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1. Introduction
In [1], Hardy established that
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where &;, F ; > 0with 0 < Z”l < o0,0< Z [l <coandl >1, 1/1+1/q9 = 1. The
m=1
continuous form (see [2]) of (1) is
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where ¢,1 > 0 are measurable functions such that 0 < fooo

0< [y ¢7(y)
Hardy showed thatifd >1,4>1,1/d4+1/g>1and0 <A =2—
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( I Wy)dy) ) @

[(8)d® < oo and
dy < oco. The constant 7t/ sin(7t/1) in both (1) and (2) is sharp. In [2],
(1/d+1/q) <1, then
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In [3], Holder proved that

n n % n %
3" Co < (z 5;‘) (z yf) , o
k=1 k=1 k=1

where ()) and (yx) are positive sequences and «, f > 1 such that 1/a +1/p = 1. The

continuous form of (3) is
1
b B
( / P (’L’)dT) ,
Q

o o)

where «, B > 1such that1l/a+1/f=1and ¢, @ € C((0,b),RT).
In [4], Zhao and Cheung proved that if ({),@({) > 0 are continuous functions and
P/4(0)@'/B(7) is integrable on [o, c], then

(/w dé) (/a)ﬁ dg)ﬁ</Cs(§f;((?)>¢(g)w(g)d§,

4

B

with

X= /lP"‘(é)d@, Y = /wﬁ(g)dg, « > 1and % + ; —1,
¢ 0

where S(.) is Specht’s ratio function (see [5]) and defined as

yl/ (u=1)
S(M) = W,M 7é 1 and S(l) =

In [4], the authors proved that if », ® € C((o,¢),R") and m > 0, then
(fc (Gllj'”“(é)> @) "
S\ Formrr(p) ) ¥(0)AC
< ¢m+l (g) 0 Fo™T1(7)

[ < : ——
: (f @(C)d6>
4

[ c m+1
G = /@(g)dg andF:/lP(D;(S)dC.
Q Q

In addition, they proved the discrete case of (4) and established that

4)

where

BQm+1

i o Py S<Ab2n+1)gi
= ou T (Ebi>m '
i=1

In 2019 Zhao and Cheung [6] studied the reverse Hilbert inequalities and proved that
if0 <d,q <1and {A;}%, {¢y}} are nonnegative and decreasing sequences of real numbers
with k, 7 € N, then

where B = Z bjand A = Z ot /b,
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and

In addition, they proved that if {A;}%, {@,}} are nonnegative sequences and {d;}%,
{qn}} are positive sequences with k,r € N, then

kL Srin A Qy
) Z k,,,(P( il/}( )

i=1n=1 (in)
> 2N (k1) (il [m(ﬁj)r(k—wl))z ©
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and

Qn = 2 S n 2

t=1 @t
Ll (5)]
t=1

where ¢, i are nonnegative, concave and supermultiplicative functions.

In [6], the authors proved that if {A;}X, {@,}} are nonnegative sequences with k, 7 € N,
then

qt,

1 1 @)
z(kr)%<i)»%(ki+l)> <iw%(rn+l)> ,

i=1
with

é/\g(kerl) iw%(r—Hl)

& )
s=1 t=1

s
Sk,r,i,n =S

Furthermore, many authors studied the inequalities of Hilbert-type, see [7-15].

In the last decades, the time scale theory was discovered which is a unification of
the continuous calculus and discrete calculus. A time scale T is an arbitrary nonempty
closed subset of the real numbers R. Many authors established some dynamic inequalities
of Hilbert-type on time scales. For example, in 2021, AINemer et al. [16] studied some
reversed dynamic inequalities of Hilbert-type and proved thatifa € T,0 < a,p < 1and A,
1 are nonnegative and decreasing functions, then the inequality

AtAE

[ [ S (7 a@a7)" (7 pioiar)”
@ Ja (o(t) —a)2(0(&) —a)

b (/HU(V) |f\(t) </H(7(t) A(T)A~L—> ”‘1]

Nl—

1
2 2

(o(r) — t)At)

1
2

o(s) o(@) p-172
x ( / [mp(@) ([ vmar) ] (¢(6) —cms) : ®
holds for all 7, s € [a, oo]T, with
Cla,byr,5) = 5ublo(r) — ) (o(s) —a)?,

and
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S (o) -0 A@ (79 Awar)|
wprirs = S [ [A( (7 Aar) TA%)
PECRE 900 (S yie)a) ’1_1] )
Je@ {1/1(2) ( 7@ () AT) - ] Az
(0(r) —a) [0 [A@ (Jr@amar)™ 2
. o { AGe) ( o /\(T)AT)a_1:| 2(ff(r) - %)A%)
[ v (17 w)] )
o {lp(z) (7@ p(ryar)” _1]2@( ) —2)Az
Such that

and

(o —a O'(C) T)AT P ’
ﬁ(( ©-a)[s@ ()7 pwar)"| )}

f:(g) [w(z) (f:(Z) l/J(T)AT)ﬁl:| ZAZ

where the function S(.) is the Specht ratio (see [5]) which is defined as follows:
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K1/ (h=1)

The aim of this manuscript is to use reverse Holder inequalities with Specht’s ratio on
time scales T to establish some new generalizations of reverse Hilbert-type inequalities. In
particular, we generalize the inequality (8) by replacing the power 2 with a new power §,
g>1

The following is a breakdown of the paper’s structure. In Section 2, we cover some
fundamentals of time scale theory as well as several time scale lemmas that will be useful
in Section 3, where we prove our findings. As specific examples (when T = N), our
major results yield (5)—(7) proven by Zhao and Cheung [6]. In addition, we obtain the
inequality (8) proved by AlNemer et al. [16].

2. Definitions and Basic Lemmas

A time scale T is defined as an arbitrary nonempty closed subset of the real numbers
R and the forward jump operator is defined by: (1) := inf{r € T : r > 7}. The set of all
such rd-continuous functions is ushered by C,;(T,R) and for any function U : T — R, the
notation U () denotes U (c(7)).

The derivatives of U® and U /@ (where @@ # 0) are given by

A Do 17D
(Uo)® = UPo + U 0® = Uo® + UPw", <u> _ o - Uat
) @@
The integration by parts formula on T is
v v
/U M) (T)AT = AT p(T)]y, —/U A (1)¢? (T)AT. )
0 0

The time scales chain rule is
I

(@0 9)*(7) = @ (¢(32)) 9 (1), where € [1,0(1)],

where it is supposed that @ : R — R is continuously differentiable and ¢ : T — R is
A-differentiable. For further information on the time scale calculus, see [17,18].

Definition 1 ([19]). A function G : [— R is supermultiplicative if
G(ss) > G(»#)G(s), Vs,se]CR. (10)

Inequality (10) holds with equality if G is the identity map (i.e., G(») = ). G is said to be a
submultiplicative function if the last inequality has the opposite sign.

Lemma 1. If o € T, A is a nonnegative rd-continuous function and 0 < y < 1, then
o (s) i o(s) / po(®) -1
(/ /\(T)AT) > »y/ (/ A(T)AT) A(8)AB. (11)
/@ Q Q

Proof. Using the time scales chain rule on the term |, f A(T)At, we obtain

(o)

Since { < o(¥), then we have (note 0 < v < 1) that

A

-1
:7( /Q gA(T)ATf AB), 7 elda(d)]. (12)

1

(/j)\(r)m)“ > (/Qa(ﬁ))\(r)my , (13)
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Substituting (13) into (12), we see

[(/jA(r)Ar) W]A > 7(/:(19) A(T)AT)y_l)L(z?). (14)

Integrating (14) over ¢ from ¢ to o(s), we have

/QU(S) K/Qﬂ)\(T)AT) 7} AAl? > 7/:(5) </:(l9) A(T)AT) 771/\(19)&9.

This means that

(/QU(S> /\(T)Av.')w > ’Y/QU(S) </QU(19) A(T)AT) 771/\(19)&9,

whichis (11). O

Lemma 2 (Specht’s ratio [5]). Let a, B be positive numbers,d > 1and 1/d +1/q = 1. Then,

AN\ 1dgl/g s & B
S(ﬁ>a B 2d+q, (15)
where
ul/(w=1)
S(u) = —————,u#1

elogul/(#=1)

Lemma 3 ([5]). Let S(.) be as defined in Lemma 2. Then, S(I) is strictly decreasing for 0 <1 <1
and strictly increasing for I > 1. In addition, the following equations are true

S(1) =T1and S(I) = S(

—_ =

) V1>0.

Lemma 4 ([20], when « = 1). If f,¢ € C([o,c|r,R") such that f7, g are A-integrable on
[o,clrandlet p>1and 1/ +1/v =1, then

[ s(3e8) roswn

> ( / Cfﬁ(C)M)é( / Cg”(émg)i, (16)

where X = f; FE(OAL and Y = j; g'(0)AL.

Lemma 5 (Jensen's inequality). Let (o, € T and ro,d € R. If A € Cy([Co,C]T, R),
¢:[Co, {1 — (ro,d) is rd-continuous and ¥:(ro,d) — R is continuous and convex, then

1 ¢ 1 ¢
T(W /@o A(T)q)(r)Ar) < W /g 0 MT)¥ (@(T))AT. (17)

Lemma 6. Let ¢ € T, A, ¢ > 0 be decreasing functions and 0 < d,q <1, B > 1. Then,
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(18)

and

((0(6) ~0) [tpw) (g wmm)“] ﬁ)
S

179w (1 wmar)" "y

{ ((a(@) ~o s (7 vac)" ] ﬁ)
= maxg S

9o (15 wmrac)" ay

ol q-1 p
;S(W)Q) v (179 woar)" | )} "

10 o (15 pmrac)" "y

Proof. We have for ¢ < y that

(®) v)
/U AMT)AT < /U ! AMT)AT,
e Q

and then (where 0 < d < 1),

( /:(a)A(T)ATyl . ( /Qv(y)A (T)AT)

Since A is decreasing, we have
P

[/\(19) ( /Q 7 A(T)AT) > l)\(y) ( /Q 7w A(T)AT) H] ,

a-11P
thus the function {A(ﬁ) ( /, Q(T(m /\(T)AT) } is decreasing. Therefore, we have for ¢ < ¢ that
p

[/\(g) < /Q 7 /\(T)AT> > [A(ﬁ) ( /Q 7 )\(T)AT) dl] . (20)

Integrating (20) over ¢ from ¢ to o(t), we obtain

d—1

i-118

d-118
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@(t)— Q) [Me) (f " ama) “]

> /Q 7 [A(ﬁ) ( /Q 7 /\(T)AT) l

A9,

and then,

(o(t) = 0) [A(e) (S A(r)Ar)“] ﬁ

S0 [/\(19) ( 7o A(r)m)“] " po

> 1. (1)

B

a-17P
Since the function {A(ﬁ) ( /, Q(T(m /\(T)AT) } is decreasing, we obtain that
d-1 p

[A(ﬁ) < /Q 7 /\(T)AT) > [A(t) ( /Q 7 A(T)AT) dl] .

Integrating the last inequality over @ from ¢ to o (t), we have

/Q v [A(ﬂ) ( /Q " A(T)Ar> v
> /Q 7 [/\(t) ( /Q 7 A(T)AT) o

B
A9

and then,

<1 (22)

From (21) and (22), we observe

(o) = )| M) (5 amar)
oo {/\(19) ( S )\(T)AT)dl] " po

> .21

(o(t) = o) [A(t) (7 A(r)Ar)d‘l} ﬁ
fof(f) {/\(19) (fg‘f(ﬂ) /\(T)AT) dl] ﬂAﬂ |

Since S(.) is decreasing on (0, 1) and increasing on (1, c0), we find that one of

> >

(o(t) = o) [A(e) (S A(r)Ar)‘“] '5

fg‘f(f) [A(ﬂ) (fq”(ﬁ) /\(T)AT) dl} ﬁAﬁ

S
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and

(o) =) A0 ([0 amar) '5

7 [A(ﬁ) (S5 /\(T)Ar)d_l} oy

is maximum (where S(1) = 1), and it is in the form

(o)) —0) 2@ () awar)”| ﬁ
fgrr(t) {)\(19) ( fga(m /\(T)Ar)d_l} ﬁAﬁ

S

(o) =) |2 (7 awar)” | ﬁ
J70 [A(ﬁ) (S5 A(T)Ar)d_l- po

=max{ S

(o) = )| A0 (J M) | '

S {/\(19) (S5 A(r)m)“] "po

;S

which is (18). Similarly, with respect to the decreasing function ¢ when 0 < g < 1, we have

(0(&) — o) [¢<n> (S5 wmzﬂ)q_l] ﬁ

S 7@ {ww (S5 wm@“} e

) 0@ 0w (7 veonr) |
ax f;@) {lp(y) ( fga(w (o) Ar)q-l} ﬁAy

[e@-o v (17 s(ar)"] ’

~118
179 o (7 wne)" | ay
which is (19). O

3. Main Results

Theorem 1. Let ¢ € T, 0 < d,q < 1 and A, be nonnegative and decreasing functions. If B > 1,
v>1withl/B+1/v =1, then
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. - ALAE
0)"(c(¢) —)¥

>vC(d,q,1,5) (/:(r) [A(t) (/:(t) A(T)AT) H] ﬁ(a(r) - t)At) (23)
(oot vemy |

/0’(5) /17(’) Sd,q,t,g,r,s,ﬁ (fqa(t) /\(T)A"L')d (fgg(g) lp(T)AT>q
¢ e (o(t) -

™=

e

(o(s) = E)Aé‘) )

where . 1 ]
C(d,q,r,5,v) = ~da(o(r) — 0)* (o(s) — )",
and
i-11P
(0 =) [ @ (5 aae) ]
Saatirsp =S
R [ [/\(19) ( S A(T)Ar)dl]ﬁ(a(r) — 0)AY
00 [ [won (7 wea)™ ]
X S
e [zp(y) (S wmm)“] " tot) — )y
CORDINGIOERCIO ﬁ
X S
S {/\(19) (J7 A(T)A'E)dl] "0
0@ o won (J7 pw)™ ]
X S
e [lp(w (S5 w@m)“} "ay
such that

C17B\ )
. ((v(t) -9 (f0awar)"| ) |

fqa(t) {/\(19) (IQU(&) )\(T)A‘L')dl] ﬁAﬂ
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and

—118
(@0 -0 v ()7 vmar)”
' ~11h
5@ [lp(y) (7 prya)’ ] Ay
Proof. Applying (11) with ¢ = d, we obtain

( /Q 7 A(T)Ar)d > d /Q " ®) < /Q 7 A(r)m) e, (24)
Multiplying the last inequality by
S (w) -0 @ (7 amar)"| ﬂ)

7 [A(ﬂ) (S5 A(T)Ar)dl} po

we obtain

—118
s
Q

)
7w {A(ﬂ) ( o /\(T)AT)dl} AY

d—1

X A(8) ( /Q 7 /\(T)AT) AD.

From Lemma 6, the last inequality becomes
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((a(t) —o @ (9 amar) ]
S

fgﬁ(t) [/\(19) (fg”w) A(T)AT) dl] ﬁAﬁ

) (/Qa(t) A(T)AT) ’

= s '
0 fga(t) {A(ﬁ)<fg(0)/\(T)AT)d1} ro

d—1

X A(8) ( /Q 7 /\(T)AT) AB.

Similarly, we have for p and 0 < g < 1 that

(e(t) ~ o) [A(ﬂ) (s A<T>Ar)d‘1} ﬁ) (25)

((v@ ) [4’(77) (s ¢<T>Ar)“} ﬁ
S

7@ [m) (S5 wmm)q‘l} ay

v (@@ opw (7 pwar) ]’ 20
> q/ S
¢ fﬂ(é’)

; {w(y) (S lP(T)AT)q_l} "y
q—1

<o “yac) sy

From (25) and (26), we see that
. ((o(t) -0) [A(é) (477 A(r)Ar)“] ﬁ)
S [A(ﬁ) (S5 A(ﬂm)“} a0
B ((U(C) ~0) [wn (S zp(r)Ar)‘“} ﬁ)
S [¢<y> (S W)M)ql] ay
x ( /Q 7 A(T)AT)d ( /Q 7t l/J(T)AT)q
q /Qa(t) . ((a(t) —0) [A(ﬂ) (S A(r)Ar)“] ﬁ) (27)

fga(t) [A(ﬁ) ( fg(ﬂ) A(T)AT) H} ﬁM
1

>d

o(¢) ((0(6) —0) [w(y) ( [ p(o) AT)ql] ﬁ)
x /Q s

e {lp(y) (S5 lP(T)AT)H} ﬁAy

q—1

<o) ([ par) 1o
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Applying (16) on the right hand side of (27), we have

((a(t) ) [Ma) (S A(r)Ar)d‘l} ﬁ
S

oo {A(ﬂ) ( 7o )L(T)AT)dl] " po

(¢(2) = 0) [zp(n) (o p(oar)”] 'g
X S =
179 [ (15 vimae) |y

X (/:(t) /\(T)AT)d(/QU(C) l/J(T)AT)q

(28)

we obtain

d

| ( L {Mc)(fé’(%(r)m)d_lf )
v B

B \F

< (@) - 0 ( [ [w) ([ smae)”
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Dividing the two sides of (29) by (o (t) — Q)% (0(g) — Q)% and then taking the integra-
tion over f from ¢ to ¢(r) and the integration over ¢ from ¢ to o(s), we have

/V(S) /‘7(") Sd,q,t,@’,r,s,ﬁ (fgg(t) A(T AT)d (fga(é) IP<T)AT)q
1 1
Q Q v v

(o(t) —0)"(e(§) —0)
ot o d—1 ﬁ
s ot =a f; 10 (é)A(ﬁr)AT) }
Q 5 [W)(fg’(")A(r)m)“] (c(r) — 0)A®

X ( /0 7 -/\(19) < /Q 7 A(T)AT)dl ﬁAﬁ) BAt (30)

(e(s) =) ;' [wm (S t,v(r)m)‘”] ﬁ
J7e [w) (S w >m)“]'g<a<s> ~y)Ay
o o -17F %

x ( [ [tp(y) ([ soar) 1] Ay) A
Applying (9) on the term

/Q ) [A(ﬂ) ( /Q - A(T)AT) “1 ﬁ(a(r) — 9)A8,

with u(9) = (¢(r) — ®) and v*(9) = {)\(19) (fgaw) A(T)AT)d_l} ﬁ, we obtain

/Q ) lw) ( /Q 7 /\(T)AT) H] ﬁ(a(r) Y

AtAE

-118
where v(8) = fqﬁ [)\(6) (fg(e) /\(T)Ar)d 1} A6, and then (where v(0) = 0),

/Q' ) [w) < /Q 7 A(T)AT)H] ﬁ(a(r) —8)A®

e o) (0) i-11P (31)
_-/@ /e [/\(9)(/@ /\(T)AT)

AOAD.
Similarly, we see that

B

/Q " llﬁ(}/) < /Q v zp(r)Ar)ql] (o(s) —y)Ay
- /:(S) /g v [IP(B) ( /g " lIJ(r)Ar) ql] ﬁAOAy.

(32)
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Substituting (31) and (32) into (30) and, then, by applying (16), we observe that

) AtAE

1
v

~9)"((6) - @)
-11#8
o @)= f;’(” 2O aman) |

> 4 fga(r) fgﬂ(ﬂ) [)\(9) (fgg'(e) /\(T)AT) dl} ﬁAQAﬁ

x (/ga(t) :A(ﬁ) (/:(ﬁ) )\(T)AT)d_1] ﬁAﬁ) ' x 1At

(o(s) ~ @) J§'© [¢<n> (g wmm)q‘l} o

fQU(S) fgrf(y) {#’(9) (fga(e) ¥(T)AT ql} 5A9Ay

x( /;@ |fP(y)( /Qg(y)qJ(T)Ar)ql]ﬁAy)éxlA@
> dofetr) - z(/ [ ()AT)“VAM>

) 3(/ [ [ ([ ()AT)"_TAyAg)ﬁ.

From (31)—(33), the last inequality becomes

==

a(s) po(r) qutgrsﬁ A(T)AT ) (f P(T
[0 o mnels”

(33)

1
B

/ /au sd,,,,t,g,r,s,,g JEOM @A) (1O p(oar)”
)*e)%(a(é)*e)%

which is (23). O
Remark 1. Ifv = B = 2, we obtain (8) proved by AlNemer et al. [16].

Remark 2. When T =N, o =1and v = B = 2, in Theorem 1, we obtain (5) as demonstrated
in [6].
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Remark 3. As a special case of Theorem 1 (when T = R), we have that if 0 < d,q < land A, ¢
are nonnegative and decreasing functions and assume that > 1,v > 1with1/p+1/v =1, then

dtde

o Supazrsp (JiA@dr) (JE poar)’
/0 /o to @

>vC(d,q,r,s) (/(: l)\(t) (/;,\(T)dr) dl] ﬁ(r ) t)(ﬁ)

1
B

x ( A [w(@ (f %(r)dr)q_l] - cwc) ,

1
vsv,

™=

where

==

C(d,q,r,s,v) =

< -

dqr

and

r s {A(g) (J A(T)dr)“} "iz

B [ro (i a)] o~ oyae

s S [won (i w(0an)™ ) ay )
S [po) (v @an) ] s~ y)ay
1

Sd,q,t,@‘,r,s,‘B =S

xS

xS

¢[wn (fy w()d)
JE[ew) (U pan) ] ay

Theorem 2. Let ¢ € T, A, @ be nonnegative and d, q be positive functions. If ¢, > 0 are concave
and supermultiplicative functions and B > 1,v > 1with 1/ +1/v =1, then

xS

/‘7(5) /‘7(7) St,r,s,é,v,ﬁ¢(A(t))l/J(Q(g))
e Jo (@) -0)7(e()) o)

=) </:(r) [d(ﬁ)"’(%ﬂﬁ(dw - 19)A19> :

X < /Q " [q(y)IP((Z((;/)))r(O(S) —y)Ay> é, (34)

holds for all v,s € [0, 0|1, with

w4800 ([ (5552 )
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fLT

Proof. Using the fact that ¢ is a supermultiplicative function, applying Jensen’s inequality

and then applying (16), we find

and

(35)

Similarly, we can obtain

(36)
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Multiplying both sides of (35) and (36), respectively, by
([ (5[] et - one) (2552

(e (o) o) (15 [acone (i) ne) )

S(OJ*” () w%g»f)

Q
(15 (2982)" 82) (45 [aww (52

and then multiplying these inequalities, we obtain

s(<fs<”{dw>¢<szz>rw<r>w) i)
A

and

(37)

[ () e ) (552
(7 (288 ) (7 o 39)

By dividing the two sides of (37) on (o (t) — 0) v (0(Q) — Q)% and then taking the inte-
gration over { from o to ¢(s) and, then, the integration over f from g to o (r), we obtain
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%
) At (38)
)
)

P(Q(0)

“ 00 (/:(g) [Q(y)llJ((Ij(yy))}ﬁAy) ;Ag

By using the integration by parts, we can see that

/QU(Y) [d(ﬁ)¢(;\((g))>r(a(r) — 9)AY

_/W/ [ <)‘ () )]ﬁAew.

(39)

In addition, we can obtain that

(40)

Substituting (39) and (40) into (38), we have

/-(7(5) /a(r) St,r,s,é,v,ﬁ(p(A(t))lp(Q(C))AtAg
.y Ho0) - )

2/a(r)s (f fa(ﬁ{ <A(g)))}ﬁA9A19> (P(DD(%)))V
N0 (o) ) (1 [ (i) )

[
B\ F
] M) At (41)
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Applying (16) with v = v = v on the R H.S. of (41), we have

/ a(s) /“7(7 Strs§1//3¢ A t))l/J(Q(g))
)~ 0)* (0(0) — o)

= (%”)V
(L))
o[ (3]

>
<
'
==
7N
—~—
S
=
s~
2
=
| — |
QU
>
S—
<
7N
‘>
o S
D D
SN— [ ——
~~_
_ 1
-
>
>
>
(=)
~
™=

which is (34). O

Remark 4. If T =N, ¢ = land v = B = 2, in Theorem 2, then we obtain (6) as demonstrated
in[6].
By putting ¢(#) = ¢ and ¢(y) = y in Theorem 2, we have the following theorem

Theorem 3. Assume that ¢ € T and A, @ are nonnegative functions and p > 1, v > 1 with
1/B+1/v =1.Then, forall r,s € [0, |1, we have

[ e
> yM(r, s,v) ( /Q " B @) () - 19)A19>

)
%

<(f " 0B () (0(5) — noy)',

=

where

v

J7TAB(8) (0 (r)— ) A0 (159 @F (y)(o(s)-y) )
St,r,s,g’,v,ﬁ =S5 Ugr — 70 2B(9AS 5 o(s © o !
(e(n—e) (S A (@)a8) |7\ (e(5)=0) (S @P(v)ay)

M(r,5,v) = ~(0(r) - )" (o) — ),
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_ 7O [ (@(t) —0)AF(9)
A(t)—/g s W)A(ﬂ)w,

and

o) - [ l9)- Q2f ()

Remark 5. As a special case of Theorem 3, when T =N, 0 = 1and v = B = 2, we obtain (7) as
was proved by Zhao and Cheung [6].

4. Conclusions

In this paper, we establish some new generalizations of reverse Hilbert-type inequali-
ties by applying reverse Holder inequalities with the Specht ratio function on time scales.
We generalize a number of those inequalities to a general time-scale measure space. In
addition to this, in order to obtain some new inequalities as special cases, we also extend
our inequalities to a discrete and continuous calculus. In future work, we will continue to
generalize more fractional dynamic inequalities by using Specht’s ratio, Kantorovich’s ratio
and n-tuple fractional integral. In particular, such inequalities can be introduced by using
fractional integrals and fractional derivatives of the Riemann-Liouville-type on time scales.
It will also be very interesting to introduce such inequalities in quantum calculations.
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