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Abstract: With the aim of solving the problems arising from the low efficiency and low accuracy
of fault classification of wind power towers and turbine equipment (referred to as wind power
systems for short) using artificial data analysis, this paper takes the operational data for wind power
systems as the research object and proposes an improved K-means weighted dynamic clustering
fault classification algorithm (DT clustering). First, historical and asymmetrical operational data from
wind power systems were pre-processed to construct the data time series matrix and establish the
fault classification model; second, the linear approximate constrained optimization algorithm and
multiple regression algorithm were combined to build the model parameter optimization model.
Finally, the comparative analysis of various algorithms showed the superiority of this algorithm, and
the effectiveness of this model should be proved in practical applications.

Keywords: wind power system; dynamic clustering; nonlinear; linear approximate constraint
optimization

1. Introduction

With the increasing installation capacity of wind power in China, the expansion of
wind power coverage area and the deepening understanding of wind power technology has
gained momentum in China. Wind power is promoted as a long-term strategy in China to
respond to environmental pollution and energy shortages. Wind power generation in China
has shown continuous growth since 2010. However, only 2.6% of energy requirements are
met by wind power in China. Several socio-technical barriers, including technology, culture,
governance, and infrastructure, have been identified in a Chinese context [1]. Safety is
reported as the second most important issue that likely causes severe damage to the stability
of wind power grids. Voltage stability deteriorates through the continuous operation
of wind turbines [2]. Therefore, the Chinese wind power industry has implemented
higher requirements for the safety and operational stability of wind power foundations,
towers, and units. Based on the existing “Germanischer Lloyd” (GL) design specification,
combined with the fault classification mechanism of wind power manufacturers, and
through the deep mining of relevant system fault data, it is inevitable that the wind
power industry should quickly identify key faults and common faults that affect safety
and operational performance; this is also one of the issues of greatest concern for wind
power manufacturers [3]. Serious safety threats to wind power have arisen from imperfect
supervision and management issues [4].

Extensive research on the structural safety and health detection of equipment has
been carried out at home and abroad [5–7], especially wind power towers and wind
turbines. Yuan Wan [8] applied finite element stress analysis to analyze the mechanical
interaction between wind power foundations, towers, and units from the perspective
of structural design. They used forward structural optimization measures and system
safety evaluation methods. The mechanical properties of steel towers, reinforced concrete
towers, and hybrid towers with concrete at the bottom have been studied in depth [9], and
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asymmetric structural designs have been put forward according to their local instability
principles [10] and weak link failure mechanism [11]. At the same time, various data
mining algorithms based on data-driven philosophy and data analysis are also widely
used in the field of wind turbine fault identification and diagnosis [12]. Among them,
as a classical clustering algorithm, the K-means algorithm is often combined with other
algorithms for wind power system fault identification [3,13] and wind field equivalent
model construction [14]. However, current research and applications are mainly focused
on the structural design analysis of wind turbine towers [15], failure mode mechanism
analysis and fault identification [16], and state prediction of wind turbine generators [17].
Little attention has been given to the common faults and key faults that affect the safety
and operational performance of wind turbine foundations, towers, and generator sets.
Particularly, the key fault data analysis has a significant impact on the safety of wind
turbine generator sets and towers, such as collapse fault. A list of 10 typical wind power
faults has been identified in [18]. The main causes of faults are also summarized in the
same research work.

However, studies based on K-means clustering only consider the optimization of
clustering center and K value selection [19], ignoring the optimization and dynamic allo-
cation of attribute weighting parameters. Therefore, based on the existing four-level fault
processing system of enterprises, this paper combines the linear approximate constraint
optimization strategy with the nonlinear regression theory, establishes a dynamic weighted
K-means fault clustering classification model based on the weight parameter optimization
algorithm, and realizes automatic fault classification processing based on fault time distri-
bution, so as to quickly identify the common faults and key faults of a wind power base,
tower, and unit.

The remainder of the paper is structured as follows: Section 2 is focused on the
dynamic weight K-means clustering method, its principles, weighting parameters, and
their calculation, and the constraint approximation of algorithm. Then, we provide the
wind turbine fault classification model in Section 3. Section 4 presents the application of
the weighted K-means algorithm in the wind turbine fault data. In Section 5, we analyze
the results and discuss them in the context of fault classification. Section 6 concludes the
proposed research and its applications.

2. Related Work

Yang et al. [20] used the K-means algorithm and enhanced the performance of pro-
posed research from a better initializing technique. The weighting distance method was
applied to measure the data density. Defects in poor clustering in traditional K-means
performance were found. However, the proposed research improved the performance
of the K-means algorithm by reducing the intra-cluster variance. Although the simpler
K-means algorithm best suits general tasks and shows limitations on applying to complex
datasets. In this context, the fuzzy C-means algorithm has shown better performance
than simple K-means for handling ambiguity between clusters by using the probabilistic
membership matrix [21].

To effectively cluster large scale datasets, the K-means algorithm has been an effective
model for many years. However, K-means is not effective to distinguish the discriminative
feature capabilities in a clustering process. A research group led by Huang et al. [22]
proposed the extended K-means by using l2-norm regularization to weight features. A
new objective function was proposed for the clustering framework. Centroid rules, mem-
bership matrix, and weight features were derived theoretically. An extended K-means
algorithm is better in performance compared with other variants of the K-means algorithm
in terms of accuracy, F-score, random index, and normal mutual information (NMI) as
performance metrics.

Power generation from wind towers is widely promoted by the Taiwan provincial
government. Taiwan’s geographic location favors wind power generation. However,
torrential rains and strong winds have posed severe risks to wind turbines, and sometimes



Symmetry 2022, 14, 688 3 of 14

collapse of wind towers occurs due to frequent and intensive typhoons. Both domestic
and internal collapse of wind towers have been investigated by analyzing the activation
mechanism of the collapse of towers [23]. Recent research proposed a hybrid fault detection
approach to detect the incipient blade failures and improve the availability and maintenance
cost of systems. Data from a wind farm in Canada were used to evaluate the proposed
approach. The performance accuracy of the proposed approach is better than that of existing
approaches [24]. Before this research, Lin et al. [25] deduced four reasons behind the failure
of wind turbine towers in China: The lack of core technology, cost-competitiveness, climate
differences, and design standards were the main reported failure causes.

To ensure privacy protection, KNN classification is widely applied to classify negative
databases. Zhao et al. [26] proposed applying the KNN classifier to reduce non-negligible
performance degradation and enable the fine-grained control of accuracy in distance
estimation. Moreover, the proposed approach designed the estimation of cluster centers
using the K-means algorithm. Regarding wind turbine failure analysis, a recent study [27]
proposed the analytical hierarchy process (AHP) as a weighting technique to identify and
analyze failure scenarios to reduce failure impacts. The recent methods show limitations of
classifying the identified wind turbines.

The existing literature provides important insights into the K-means algorithms and
their applications in clustering data from various domains. However, low attention is paid
to applying the weighted K-means to wind turbine data. Moreover, fault classification in
wind turbines is not discussed in the existing literature regarding the K-means algorithm.

Wind turbine “Supervisory Control and Data Acquisition” (SCADA) alarms frequently
occur in large-sized wind farms. It is overwhelming for maintainers or operators to
maintain the wind farms. This study proposed to prioritize alarms based on their data
volume and seriousness. Moreover, a converter system and pitch with known faults were
also investigated in this study. Conditions of alarm data generation provided a convenient
means of fault detection, diagnosis, and prognosis. However, the proposed system may be
integrated with an intelligent system to improve availability and reliability, and to reduce
downtime of wind turbines [28].

SCADA alarm data have been used for fault diagnosis in wind turbines. The Dempster–
Shafer (DS) theory showed better results based on the processing of multidimensional
information [29]. The later approach is easier to explain, and can be executed with low
cost. Prior to this study, component failure in wind turbines was determined from the
analysis of SCADA alarm data [30]. The proposed approach offered a valuable prediction
of components’ failure before the actual appearance. However, the presented approach
had limitations when handling sequential information. Thus, the proposed approach in
this paper overcomes the limitation by applying the machine learning technique. Before
our proposed research, a study [31] attempted to analyze the operational conditions of a
wind farm by numerical modeling and data mining approaches. A recent work utilizes
the SCADA alarm data by using the online root fault identification technique. Both known
and unknown faults were used for weighing the alarm weights. Hamming distance and
Euclidean distance were measured [32]. The proposed approach helped in labeling the
root faults in wind turbines. However, detection accuracy remains a limitation of the
earlier studies. Therefore, the proposed research in this paper is aimed at achieving a better
accuracy compared with the earlier mentioned works.

3. Dynamic Weighted K-Means Clustering Method

There are several steps in the proposed method of this paper (Figure 1). Each of these
steps is discussed subsequently.

3.1. Principle of Weighted K-Means Algorithm

The K-means algorithm provide sensitive clustering results to the initial clustering
center point. Therefore, varying the initial center point results in symmetric and asymmetric
clustering results. A traditional K-means algorithm does not involve each feature attribute
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in a given dataset to determine the center points of initial clustering [33]. Thus, it does not
entirely reflect the structure of dataset. An improved K-means algorithm can overcome
this issue.
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Figure 1. Flowchart of the proposed method.

The basic idea of the K-means algorithm is to input the number of the cluster [34]. A
first selection of K samples is randomly performed from a dataset. If the clustering sample
dataset is Y = {y1, y2, . . . , yi}, and the clustering category is T = {tk|k =1, 2, . . . , n}, then
the original center of gravity of type i is calculated as follows:

ti = ∑
yk∈i

yk/|Ti| (1)

where ti is the clustering center of class data i, and Ti is the sample dataset belonging to
class i in the sample dataset y.

Therefore, the distance from the sample data clustering center tm of attribute m to the
center of gravity of each cluster toj can be calculated, and the sample data are clustered and
identified according to f, the minimum distance criterion function. The specific calculation
is shown in Equation (2):

f |d(tm, tok) = min
j=1,2,...,k

d
(
tm, toj

)
(2)

3.2. Weight Parameter Calculation of Fault Classification Model Based on K-Means Algorithm

The fault–time series matrix (with the fault trigger times and time distribution as
factors) was established according to the fault data from wind turbines in actual operation.
In addition, the weighting of each column of data was dynamically allocated when the fault–
time series matrix was standardized, to obtain the following formula given in Equation (3):

λ = i/j× a + b (3)

where θi denotes the number of non-zero values in the column i of the fault–time series
matrix, j is the column dimension of the fault–time series matrix, a is the coefficient term of
the weight parameter, and b is the constant term of the weight parameter.

3.3. Linear Approximate Constraint Approximation Optimization Algorithm

Based on the K-means clustering model, the time–series matrix of the regression model
with weight coefficient as a variable factor and clustering classification error rate as an
output index is established in this research. Next, the multivariate nonlinear regression
equation based on weight coefficients and the classification error rate is constructed. At
the same time, the multivariable approximate constraint optimization method is used to
solve the optimal equity coefficient and test it with actual data. In this paper, the sequential
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search algorithm [35], that is, the linear approximate constrained optimization algorithm,
is used to realize the optimal calculation of weight parameters. The COBYLA best suits
the linear approximation to the objective and constraint functions. If the objective function
and the constrained optimization function are F(y) and Ci(y), respectively, the parameter
optimization calculation is expressed as follows:{

min F(y) y ∈ Rn

subject to Ci(y) ≥ 0 i = 1, 2, . . . , n
(4)

In this paper, the nonlinear regression equation F(y) is generated based on the fitting
of the sample training set, Ci(y), which is the non-negative characteristics of the calcu-
lation results of the regression equation and the variable range values generated based
on the test. At this time, there is a unique linear function F and constraint conditions{

Ci : i = 1, 2, . . . , n
}

, and the nonlinear objective function F(y) and constraint conditions{
Ci(y) : i = 1, 2, . . . , n

}
are interpolated at the extreme values, so Equation (4) can be

transformed into linear function Equation (5) to solve:{
min F(y) y ∈ Rn

subject to Ci(y) ≥ 0 i = 1, 2, . . . , n
(5)

4. Establishment of Wind Turbine Fault Classification Model Based on Multiple
Nonlinear Regression
4.1. Establishment of Fault Data–Time Series Attribute Matrix

Based on the operational data of the wind turbine cluster, the original data values of
each attribute of the wind turbine fault sample were collected, and then a statistical table
of fault attributes was established according to its time distribution series, as shown in
Table 1.

Table 1. Monthly sample attributes (statistical time).

S. No Fault 1 2 . . . k . . . 31

1 A x1.1 x1.2 . . . x1.k . . . x1.31
2 B x2.1 x2.2 . . . x2.k . . . x2.31

. . . . . . . . . . . . . . . . . . . . . . . .
i . . . xi.1 xi.2 . . . xi.k . . . xi.31

. . . . . . . . . . . . . . . . . . . . . . . .
n . . . xn.1 xn.2 . . . xn.k . . . xn.31

Note: In the statistical table of fault attribute matrix, the row of the matrix was the sample attribute for sample
statistics, i.e., the time when the fault occurs, which is counted on a daily basis; the second column of the matrix
was the statistical sample, i.e., the name of the fault for which fault frequency statistics are analyzed every month;
yi.k in the matrix was the statistical value of fault frequency of the attribute k(day k) of the sample i (fault name).

4.2. Establishment of Fault Classification Model

In combination with the four-level fault treatment mechanism of wind power enter-
prises, a four-level classification model corresponding to wind farm faults was established
by using K-means theory. The model process and rules [36] are shown in Figure 2.

Where λ was the weight coefficient of the fault–time series matrix, and δ was the
conditions for termination of the model operation, the fault–time series matrix data are
used as an input that is standardized later in the following process. In the next process,
initial center of gravity Ck from each sample data is calculated. Based on the calculated
initial center of gravity Ck of each sample data, the classification of each type of sample
data is performed. The proposed model is well-established to determine the cluster center
of gravity of k-level data, and the nth classification in processes 4 and 5, respectively. If the
proposed model meets δ termination conditions, we receive classified fault data of turbines;
otherwise, it returns to calculate Tkn at process 4 of the proposed model.
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4.3. Optimal Calculation of Weight Parameters of Fault Classification Model Based on
K-Means Algorithm

By using the fault statistics of wind turbines in the actual operation, the fault–time
series matrix was established with fault attributes as the rows and distribution time as the
columns. Besides, Equation (3) was used to calculate the dynamic weight distribution of
each column of data upon standardizing the data of the fault–time series matrix.

The change in weight coefficient of the K-means clustering model significantly affects
the clustering error. Therefore, according to the fault data and time distribution of wind
turbines in actual operation, this paper constructed a regression model with the weight
coefficient of K-means clustering model as the variable factor and clustering classification
error rate c as the output index. In addition, the model weight coefficients were calculated
by using a linear approximate constrained optimization algorithm. This algorithm employs
a linear approximation to constraint and objective functions.

Based on the statistical data of wind turbine faults, the fault–time series matrix was
constructed and the data were standardized. At the same time, a sample dataset based on
weighted parameters and fault classification errors was constructed. In combination with
the goodness-of-fit of the equation, significance of regression equation, and significance
test of variable coefficient, Matlab was used to implement the optimal regression equation
based on the sample dataset. Goodness-of-fit was used to test the overall model adequacy.
Poor classification of turbine data was the primary concern that motivated us to imply the
goodness-of-fit in this paper.

4.4. Optimization of Weight Coefficient of Wind Farm Fault Classification Model

In terms of the combined nonlinear regression model constructed for the weight
coefficients of the classification model, its weight parameter optimization algorithm was
implemented by using the “constrained optimization by linear approximation” (COBYLA)
algorithm [35]. First, the data were collected and standardized, and the K-means model
was used to construct the sample dataset of weight parameters-classification error. Then, a
multivariate nonlinear regression model was completed through the sample dataset; finally,
the COBYLA algorithm was used to solve the optimal weight coefficient, and the optimal
dynamic weight value of each column was obtained. The calculation process flow is shown
in Figure 3:
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As shown in Figure 3, the best solution (the optimal weight value λ) is obtained at the
end. Prior to this a multiple nonlinear regression model followed by a significance test for
goodness of fit and COBYLA to calculate the optimal weight, were used (see Figure 3).

4.5. Performance Evaluation Indicator

In this paper, an accuracy (Acc.) indicator is employed to assess the validity of cluster
results. The accuracy metric is a widely used performance indicator in cluster issues
and it determines the ratio of correctly classified clusters and number of total clusters, as
expressed in Equation (6).

Accuracy =
No. o f correctly classi f ied clusters

No. o f total clusters
(6)

5. Application of Weighted K-Means Algorithm in the Wind Turbine Fault Data
5.1. Current Fault Classification Treatment Mode of Wind Power Companies

Currently, wind power enterprises classify the faults based on manual statistical analy-
sis, and the fault data are artificially classified and matched to the corresponding processing
departments. This processing mode has high requirements for the professional ability
and business ability of the graders. The existing fault classification and corresponding
processing departments are listed in Table 2.
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Table 2. Fault classification treatment based on actual emergency treatment.

Fault Level Fault Level Definition Grading Standard Processing Department

1 Low risk level fault Low frequency and short-term distribution Engineering technology company’s site

2 Medium risk level fault Lower frequency and short-term distribution Engineering technology company’s
operation and maintenance center

3 Common fault with higher risk level Higher frequency and longer-term distribution Technical department and
responsible leader

4 Common fault with high risk level High frequency and long-term distribution R&D center and responsible leader

5.2. Establishment of Wind Farm Fault Classification Model

Based on above theories and methods, the application steps of the wind farm fault
classification model are as follows:

1© Establish an asymmetric sample data training set;
2© Establish a frequency data–time series matrix;
3© Establish a fault classification model according to the K-means classification the-

ory [37] and the reality;
4© Establish a dynamic weight optimization model based on linear approximate

constraint optimization algorithm and multiple nonlinear regression K-means model;
5© Establish a K-means fault classification model based on dynamic weight optimization;
6© Classify the real-time fault data.

By incorporating newly added fault data into the fault sample data, we can accumulate
the sample data for the next evaluation update of the optimal weight coefficient. The
application and process of wind farm fault classification model in wind power industry are
shown in Figure 4:
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5.3. Example Verification and Result Analysis
5.3.1. Subsubsection

A fault frequency–time series matrix was established by taking the operation history
and asymmetric fault data statistics of 125 sets of 2 MW units of a company in October 2015
as a model sample dataset. After processing the redundant data, data sequencing processing
and standardization, 222 fault categories were collected and 6815 faults occurred in this
month. The specific situations regarding fault category, date, fault number, and number of
days triggered were shown in Table 3:
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Table 3. Statistical distribution of data for wind farm unit fault time series in October 2015.

S. No. Fault Category Date_1 Date_2 . . . Date_30 Date_31 Fault Number Days Triggered

1 Normal rotor speed shutdown fault 122 105 . . . 0 0 641 17
2 Station 20 communication failure 255 123 . . . 0 0 399 4
3 Station communication failure 315 2 . . . 0 0 319 3
4 Hydraulic system pressure high fault 35 32 . . . 2 0 254 30

. . . . . . . . . . . . . . . . . . . . . . . . . . .

19 Motor cooling water pump
pressure fault 39 15 . . . 0 0 98 9

. . . . . . . . . . . . . . . . . . . . . . . . . . .
33 Three-phase voltage unbalance fault 6 5 . . . 0 0 49 14
. . . . . . . . . . . . . . . . . . . . . . . . . . .

222 Tower foundation ups400 v power
supply failure 1 0 . . . 0 0 1 1

5.3.2. Weighted Value Sample Training Set and Weighted Parameter Optimization Algorithm

The statistical data of 222 non-symmetric faults in 5 wind farms of the company in
October 2015 were taken as the training data and testing data. The business experts graded
each fault based on the fault severity, fault occurrence days, and fault trigger times. Then,
the fault classification model was established by following the K-means modeling process.
Next, the weights a and b were randomly assigned at [0,2] and [0,3], respectively, to calculate
the fault classification error as shown in Table 4. Finally, the sample data training set of a, b,
and the classification error rate were established.

Table 4. Classification error sample dataset based on K-means.

S. No. a b Error Rate c

1 0.3 0.1 0.135135
2 0.4 0.1 0.130631
3 0.7 0.2 0.130631

. . . . . . . . . . . .
65 2.0 0.1 0.211712
66 2.0 0.2 0.216216

MATLAB was used to fit the quadratic, cubic, and quartic surfaces of the sample
dataset, and the test of the fitted surface data is shown in Table 5:

Table 5. Test parameters of fitting surface.

Name Quadratic Fitting Cubic Fitting Quartic Fitting

SSE: 0.007364 0.00499 0.003037
R-square: 0.9294 0.9521 0.9709

Adjusted R-square: 0.9235 0.9444 0.9629
RMSE: 0.01108 0.009439 0.007716

According to Table 5, the R-square = 0.9709 of quartic surface fitting is larger than that
of the other two fitting curves. Therefore, quartic surface fitting was selected to construct
the regression function of A, B, and the grading error rate C, and the surface fitting equation
was as follows:

f (a, b) = p0 + p10a + p01b + p20a2 + p11ab + p02b2 + p30a3 + p20a2b + p12ab2

+p03b3 + p40a4 + p31a3b + p22a2b2 + p13ab3 + p04b4 (7)

According to the linear regression theory and confidence interval (CI) test (95%), the
regression equation is as follows:

f (a, b) = 0.073− 0.196a + 0.736a2−1.111ab + 0.892ab2+0.342b2−0.296b3−0.424a4 + 0.541a3b−0.531a2b2 (8)
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Based on Equation (8), COBYLA was applied to solve the optimal value of the equation,
and the optimal weight parameter was obtained as (0.486, 0.669). For Equation (9), the
optimal dynamic weight parameter of the K-means model was obtained as follows:

λ = θi/j× 0.51727 + 0.94568 (9)

5.4. Comparative Analysis of Algorithms

In this paper, data on historical fault statistics from a company were used to establish
the classic K-means clustering algorithm, the neural network clustering algorithm with
multi-layer perceptron, parameter optimization, and the K-means algorithm model based
on dynamic weight assignment. Seventy percent of the total data was extracted as training
data, and the remaining thirty percent was used as testing data. In addition, both the
classical K-means clustering algorithm and the neural network clustering algorithm with
multi-layer perceptron used the standard algorithm implemented in IBM SPSS. Based on
the weight of the improved K-means classification algorithm, Equation (9) was adopted
for dynamic parameter assignment. The statistical results about the accuracy of the pro-
posed algorithm and its comparison with the other three algorithms are shown in the
following table.

Table 6 summarizes not only accuracy comparison results from the proposed research,
but also shows us total sample counts and misclassified samples. As shown in Table 6, in
the case of testing the same sample data, the K-means clustering algorithm based on the
weight parameter dynamic optimization has the best accuracy, of up to 98.59%, followed
by the neural network algorithm based on a multilayer perceptron, with an accuracy of
90.14%. The standard K-means algorithm had the lowest classification accuracy, of 87.32%.
Moreover, the K-means algorithm based on weight parameter optimization misclassified
only one sample, followed by the neural network algorithm that classified seven samples.
The classical K-means algorithm misclassified nine samples. The overall accuracy results
improved in the case of least misclassification of sample data. This occurred when only
one sample was misclassified by the proposed K-means algorithm. As the number of
misclassified samples increased, the accuracy decreased in the cases of the neural network
and the classical K-means algorithms.

Table 6. Test accuracy of different algorithms.

Algorithm Total Number of Samples Number of Misclassified Samples Accuracy

K-means algorithm of weight
parameter optimization 71 1 98.59%

Neural network algorithm 71 7 90.14%
Classical K-means algorithm 71 9 87.32%

5.5. Fault Classification Calculation and Result Analysis Based on Actual Data

Using the above model, the wind power system data for a wind power company in
Gaozhou Wind Farm, Guangdong Province, in March 2019 were identified and classified.
In that month, 29 fault categories were collected, and 24 units had 2028 faults. The analysis
of the fault data is presented in Figure 5.

Among those faults, the vibration overrun fault is listed as the fourth-level fault in
the model, which needs to be handled by the research institute. According to the statistical
data for wind field faults, it is found that this fault occurred 447 times in the mentioned
time, of which there were 193 occurrences in Unit 10. According to the 254 vibration
overrun faults triggered by batch units, through the analysis of its operational data, it was
found that this fault always occurred in the low wind speed areas where wind turbines
did not generate electricity. The vibration overrun faults have been considered of the
severe category of the problem [38]. The analysis of the acceleration spectrum of other unit
system data shows that the resonance frequency is 0.4167 Hz, which is consistent with



Symmetry 2022, 14, 688 11 of 14

the previous study by Huang [39] where the measured frequency and amplitude were
0.5502 Hz and 0.09141 m/s2, respectively. These findings were consistent and symmetrical
with the natural frequency of the tower and the blade passing frequency (3 P). As a result,
the forced oscillation causes the tower to resonate and then triggers the rotating speed to
excite the tower vibration fault, as shown in Figure 6. Finally, the wind power company
optimizes the control strategy of the small wind speed stages of wind turbines to solve the
faults of batch wind turbines.
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Figure 6. Acceleration spectrum analysis based on vibration data.

The data for unit 10 were analyzed carefully, and it was found that besides the vibration
fault of the tower drum excited by the rotating speed, there was also the fault of the tower
verticality inclination exceeding the limit. Through the ground patrol inspection and the
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confirmation of the ground-penetrating radar (GPR) system, it was found that the rate
of change of the tower inclination to the northwest reached −0.0118, which exceeded the
relevant national regulations and was less than 0.005 as it can be seen in Figure 7. This is
because of the interaction between the rotating speed-driven tower vibration overrun fault
and tower inclination, which further increases the risk of wind turbine collapse. Therefore,
control strategy optimization and tower bolt curing measures are adopted to solve the fault.
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To sum up, the fault classification results of the K-means fault classification model
based on the assignment of dynamic distribution weight parameters can truly reflect the
actual state of fault triggering in the field operation of wind power systems and the urgency
of fault handling. This fault classification approach provides data and support for wind
power companies to quickly find the characteristic data of faults that affect the safety
of wind power system. It also realizes rapid fault handling and product optimization,
especially when the tower tilting vibration exceeds the limit fault interaction.

In comparison with the proposed data mining approach [40], our proposed research
has a higher classification accuracy, of 98.59% compared with that of 82.9% in the former
approach. The main strength of our proposed approach was the use of a complete dataset
of wind turbine faults to evaluate the proposed research. Performance results of the
SCADA alarm analysis-based approach [32] were lower compared with this paper. The
earlier proposed approach showed a maximum accuracy score of 90.7%, which is below
the performance of approach proposed in this paper. These comparison results show the
strength of K-means weighted dynamic clustering fault classification approach.

The main disadvantage of the proposed approach is that it goes through several stages
before providing classification results. Therefore, the proposed approach requires efforts
from researchers to achieve the goals of the research. Convolutional neural networks
(CNNs) can rapidly detect and classify the wind turbine faults [41]. CNNs and other deep
learning models require fewer steps for fault detection and classification in the energy
sector. Therefore, one can choose a model that can directly measure the signals and use the
applications of recommended typical CNN and other models when sample data is large
enough [42].

6. Conclusions

This paper aims to study the problem related to the difficulty in choosing the priority
of asymmetric fault handling in wind power systems. Starting from actual data, wind
power tower and unit equipment were considered as the research objects to establish a
dynamic fault classification model for wind power tower and unit equipment, with the
number times of faults were triggered and fault distribution time as variables. Taking the
actual fault statistical data of the wind power system as the sample dataset, the dynamic
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optimization equation of the weight parameters of the K-means model is constructed by
combining the fault times with the time distribution and adopting a nonlinear regression
theory and the concept of linear approximate constraint optimization. The comparative
analysis of algorithms shows that the fault classification accuracy of the K-means fault
classification model based on dynamic weight optimization algorithm is higher than that
of the neural network algorithm and the classical K-means algorithm. The actual operation
data also prove that this model can effectively identify the key faults of wind power
foundation, tower, and unit equipment. The main limitation of the proposed methodology
is that it relies on several steps to achieve classification results. This complicates the
proposed approach for achieving fault classification results. Therefore, this approach can
be optimized to overcome the limitations in future works.
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