124
http://doi.org/10.1016/j.pmcj.2020.101223
http://doi.org/10.32604/cmc.2022.020066

Symmetry 2022, 14, 1026 19 of 19

13. En.wikipedia.org. Tunnel Boring Machine. 2020. Available online: https://en.wikipedia.org/wiki/Tunnel_boring_machine
(accessed on 19 May 2021).

14. Ma, Y.-W.; Chen, J.-L.; Tsai, Y.-H.; Cheng, K.-H.; Hung, W.-C. Load-Balancing Multiple Controllers Mechanism for Software-
Defined Networking. Wirel. Pers. Commun. 2017, 94, 3549–3574. [CrossRef]

15. Neghabi, A.A.; Jafari Navimipour, N.; Hosseinzadeh, M.; Rezaee, A. Load Balancing Mechanisms in the Software Defined
Networks: A Systematic and Comprehensive Review of the Literature. IEEE Access 2018, 6, 14159–14178. [CrossRef]

16. MacDavid, R.; Birkner, R.; Rottenstreich, O.; Gupta, A.; Feamster, N.; Rexford, J. Concise Encoding of Flow Attributes in SDN
Switches. In Proceedings of the SOSR ’17: Symposium on SDN Research, Santa Clara, CA, USA, 3–4 April 2017; ACM: New York,
NY, USA, 2017; pp. 48–60. [CrossRef]

17. Guo, Z.; Xu, Y.; Cello, M.; Zhang, J.; Wang, Z.; Liu, M.; Chao, H.J. JumpFlow: Reducing flow table usage in software-defined
networks. Comput. Netw. 2015, 92, 300–315. [CrossRef]

18. Jia, X.; Li, Q.; Jiang, Y.; Guo, Z.; Sun, J. A low overhead flow-holding algorithm in software-defined networks. Comput. Netw.
2017, 124, 170–180. [CrossRef]

19. Pranata, A.A.; Jun, T.S.; Kim, D.S. Overhead reduction scheme for SDN-based Data Center Networks. Comput. Stand. Interfaces
2019, 63, 1–15. [CrossRef]

20. Pranata, A.A.; Lee, J.M.; Kim, D.S. OpenFlow Controller-Switch Communication Overhead Reduction Scheme on Industrial
Data Center Networks. In Proceedings of the 2018 IEEE 23rd International Conference on Emerging Technologies and Factory
Automation (ETFA), Turin, Italy, 4–7 September 2018; pp. 243–250. [CrossRef]

21. Hu, C.; Hou, K.; Li, H.; Wang, R.; Zheng, P.; Zhang, P.; Wang, H. SoftRing: Taming the reactive model for software defined
networks. In Proceedings of the 2017 IEEE 25th International Conference on Network Protocols (ICNP), Toronto, ON, Canada,
10–13 October 2017; pp. 1–10. [CrossRef]

22. Chilwan, A.; Mahmood, K.N.; Østerb, O.; Jarschel, M. On Modeling Controller-Switch Interaction in Openflow Based SDNS.
IJCNC 2014, 6, 137–150. [CrossRef]

23. Goto, Y.; Ng, B.; Seah, W.K.G.; Takahashi, Y. Queueing analysis of software defined network with realistic OpenFlow–based
switch model. Comput. Netw. 2019, 164, 106892. [CrossRef]

24. Jarschel, M.; Oechsner, S.; Schlosser, D.; Pries, R.; Goll, S.; Tran-Gia, P. Modeling and performance evaluation of an OpenFlow
architecture. In Proceedings of the 2011 23rd International Teletraffic Congress (ITC), Cracow, Poland, 4–7 September 2012;
pp. 1–7.

25. Mahmood, K.; Chilwan, A.; Østerb, O.N.; Jarschel, M. On the Modeling of Open Flowbased SDNS: The Single Node Case. In
Proceedings of the Third International Conference on Advanced Information Technologies & Applications, Zurich, Switzerland,
2–4 January 2014; Academy & Industry Research Collaboration Center (AIRCC): New Delhi, India, 2014; pp. 207–217. [CrossRef]

26. Miao, W.; Min, G.; Wu, Y.; Wang, H. Performance Modelling of Preemption-Based Packet Scheduling for Data Plane in Software
Defined Networks. In Proceedings of the 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity),
Chengdu, China, 19–21 December 2015; pp. 60–65. [CrossRef]

27. Xiong, B.; Peng, X.; Zhao, J. A Concise Queuing Model for Controller Performance in Software-Defined Networks. JCP 2016,
11, 232–237. [CrossRef]

28. Singh, D.; Ng, B.; Lai, Y.-C.; Lin, Y.-D.; Seah, W.K.G. Modelling Software-Defined Networking: Software and hardware switches.
J. Netw. Comput. Appl. 2018, 122, 24–36. [CrossRef]

29. Xiong, B.; Yang, K.; Zhao, J.; Li, W.; Li, K. Performance evaluation of OpenFlow-based software-defined networks based on
queueing model. Comput. Netw. 2016, 102, 172–185. [CrossRef]

30. Farrington, N.; Rubow, E.; Vahdat, A. Data Center Switch Architecture in the Age of Merchant Silicon. In Proceedings of the 2009
17th IEEE Symposium on High Performance Interconnects, New York, NY, USA, 25–27 August 2009; pp. 93–102. [CrossRef]

31. Rodriguez, A. Restful web services: The basics. IBM Dev. 2008, 33, 18.

https://en.wikipedia.org/wiki/Tunnel_boring_machine
http://doi.org/10.1007/s11277-016-3790-y
http://doi.org/10.1109/ACCESS.2018.2805842
http://doi.org/10.1145/3050220.3050227
http://doi.org/10.1016/j.comnet.2015.09.030
http://doi.org/10.1016/j.comnet.2017.06.009
http://doi.org/10.1016/j.csi.2018.11.001
http://doi.org/10.1109/ETFA.2018.8502639
http://doi.org/10.1109/ICNP.2017.8117558
http://doi.org/10.5121/ijcnc.2014.6611
http://doi.org/10.1016/j.comnet.2019.106892
http://doi.org/10.5121/csit.2014.41120
http://doi.org/10.1109/SmartCity.2015.48
http://doi.org/10.17706/jcp.11.3.232-237
http://doi.org/10.1016/j.jnca.2018.08.005
http://doi.org/10.1016/j.comnet.2016.03.005
http://doi.org/10.1109/HOTI.2009.11

	Introduction
	Related Work
	Design of SDN-TBM
	Overview of SDN-TBM Operations
	Operations at the Controller
	Operations at the Switches
	Security Discussion

	Analysis Model
	Numerical Analysis and Simulation
	The Effect of pb and ps on the Sojourn Time in a Single Switch
	The Effect of ps on the Average Packet Sojourn time on a Path
	Simulation and Results

	Conclusions and Future Work
	References

